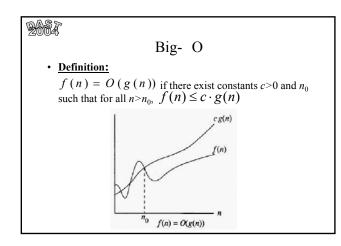
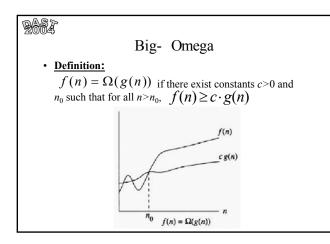
Tirgul 2

Asymptotic Analysis

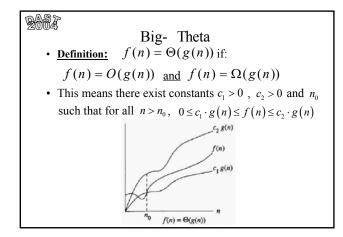
Asymptotic Analysis • Motivation: Suppose you want to evaluate two programs according to their run-time for inputs of size n. The first has run-time of: $0.1 \cdot n^4 + \log n + 7$ and the second has run-time of: $1000 \cdot n + 200\sqrt{n} + (\log n + 239)^2 + 3859$ For small inputs, it doesn't matter, both programs will finish before you notice. What about (really) large inputs?

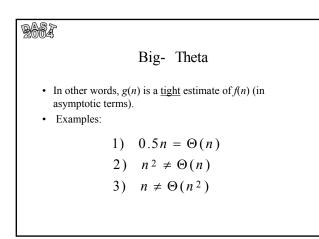


Big- O
• In other words,
$$g(n)$$
 bounds $f(n)$ from above (for
large n's) up to a constant.
• Examples:
1) 1000000 = $O(1)$
2) $0.5n = O(n)$
3) 10000 $n = O(n)$
4) $n = O(n^2)$
5) $n^2 \neq O(n)$ (why?)



Big- Omega • In other words, g(n) bounds f(n) from below (for large n's) up to a constant. • Examples: 1) $0.5n = \Omega(n)$ 2) $10000 \ n = \Omega(n)$ 3) $n^2 = \Omega(n)$ 4) $n \neq \Omega(n^2)$





Example 1

2684

Question: is the following claim true? <u>Claim</u>: For all f, (for large enough n, i.e. $n > n_0$) $f(n) = O((f(n))^2)$ Answer : No. Proof : Look at f(n) = 1/n. Given c and n_0 , choose n large enough so $n > n_0$ and 1/n < c. For this n, it holds that $(f(n))^2 = 1/n^2 = 1/n * 1/n < c * 1/n. = c*f(n)$ Example 1 (question 2-4-e. in Cormen) Question: is the following claim true? Claim: If $f(n) \ge \alpha > 0$ (for $n > n_0$) then

 $f(n) = O((f(n))^{2})$ Answer: Yes.

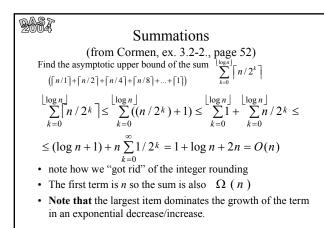
<u>Proof</u>: Take $c = 1/\alpha$. Thus for $n > n_0$,

$$f(n) = \frac{1}{\alpha} \cdot \alpha \cdot f(n) \le \frac{1}{\alpha} \cdot f(n) \cdot f(n) = c \cdot (f(n))^2$$

2684

Example 2 (question 2-4-d. in Cormen)

Does f(n) = O(g(n)) imply $2^{f(n)} = O(2^{g(n)})$? <u>Answer: No.</u> Proof : Look at, f(n) = 2n, g(n) = n, Clearly f(n) = O(g(n)) (look at $c = 2 n_0 = 1$). However, given *c* and n_0 , choose n for which $n > n_0$ and $2^n > c$, and then : $f(n) = 2^{2n} = 2^n * 2^n > c * 2^n = c * g(n)$



Summations (example 2)
(Cormen, ex. 3.1-a., page 52)
• Find an asymptotic upper bound for the following expression:
•
$$f(n) = \sum_{k=1}^{n} k^r$$
 (r is a constant) :
 $f(n) = 1^r + 2^r + ... + n^r \le n \cdot n^r = n^{r+1} = O(n^{r+1})$
note that $n \cdot n^r \ne O(n^r)$
• Note that when a series increases polynomially the
upper bound would be the last element but with an
exponent increased by one.

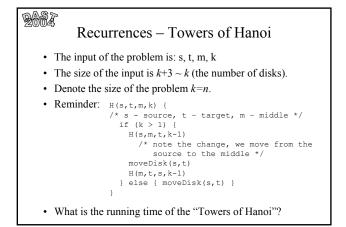
• Is this bound tight?

Example 2 (Cont.) To prove a tight bound we should prove a lower bound that equals the upper bound. Watch the amazing upper half trick : Assume first, that n is even (i.e. n/2 is an integer) $f(n) = 1^{r+2^{r}}+...+n^{r} > (n/2)^{r}+...+n^{r} > (n/2)(n/2)^{r} =$ $(1/2)^{r+1} * n^{r+1} = c * n^{r+1} = \Omega(n^{r+1})$ Technicality : n is not necessarily even. $f(n) = 1^{r+2^{r}}+...+n^{r} > (n/2)^{\tau}+...+n^{r} \ge (n-1)/2 * (n/2)^{r}r$ $\ge (n/2)^{r+1} = \Omega(n^{r+1}).$

2684

Example 2 (Cont.)

