
1

Tirgul 2

Asymptotic Analysis

Asymptotic Analysis

• Motivation: Suppose you want to evaluate two
programs according to their run-time for inputs of
size n. The first has run-time of:

and the second has run-time of:

For small inputs, it doesn’t matter, both programs
will finish before you notice. What about (really)
large inputs?

7log41.0 ++⋅ nn

38592)239log1000 (200 ++++⋅ nnn

Big - O
• Definition:

if there exist constants c>0 and n0
such that for all n>n0,

))(()(ngOnf =
)()(ngcnf ⋅≤

Big - O

• In other words, g(n) bounds f(n) from above (for
large n’s) up to a constant.

• Examples:

why?)()()5
)()4

)(10000)3
)(5.0)2

)1(1000000)1

2

2

nOn
nOn

nOn
nOn
O

≠
=

=
=

=

Big - Omega
• Definition:

if there exist constants c>0 and
n0 such that for all n>n0,

))(()(ngnf Ω=
)()(ngcnf ⋅≥

Big - Omega

• In other words, g(n) bounds f(n) from below (for large
n’s) up to a constant.

• Examples:

)()4
)()3

)(10000)2
)(5.0)1

2

2

nn
nn

nn
nn

Ω≠
Ω=

Ω=
Ω=

2

Big - Theta
• Definition: if:

and
• This means there exist constants , and

such that for all ,

))(()(ngnf Ω=

))(()(ngnf Θ=

))(()(ngOnf =

1 0c > 2 0c > 0n

0n n> () () ()1 20 c g n f n c g n≤ ⋅ ≤ ≤ ⋅

Big - Theta

• In other words, g(n) is a tight estimate of f(n) (in
asymptotic terms).

• Examples:

)()3
)()2

)(5.0)1

2

2

nn
nn

nn

Θ≠
Θ≠
Θ=

Example 1
Question: is the following claim true?
Claim: For all f, (for large enough n, i.e. n > n0)

Answer : No.
Proof : Look at f(n) = 1/n.

Given c and n0, choose n large enough so n>n0

and 1/n < c. For this n, it holds that
(f(n))2 = 1/n2 = 1/n * 1/n < c * 1/n. = c*f(n)

)()())((2nfOnf =

Example 1
(question 2-4-e. in Cormen)

Question: is the following claim true?
Claim: If (for n>n0) then

Answer: Yes.
Proof: Take . Thus for n>n0,

)()())((2nfOnf =
0)(>≥αnf

α/1=c

))((2)()(1)(1)(nfcnfnfnfnf ⋅=⋅⋅≤⋅⋅=
α

α
α

Example 2
(question 2-4-d. in Cormen)

Does f(n) = O(g(n)) imply 2f(n) = O(2g(n))?
Answer: No.
Proof : Look at, f(n) = 2n, g(n)=n,
Clearly f(n)=O(g(n)) (look at c=2 n0=1).
However, given c and n0, choose n for which
n > n0 and 2n > c, and then :
f(n) = 22n = 2n * 2n > c * 2n = c * g(n)

Summations
(from Cormen, ex. 3.2-2., page 52)

Find the asymptotic upper bound of the sum

• note how we “got rid” of the integer rounding
• The first term is n so the sum is also
• Note that the largest item dominates the growth of the term

in an exponential decrease/increase.

 
       

)(2log12/1)1(log

2/1)1)2/((2/

0

log

0

log

0

log

0

log

0

nOnnnn

nnn

k

k

n

k

k
n

k

k
n

k

n

k

k

=++=++≤

≤+≤+≤

∑

∑∑∑∑

∞

=

====

log

0

/ 2
n

k

k

n
  

=

  ∑()/1 / 2 / 4 / 8 ... 1n n n n+ + + + +                  

)(nΩ

3

Summations (example 2)
(Cormen, ex. 3.1-a., page 52)

• Find an asymptotic upper bound for the following expression:
• (r is a constant) :

note that

• Note that when a series increases polynomially the
upper bound would be the last element but with an
exponent increased by one.

• Is this bound tight?

∑
=

=
n

k
rknf

1
)(

)(...)(1121 nnnn rrrrrr Onnf ++ ==⋅≤+++=
)(rr nOnn ≠⋅

Example 2 (Cont.)

To prove a tight bound we should prove a lower bound that
equals the upper bound.
Watch the amazing upper half trick :

Assume first, that n is even (i.e. n/2 is an integer)
f(n) = 1r+2r+….+nr > (n/2)r+…+nr > (n/2)(n/2)r =

(1/2)r+1 * nr+1 = c * nr+1 = Ω(nr+1)
Technicality : n is not necessarily even.

f(n) = 1r+2r+….+nr > ┌ n/2┐+ … + nr ≥ (n-1)/2 * (n/2)^r
≥ (n/2)r+1 = Ω(nr+1).

Example 2 (Cont.)

• Thus: so our upper bound was
tight!

