
1

Tirgul 8

• Universal Hashing

• Remarks on Programming
Exercise 1

• Solution to question 2 in
theoretical homework 2

• We want to manage a set of n elements with the dictionary
operations Insert, Search and Delete.

• Each element has a unique key from a universe U of possible
keys, |U| >> n

• Hash table – an array of size m, m << |U|
• Hash function – a function that maps a key to a cell in the hash

table.
• Required property – in order to work fast, the elements in the

hash table should be equally distributed among the cells.
• Can you find a hash function that has this property on any

input?
• No – since |U| >> m, there is always a bad input

• Quick-sort
– the pivot’s position is fixed

– there are good inputs and bad inputs.

• Randomized Quick-sort
– uniform distribution on all the possible pivots

– No more inputs discrimination – all the inputs have
the same probability of working fast.

• Starting point: for every hash function, there is a
“really bad” input.

• A possible solution: just as in quick sort, randomize the
algorithm instead of looking at a random input.

• The logic behind it: There is no bad input. For every
input there is a small chance of choosing a bad hash
function for this input, i.e. a function that will cause
many collisions.

Our family of hash
function

Specific hash function

h10,5()

h2,13()

h24,82()

h68,53()

Order of execution

• The order of execution:
1. The input is fixed (everything that will be fed

into the program is considered an input and is
fixed now).

2. The program is run

3. The hash function is chosen (randomly) and
remains fixed for the entire duration of the
program run.

Ideal case - take 1

• What is our “ideal case”? (that we always use
when trying to analyze good hash functions)

• A random choice of index.
• First try we will call a function good if:

For every key k, and index i it holds that
Ph[h(k) = i] = 1/m

• Is that good enough?
• Look at { hi(·) | for every key k : hi(k) = i }

This is obviously a bad family (everything
collides).

2

Ideal case - take 2

• We want that the probability of collision will
be as in the random case.

• For every pair of keys k1 � k2 and pair of
indices i1, i2 it holds that
Ph[h(k1) = i1 and h(k2) = i2] = 1/m2

• What is the probability of collision?
• Sum the probabilities of collision in cell i for

each i. This means m*1/m2 = 1/m
• This is enough to ensure the expected number

of collisions is as in the random case.

Ensuring good average performance

The chance that two keys will fall to the same slot is 1/m
- just like if the hash function was truly random!

Claim: When using a universal hash family H, the
average number of look-ups of any hash
operation is n/m (as in the random case)

VS.

• Hash table - If we have an estimation of n, the number of
elements inserted to the table, we can choose the size of the table
to be proportional to n. Then, we will have constant time
performance - no matter how many elements we have: 106, 108 ,
1010, or more...

• Balanced Tree - The performance of a balanced tree, O(log n),
is affected by the number of elements we have! As we have
more elements, we have slower operations. For very large
numbers, like 1010, this makes a difference.

Constructing a universal family
Choose p - a prime larger than all keys.

For any a,b in Zp={0,...,p-1} denote fix a hash function:

ha,b(k) = (a*k + b) mod p

The universal family: Hp = { ha,b(
�) | a,b in Zp }

Theorem: Hp is a universal family of hash functions.

Proof: for each k1
�

k2 and each i1,i2 there is exactly one
solution (a,b) for the equations :

a*k1 + b = i1 and a*k2 + b = i2.

Average over inputs – exact analsys

• In Universal Hashing - no assumptions about the input (I.e.
for any input, most hash functions will handle it well).

• For example, we don’t know a-priori how the grades are
distributed. (surely they are not uniform over 0-100).

• If we know that the input has a specific distribution, we
might want to use this.

• For example, if the input is uniformly distributed, then the
simple division method will obtain simple uniform hashing.

• In general, we don’t know the input’s distribution, and so
Universal Hashing is superior!

• Encapsulation – hide internal structure from the user!
• Easy maintenance using building blocks.

• Protect the system from it’ s users - the user can’ t cause inconsistencies.

• Reusable data structures – DS implementation should fit all
objects, not just books.

• Sorting in a sorted map – a sorted map is sorted only by key by
definition. Sorting by the value as well is a violation of the ‘contract’ .

• Documentation –
• informative documentation of methods and data members

(//data members - not informative).

• Different naming conventions for local variables vs. data
members improves readability

Programming exercise 1 Issues

3

• Debugging – a major part of the exercise. Test different
inputs as well as load tests.

• Equals vs. ==
• == compares addresses of objects

• Equals compares the values of the strings.

• The complication – compilers optimizations might put a constant
string that is pointed at from different pointers in the same address.
In this case, == and equals give the same results.

• We cannot count on this:
• Using new allocates different addresses

• Different compilers

• If your code failed on many tests because of this mistake, fix the
problematic comparisons, and send only the fixed files (say exactly
where the problem was).

Programming exercise 1 Issues
Theoretical homework 2, Question 2

Finding an element
Let A be a data structure consisting of integers, and x an integer. The

function IsMember gets as input A and x, and returns true when x
appears in A, false otherwise.

(a) Assume A is an array. Write pseudo-code for IsMember function
and analyze its worst-case complexity.

Solution:
The algorithm:

Go over the elements in A and compare them to x.

Stop when x is found or when all the elements in A are checked.

Worst-case time complexity: O(n).

Theoretical homework 2, Question 2
(b) Assume we can preprocess the contents of the array A in order to

decrease the cost of IsMember. We can store the result of the
preprocessing in a new data structure B.

(i) Indicate what data structure B and pre-processing function
PreProcess can be used to speed-up IsMember. What is the worst-
case complexity of PreProcess?

(ii) Write a function IsMember I that takes advantage of the data
structure B. What is the worst-case complexity of IsMember ?

What is pre-processing and what is it good for?
Think about the following scenario: the site www.hevre.co.il keeps

many lists of ‘hevre’ from different schools, movements, work
places etc., some of them very popular.

Theoretical homework 2, Question 2

Once you are registered to a group, you can enter with your
unique login as many times as you like and see what’ s
up.

Identification is done by calling IsMember. As the lists
become longer, identification becomes slower.

As the site’ s manager, you decide to organize the lists more
efficiently so that IsMember works fast. What you need
is a pre-processing function.

Pre-process – the idea of pre-processing is to organize the
data in a certain way before starting to use it, so that
common / online operations will work fast.

Theoretical homework 2, Question 2

Solution to 2-b-i:

• Pre-process – sort the array in O(n log n)

• IsMember = binary search, O(log n)

Do you have another solution?

Solution 2:
• Pre-process – build a hash table, O(n)

• IsMember – look for the key in the hash table, O(1) on the average.

Theoretical homework 2, Question 2
(c) Assume now that the array A is sorted but its contents are not known in advance. Write a

new function IsMember whose worst-case complexity is O(log i), when x appears in A[i],
and O(log n) when x does not appear in A.

Solution:
• First step – determine the range of x (lower and upper bounds)

in O(log i). Can we run a binary search?
• No, The required time complexity does not suit binary search
• So, what can we do?
• Search algorithm:
• Initialize: u = 1

While A[u] < x & u < A.size
u = 2*u

If (u > A.size)
u = A.size

Perform binary search of x in A[1…u]

4

Theoretical homework 2, Question 2

• Complexity Analysis: If x is in index i,

• To get the upper bound u we do most � log(i)�

operations

• Next we perform binary search on A[1…u]
complexity O(log u)

• Since u < 2*i we get O(log u) = O(log i)