• Thus: $f(n) = \Theta(n^{r+1})$ so our upper bound was tight!



Recurrences

- Denote the run time of a recursive call to input with size *n* as *h*(*n*)
- H(s, m, t, k-1) takes *h*(*k*-1) time
- moveDisk(s, t) takes *h*(1) time
- H(m, t, s, k-1) takes *h*(*k*-1) time
- We can express the running-time as a recurrence:

h(n) = 2h(n-1) + 1h(1) = 1

- How do we solve this ?
- A method to solve recurrence is **guess** and prove by **induction**.

9682

Step 1: "guessing" the solution

h(n) = 2h(n-1) + 1

$$= 2[2h(n-2)+1] + 1 = 4h(n-2) + 3 = 2^{2}h(n-2)+2^{2}-1 = 4[2h(n-3)+1] + 3 = 8h(n-3) + 7 = 2^{3}h(n-3)+2^{3}-1$$

• When repeating *k* times we get:

 $h(n)=2^k h(n-k) + (2^k - 1)$

• Now take k=n-1. We'll get:

 $h(n) = 2^{n-1} h(n-(n-1)) + 2^{n-1} - 1 = 2^{n-1} + 2^{n-1} - 1$ = $2^n - 1$

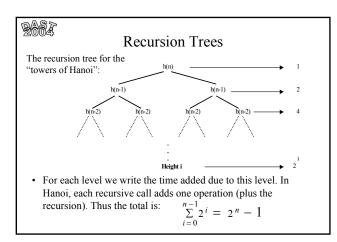
Step 2: proving by induction

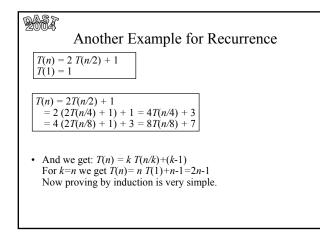
- If we guessed right, it will be easy to prove by induction that $h(n)=2^n 1$
- For n=1: h(1)=2-1=1 (and indeed h(1)=1)
- Suppose $h(n-1) = 2^{n-1} 1$. Then,

$$h(n) = 2h(n-1) + 1 = 2(2^{n-1} - 1) + 1$$

= 2ⁿ -2 + 1 = 2ⁿ -1

• So we conclude that: $h(n) = O(2^n)$





Another Example for Recurrence

- <u>Another way</u>: "guess" right away $T(n) \le c \ n b$ (for some *b* and *c* we don't know yet), and try to prove by induction:
- The base case: For *n*=1: *T*(1)=*c*-*b*, which is true when *c*-*b*=1
- The induction step: Assume T(n/2)=c(n/2)-b and prove for T(n). $T(n) \le 2 (c(n/2) - b) + 1 = c n - 2b + 1 \le c n - b$ (the last step is true if $b \ge 1$). Conclusion: T(n) = O(n)

2684

Beware of common mistake!

Lets prove that $2^n = O(n)$ (This is **wrong**) For n=1 it is true that $2^1 = 2 = O(1)$. Assume true for *i*, we will prove for i+1: $f(i+1) = 2^{i+1} = 2*2^{i-2}*f(i) = 2*O(n) = O(n)$. What went Wrong? We can **not** use the O(f(n)) in the induction, the *O* notation is only short hand for the definition

itself. We should use the definition

2684

Beware of common mistake!(cont)

If we try the trick using the exact definition, it fails.

Assume $2^n = O(n)$ then there exists *c* and n_0 such that for all $n > n_0$ it holds that $2^n < c^*n$.

The induction step :

 $f(i+1) = 2^{i+1} = 2^* 2^i \le 2^* c^* i$ but it is **not** true that $2^* c^* i \le c^* (i+1)$.

If we have time.....

2684

The little o(f(n)) notation

Intuitively, f(n) = O(g(n)) means "f(n) does not grow much faster than g(n)". We would also like to have a notation for "f(n) grows slower than g(n)". The notation is f(n) = o(g(n)). (Note the *o* is **little** *o*).

2684

Little o, definition

Formally, f(n) = O(g(n)), iff For every positive constant *c*, there exists an n_0 Such that for all $n > n_0$, it holds that $f(n) < c^* g(n)$. For example, $n = o(n^2)$, since, Given c > 0, choose $n_0 > 1/c$, then for $n > n_0$ $f(n) = n = c^* 1/c^* n < c^* n_0^* n < c^* n^2 = c^* g(n)$.

Little o cont'

However,, $n \neq o(n)$, since for the constant c=2There is no n_0 from which f(n) = n > 2*n = c*g(n).

Another example, $\sqrt{n} = o(n)$, since, Given c > 0, choose n_0 for which $\sqrt{n_0} > 1/c$, then for $n > n_0$: $f(n) = \sqrt{n} = c*1/c*\sqrt{n} < c*\sqrt{n_0} *\sqrt{n} < c*\sqrt{n} *\sqrt{n}$ = c*n