Loy 54
Tirgul 2 Big- O
Asymptotic Analysis « In other words, g(n) bounds f{(n) from above (for
large n’s) up to a constant.
» Examples:
1) 1000000 =0O(1)
2) 0.5n=0(n)
3) 10000 7 = O(n)
4) n=0(n2)
5) n2#0(n) (why?)
T 255
Asymptotic Analysis Big- Omega

» Motivation: Suppose you want to evaluate two
programs according to their run-time for inputs of
size n. The first has run-time of:

0.1-n%+logn+7
and the second has run-time of:

1000- 71 + 200\/; + (logn + 239)2 +3859

For small inputs, it doesn’t matter, both programs
will finish before you notice. What about (really)
large inputs?

¢ Definition:

f(n)=Q(g(n)) if there exist constants ¢>0 and
n, such that for all n>n,, f(n) 2c- g(l’l)

fin)
f"""’—

e gln)

My

fln) = Qig(n))

Big- O
* Definition:

J(n) =0 (g (n)) if there exist constants ¢>0 and n,
such that for all n>n,, f (1) <c-g(n)

ijp’/

cgln)

)
/—

n
Y fln) = O(g(m)

8T
Big- Omega

* In other words, g(n) bounds f{n) from below (for large
n’s) up to a constant.

» Examples:
1) 0.5 =Q(n)
2) 10000 n =Q(n)
3) n2=Q(n)
4) n#Q(n2?)

2

* Definition:

Big- Theta
f(n)=0(g(n)if:
Sf(n)=0(g(n) and f(n)=2Q(g(n))
 This means there exist constants ¢, >0 , ¢, >0 and n,
such that for all n>n,, Ogcl.g(n)gf(n)gcz.g(n)

{2}

%0

S
o4 Example 1
(question 2-4-e. in Cormen)
Question: is the following claim true?
Claim: If f(}’l) >q > (for n>ng) then
f(n)=0(r()?)

Answer: Yes.

€ 8(n) Proof: Take ¢ =1/ . Thus for n>n,,
fim) 1 1 2
: Smy=—-a f(n)<—-f(n)-f(n)=c-(f(n))
/f___'_rlg{nj o [04
: _/
" f=Og)
T 255
. Example 2
Big- Theta (question 2-4-d. in Cormen)

* In other words, g(n) is a tight estimate of f{n) (in
asymptotic terms).

» Examples:
1) 0.5n=0(n)
2) n?2#0(n)
3) n#0@(n2)

Does f{(n) = O(g(n)) imply 2/ = O(2s™)?
Answer: No.

Proof : Look at, f(n) = 2n, g(n)=n,

Clearly f{n)=0(g(n)) (look at c=2 n,=1).
However, given ¢ and n,, choose n for which
n>nyand 2" > ¢, and then :

fln) =22 =2n%2n> ¢ % n = *g(p)

Example 1

Question: is the following claim true?
Claim: For all f, (for large enough n, i.e. n >n)

f(n)y=0(sn)?)
Answer : No.

Proof : Look at f{n) = I/n.
Given ¢ and n,, choose n large enough so n>n,
and //n < c. For this n, it holds that
(fn)? =1/n? =1/n*1/n<c*1/n =c*n)

%

o4

Summations

(from Cormen, ex. 3.2-2., page 52)
Find the asymptotic upper bound of the sum L

P
(T +[n/ 2+ n/ 4]+ [n/8]+..+[1]) =)

Llogn’J Liog n] Liogn] logn]
Yn/2e]< Y (m/20)+1)< Y1+ Yn/2k<
k=0 k=0

=0 k=0
<(logn+1)+n> 1/2k =1+logn+2n=0(n)

k=0
+ note how we “got rid” of the integer rounding
* The first term is 7 so the sumis also Q (1)

» Note that the largest item dominates the growth of the term
in an exponential decrease/increase.

N

058 :
Summations (example 2)
(Cormen, ex. 3.1-a., page 52)

+ Find an asymptotic upper bound for the following expression:
n
« f(n) = Xk (risaconstant) :
k=1

f(n) ="+ +. .+ <n-n=nt= O(nr“)
note that n-n” = O(nr)

* Note that when a series increases polynomially the
upper bound would be the last element but with an

exponent increased by one.
* Is this bound tight?

N2,
L
e

Recurrences — Towers of Hanoi

* The input of the problem is: s, t, m, k
* The size of the input is £+3 ~ & (the number of disks).
* Denote the size of the problem k=n.

* Reminder: (s, t,m k) {
/* s - source, t - target, m - middle */

if (k > 1) {

H(s,m, t,k-1)
/* note the change, we move from the
source to the middle */

moveDisk (s, t)
H(m,t,s,k-1)

} else { moveDisk(s,t) }

}

* What is the running time of the “Towers of Hanoi”?

Example 2 (Cont.)

To prove a tight bound we should prove a lower bound that
equals the upper bound.