)()(1nrnf +Θ=

Recurrences – Towers of Hanoi
• The input of the problem is: s, t, m, k
• The size of the input is k+3 ~ k (the number of disks).
• Denote the size of the problem k=n.
• Reminder:

• What is the running time of the “Towers of Hanoi”?

H(s,t,m,k) {
/* s - source, t – target, m – middle */

if (k > 1) {
H(s,m,t,k-1)
/* note the change, we move from the

source to the middle */
moveDisk(s,t)
H(m,t,s,k-1)

} else { moveDisk(s,t) }
}

Recurrences
• Denote the run time of a recursive call to input with

size n as h(n)
• H(s, m, t, k-1) takes h(k-1) time
• moveDisk(s, t) takes h(1) time
• H(m, t, s, k-1) takes h(k-1) time
• We can express the running-time as a recurrence:

h(n) = 2h(n-1) + 1
h(1) = 1

• How do we solve this ?
• A method to solve recurrence is guess and prove by

induction.

Step 1: “guessing” the solution
h(n) = 2h(n-1) + 1

= 2[2h(n-2)+1] + 1 = 4h(n-2) + 3
= 4[2h(n-3)+1] + 3 = 8h(n-3) + 7

• When repeating k times we get:

h(n)=2k h(n-k) + (2k - 1)

• Now take k=n-1. We’ll get:

h(n) = 2n-1 h(n-(n-1)) + 2n-1 - 1 = 2n-1 + 2n-1 -1
=2n - 1

()2 22 2 2 1h n= − + −
()3 32 3 2 1h n= − + −

4

Step 2: proving by induction
• If we guessed right, it will be easy to prove by induction

that h(n)=2n - 1
• For n=1 : h(1)= 2-1=1 (and indeed h(1)=1)
• Suppose h(n-1) = 2n-1 - 1. Then,

h(n) = 2h(n-1) + 1 = 2(2n-1 - 1) + 1
= 2n -2 + 1 = 2n -1

• So we conclude that: h(n) = O(2n)

Recursion Trees

• For each level we write the time added due to this level. In
Hanoi, each recursive call adds one operation (plus the
recursion). Thus the total is:

1h(n)

2h(n-1)h(n-1)

4h(n-2)h(n-2)h(n-2)h(n-2)

i

.

.

.
2Height i

122
1

0
−=∑

−

=

n
n

i
i

The recursion tree for the
“towers of Hanoi”:

Another Example for Recurrence

• And we get: T(n) = k T(n/k)+(k-1)
For k=n we get T(n)= n T(1)+n-1=2n-1
Now proving by induction is very simple.

T(n) = 2T(n/2) + 1
= 2 (2T(n/4) + 1) + 1 = 4T(n/4) + 3
= 4 (2T(n/8) + 1) + 3 = 8T(n/8) + 7

T(n) = 2 T(n/2) + 1
T(1) = 1

Another Example for Recurrence

• Another way: “guess” right away T(n) <= c n - b (for some
b and c we don’t know yet), and try to prove by induction:

• The base case:
For n=1: T(1)=c-b, which is true when c-b=1

• The induction step:
Assume T(n/2)=c(n/2)-b and prove for T(n).
T(n) <= 2 (c(n/2) - b) + 1 = c n - 2b + 1 <= c n - b
(the last step is true if b>=1). Conclusion: T(n) = O(n)

Beware of common mistake!
Lets prove that 2n=O(n) (This is wrong)
For n=1 it is true that 21 = 2 = O(1).
Assume true for i, we will prove for i+1:

f(i+1) = 2i+1 = 2*2i = 2*f(i) = 2*O(n) = O(n).
What went Wrong?
We can not use the O(f(n)) in the induction, the O

notation is only short hand for the definition
itself. We should use the definition

Beware of common mistake!(cont)

If we try the trick using the exact definition, it
fails.

Assume 2n=O(n) then there exists c and n0 such
that for all n > n0 it holds that 2n < c*n.

The induction step :
f(i+1) = 2i+1=2*2i ≤ 2*c*i but it is not true that
2*c*i ≤ c*(i+1).

5

If we have time…….

The little o(f(n)) notation

Intuitively, f(n)=O(g(n)) means
“f(n) does not grow much faster than g(n)”.
We would also like to have a notation for
“f(n) grows slower than g(n)”.
The notation is f(n) = o(g(n)).
(Note the o is little o).

Little o, definition
Formally, f(n)=O(g(n)), iff
For every positive constant c, there exists an n0

Such that for all n > n0, it holds that
f(n) < c* g(n).

For example, n = o(n2), since,
Given c>0, choose n0 > 1/c, then for n > n0

f(n) = n = c*1/c*n < c*n0*n < c*n2 = c*g(n).

Little o cont’

However,, n ≠ o(n), since for the constant c=2
There is no n0 from which f(n) = n > 2*n.= c*g(n).

Another example, = o(n), since,
Given c>0, choose n0 for which > 1/c,
then for n> n0 :
f(n) = = c*1/c* < c* * < c* *

= c*n

n
0n

n n 0n n n n

