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Tirgul 8

• Universal Hashing

• Remarks on Programming 
Exercise 1

• Solution to question 2 in 
theoretical homework 2

• We want to manage a set of n elements with the dictionary 
operations Insert, Search and Delete.

• Each element has a  unique key from a universe U of possible 
keys,  |U| >> n 

• Hash table – an array of size m, m << |U|
• Hash function – a function that maps a key to a cell in the hash 

table.
• Required property – in order to work fast, the elements in the 

hash table should be equally distributed among the cells.
• Can you find a hash function that has this property on any 

input?
• No – since |U| >> m, there is always a bad input

• Quick-sort 
– the pivot’s position is fixed

– there are good inputs and bad inputs.

• Randomized Quick-sort 
– uniform distribution on all the possible pivots

– No more inputs discrimination – all the inputs have 
the same probability of working fast.

• Starting point: for every hash function, there is a 
“really bad” input.

• A possible solution: just as in quick sort, randomize the 
algorithm instead of looking at a random input.

• The logic behind it: There is no bad input. For every 
input there is a small chance of choosing a bad hash 
function for this input, i.e. a function that will cause 
many collisions.

Our family of hash 
function

Specific hash function

h10,5()

h2,13()

h24,82()

h68,53()

Order of execution 

• The order of execution: 
1. The input is fixed (everything that will be fed 

into the program is considered an input and is 
fixed now).  

2. The program is run

3. The hash function is chosen (randomly) and 
remains fixed for the entire duration of the 
program run.

Ideal case - take 1  

• What is our “ideal case”? (that we always use 
when trying to analyze good hash functions)

• A random choice of index.
• First try we will call a function good if: 

For every key k, and index i it holds that 
Ph[ h(k) = i] = 1/m

• Is that good enough?
• Look at { hi(·) | for every key k : hi(k) = i }

This is obviously a bad family (everything 
collides).
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Ideal case - take 2  

• We want that the probability of collision will 
be as in the random case.

• For every pair of keys k1 � k2 and pair of 
indices i1, i2 it holds that 
Ph[ h(k1) = i1 and  h(k2) = i2 ] = 1/m2

• What is the probability of collision?
• Sum the probabilities of collision in cell i for 

each i. This means m*1/m2 = 1/m
• This is enough to ensure the expected number 

of collisions is as in the random case. 

Ensuring good average performance

The chance that two keys will fall to the same slot is 1/m
- just like if the hash function was truly random!

Claim: When using a universal hash family H, the 
average number of look-ups of any hash 
operation is n/m (as in the random case)

VS.

• Hash table - If we have an estimation of n, the number of 
elements inserted to the table, we can choose the size of the table 
to be proportional to n. Then, we will have constant time 
performance - no matter how many elements we have: 106, 108 , 
1010, or more...

• Balanced Tree - The performance of a balanced tree, O(log n),
is affected by the number of elements we have! As we have 
more elements, we have slower operations. For very large 
numbers, like 1010, this makes a difference.

Constructing a universal family
Choose p - a prime larger than all keys.

For any a,b in Zp={0,...,p-1} denote fix a hash function:

ha,b(k) = (a*k + b) mod p

The universal family:     Hp = { ha,b(
� ) | a,b in Zp }

Theorem: Hp is a universal family of hash functions.

Proof: for each k1
�

k2 and each i1,i2 there is exactly one 
solution (a,b) for the equations : 

a*k1 + b = i1 and a*k2 + b = i2. 

Average over inputs – exact analsys

• In Universal Hashing - no assumptions about the input (I.e. 
for any input, most hash functions will handle it well).

• For example, we don’t know a-priori how the grades are 
distributed. (surely they are not uniform over 0-100).

• If we know that the input has a specific distribution, we 
might want to use this.

• For example, if the input is uniformly distributed, then the 
simple division method will obtain simple uniform hashing.