Watch the amazing upper half trick :
Assume first, that n is even (i.e. n/2 is an integer)
fn) = 1"+2r+...+n" > /2)+...+n" > (0/2)(n/2)" =
(1/2)r+ * gl = ¢ * pril = Qprtl)
Technicality : n is not necessarily even.
fn) =1"+2r+...+n"> /2 + .+ 0" 2 (n-1)/2 % (n/2)"r
= (n2)+ = Q(ntl).

Wl

Recurrences

» Denote the run time of a recursive call to input with
size n as h(n)

¢ H(s, m, t, k-1) takes 4(k-1) time

* moveDisk(s, t) takes (1) time

¢ H(m, t, s, k-1) takes i(k-1) time

* We can express the running-time as a recurrence:

h(n) =2h(n-1) +1
W) =1
* How do we solve this ?
* A method to solve recurrence is guess and prove by
induction.

Example 2 (Cont.)

* Thus: f(n) = @(,,rH) so our upper bound was
tight!

Ee

Step 1: “guessing” the solution

h(n) =2h(n-1) + 1
=2[2h(n-2)+1] + 1 = 4h(n-2) +
=4[2h(n-3)+1] + 3 = 8h(n-3) +

2h(n-2)+27-1
2h(n-3)+2°-1

N w
{L1]

* When repeating & times we get:
h(n)=2* h(n-k) + (2¥- 1)
* Now take k=n-1. We’ll get:

h(n) = 27" h(n-(n-1)) + 201 - 1 = 201 + 201 -]
:211 _ 1

Step 2: proving by induction
+ If we guessed right, it will be easy to prove by induction
that i(n)=2" - 1
* Forn=1: h(1)=2-1=1 (and indeed i(1)=1)
* Suppose h(n-1) =271 - 1. Then,

h(n) = 2h(n-1) + 1 =2(2"1 - 1) + 1
=22+ 1=20-1

* So we conclude that: Ai(n) = O(2")

NP
SE)
E7)

x

Another Example for Recurrence

* Another way: “guess” right away 7(n) <= ¢ n - b (for some
b and ¢ we don’t know yet), and try to prove by induction:

* The base case:
For n=1: T(1)=c-b, which is true when ¢-b=1

* The induction step:
Assume T(n/2)=c(n/2)-b and prove for 7(n).
T(n) <=2(c(mR2)-b)+1=cn-2b+1<=cn-b
(the last step is true if b>=1). Conclusion: 7(n) = O(n)

%67
20)
Recursion Trees

The recursion tree for the
h(n) e 1

“towers of Hanoi”: /

h(n-1) h(n-1) > 2

h(ﬁ)/ \wz) hK \h(nf2) — > 4

H;ighti _——» 2‘
* For each level we write the time added due to this level. In
Hanoi, each recursive call adds one operation (plus the
recursion). Thus the total is: n-l
) Yo2i=2"n-1

i=0

Wl

Beware of common mistake!

Lets prove that 2"=0(n) (This is wrong)

For n=1 it is true that 2/ = 2 = O(1).

Assume true for i, we will prove for i+1/:
fi+1) = 21 = 2%21=2%fj) = 2*O(n) = O(n).

What went Wrong?

We can not use the O(f(n)) in the induction, the O
notation is only short hand for the definition
itself. We should use the definition

Another Example for Recurrence

T(n) =2 T(n/2) + 1
(1) =1

T(n) =2T(nR2) + 1
=2Q2T(n/A4) +1)+1=4T(n/4) +3
=4 Q2T(nR) + 1) +3 =8T(nB) +7

* And we get: T(n) = k T(n/k)+(k-1)
For k=n we get T(n)=n T(1)+n-1=2n-1
Now proving by induction is very simple.

Ee

Beware of common mistake!(cont)

If we try the trick using the exact definition, it
fails.

Assume 2"=0(n) then there exists ¢ and n, such
that for all #n > n, it holds that 2" < c*n.

The induction step :
fi+1) = 27"1=2%21< 2*c*{ but it is not true that
2%c* S c*(i+1).

If we have time.......

NP
SE)
&

)

x

Little o cont’

However,, n # o(n), since for the constant c=2
There is no n, from which f(n) = n > 2*n.= c*g(n).

Another example, ./, =o(n), since,

Given ¢>0, choose n, for which \/Z > 1/c,

then for n> n, :

fin) = Ju =c*l/e*n <cxng wn < cxdn %/n

=c*n

The little o(f(n)) notation

Intuitively, f(n)=0(g(n)) means

“f(n) does not grow much faster than g(n)”.
We would also like to have a notation for
“f(n) grows slower than g(n)”.

The notation is f(n) = o(g(n)).

(Note the o is little o).

Little o, definition

Formally, f(n)=0(g(n)), iff
For every positive constant c, there exists an n,)
Such that for all n > n,, it holds that
J(n) < c*g(n).
For example, n = o(n?), since,
Given c¢>0, choose n, > 1/c, then for n > n,

f(n) =n=c*l/c*n < C*no*l’l <c¥p? = c*g(n).