• In general, we don’t know the input’s distribution, and so 
Universal Hashing is superior!

• Encapsulation – hide internal structure from the user!
• Easy maintenance using building blocks. 

• Protect the system from it’ s users - the user can’ t cause inconsistencies.

• Reusable data structures – DS implementation should  fit all 
objects, not just books.

• Sorting in a sorted map – a sorted map is sorted only by key by 
definition. Sorting by the value as well is a violation of the ‘contract’ .

• Documentation –
• informative documentation of methods and data members 

(//data members - not informative).

• Different  naming conventions for local variables vs. data 
members improves readability

Programming exercise 1 Issues
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• Debugging – a major part of the exercise. Test different            
inputs as well as load tests.

• Equals vs. ==
• == compares addresses of objects

• Equals compares the values of the strings.

• The complication – compilers optimizations might put a constant 
string that is pointed at from different pointers in the same address.   
In this case, == and equals give the same results.

• We cannot count on this:
• Using new allocates different addresses

• Different compilers 

• If your code failed on many tests because of this mistake, fix the 
problematic comparisons, and send only the fixed files (say exactly 
where the problem was).

Programming exercise 1 Issues
Theoretical homework 2, Question 2

Finding an element
Let A be a data structure consisting of integers, and x an integer. The 

function IsMember gets as input A and x, and returns true when x
appears in A, false otherwise.

(a) Assume A is an array. Write pseudo-code for IsMember function 
and analyze its worst-case complexity.

Solution:
The algorithm:

Go over the elements in A and compare them to x. 

Stop when x is found or when all the elements in A are checked.

Worst-case time complexity: O(n).

Theoretical homework 2, Question 2
(b) Assume we can preprocess the contents of the array A in order to 

decrease the cost of IsMember. We can store the result of the 
preprocessing in a new data structure B.

(i) Indicate what data structure B and pre-processing function 
PreProcess can be used to speed-up IsMember. What is the worst-
case complexity of PreProcess?

(ii) Write a function IsMember I that takes advantage of the data 
structure B. What is the worst-case complexity of IsMember ?

What is pre-processing and what is it good for?
Think about the following scenario: the site www.hevre.co.il keeps 

many lists of ‘hevre’ from different schools, movements, work 
places etc., some of them very popular.

Theoretical homework 2, Question 2

Once you are registered to a group, you can enter with your  
unique login as many times as you like and see what’ s 
up.

Identification is done by calling IsMember. As the lists 
become longer, identification becomes slower. 

As the site’ s manager, you decide to organize the lists more 
efficiently so that IsMember works fast. What you need 
is a pre-processing function.

Pre-process – the idea of pre-processing is to organize the 
data in a certain way before starting to use it, so that 
common / online operations will work fast.

Theoretical homework 2, Question 2

Solution to 2-b-i: 

• Pre-process – sort the array in O(n log n)

• IsMember = binary search, O(log n)

Do you have another solution?

Solution 2:
• Pre-process – build a hash table, O(n)

• IsMember – look for the key in the hash table, O(1) on the average.

Theoretical homework 2, Question 2
(c) Assume now that the array A is sorted but its contents are not known in advance. Write a 

new function IsMember whose worst-case complexity is O(log i), when x appears in A[i], 
and O(log n) when x does not appear in A.

Solution:
• First step – determine the range of x (lower and upper bounds) 

in O(log i). Can we run a binary search?
• No, The required time complexity does not suit binary search
• So, what can we do?
• Search algorithm:
• Initialize: u = 1

While A[u] < x &  u < A.size
u = 2*u

If ( u > A.size )
u = A.size

Perform binary search of x in A[1…u]
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Theoretical homework 2, Question 2

• Complexity Analysis: If x is in index i, 

• To get the upper bound u we do most � log( i )�

operations

• Next we perform binary search on A[1…u]
complexity O(log u)

• Since u < 2*i we get O(log u) = O( log i )


