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Tirgul 5
• AVL trees

Binary search trees (reminder)

• Each tree node contains a value.
• For every node, its left subtree contains smaller 

values and its right subtree contains larger 
values.

• The time complexity of a search operation is 
proportional to the tree’s depth.

• The good case: If the tree is balanced, then every 
operation takes O(logn) time.

• The bad case: The tree might get very 
unbalanced.
For example, when inserting ordered numbers to 
the tree, the resulting height will be exactly n.

AVL Trees

• Balanced Trees: After insert and delete 
operations we “fix” the tree to keep it (almost) 
balanced.

• AVL Tree: A binary search tree with the following 
additional balance property: For any node in the 
tree, the height of the left and right subtrees can 
differ by 1 at most.

• Note that we require this balance property for 
every node, not just the root.
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Example

AVL trees are “reasonably” balanced 
• We would like to prove that the “deepest” tree with 

n nodes still has only logarithmic depth.
• Another way to look at the same problem is 

proving that the smallest tree with depth h has size 
at least ch for some c >1 (in fact in our case c= 
1.3)

• If we prove the second claim, then a tree with n
nodes must have at least depth at least log1.3n
(otherwise it is a counter example for the second 
claim.) 

• Let’s try to build the minimal tree with depth h

Minimal AVL tree of height h

Look at the minimal tree of depth h, denote it Sh

Since the root’s height is h, one of its sons’ height must be 
h-1. From the balance condition, the other son has height 
either h-1 or h-2. 

Therefore , in the minimal tree the root has one son with a 
sub tree of depth h-1 and one son of depth h-2.

How do these sub trees look like? They are minimal i.e.

they are the minimal trees Sh-1 and Sh-2, respectively.

Sh-1
Sh-2 h-2h-1

h
Sh
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The Maximal Height of an AVL Tree
The smallest AVL tree of depth 1 has 1 node, and 

the smallest AVL tree of depth 2 has 2 nodes. 
Therefore we get: 
Claim:     Sh = Sh-1+Sh-2+1 ( S1 = 1 ; S2 = 2 )
Fact : Sh ≥ 2h/2

Theorem: For any AVL tree with n nodes and 
height h:  h = O(log n).

Proof: 
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We know that Sh = Sh-1+Sh-2+1   ( S1 = 1 ; S2 = 2 )
It is easy to show by induction that Sh≥Sh-1

We shall see by induction on h > 2 that
Sh ≥ (20 + 21+22+ … + 2└ h/2 ┘)
Base : S3= 4 ≥ 20+21, S4 = 7 ≥ 20+21+22

Sh = Sh-1 + Sh-2 + 1 ≥ 2(Sh-2) + 1 (monotonicity)
≥ 2(20+…+ 2└ (h-2)/2 ┘)+1 = (21+…+ 2└ h/2 ┘) + 20. 

By geometric series some we get that  
Sh ≥ (2└ h/2 ┘+1- 1 )/(2-1) ≥ 2h/2

A lower bound on Sh

How to maintain balance
• General rule: after an insert or delete operation, 

we fix all nodes that got unbalanced.

• Since the height of any subtree has changed by 
at most 1, if a node is not balanced this means 
that one son has a height larger by exactly two 
than the other son.

• Next we show the four possible cases that cause 
a height difference of 2. In all figures, marked 
nodes are unbalanced nodes.
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(only) Four imbalance cases

Case 1: The left 
subtree is higher than 
the right subtree, and 
this is caused by the left 
subtree of the left child.

Case 2: The left 
subtree is higher than 
the right subtree, and 
this is caused by the 
right subtree of the left 
child.

Case 4:
The symmetric case 
to case 1

Case 3:
The symmetric 
case to case 2
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• The rotation takes O(1) time. Notice that the new tree is a legal 
search tree.

• For insert - it must be the case that subtree A had been 
increased, so after the rotation, the tree has height as before the 
insert.

• For delete, it must be the case that C had been decreased, so 
after the rotation, the tree has height shorter by 1.

Single Rotation - Fixing case 1
k2

k1

A
B

C

right rotation k2

k1

A B C

Example (caused by insertion)

• Notice that the tree height has not changed after the 
rotation (since it was an insert operation).
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Single Rotation for Case 4

k1

k2

C
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left rotation k1
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CBA

Example (caused by deletion)
Deleting  X  and performing a single rotation:

• For the rotation, k1 is node A, and k2 is node B. We make k2
the root, and k1 its left son.

• Notice that the tree height has changed after the rotation 
(since it was a delete operation).
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C
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Fixing case 2 - first try...

Single rotation doesn’t help - the tree is still not balanced!

What can we do?

Use rotations on k1’s sub tree to reduce case 2 to case 1!
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Example (caused by insertion)
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Note that above is a good friend of case 1

Double Rotation to fix case 2

• After insertion - original height (of the root) stays the same.
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Double Rotation to fix case 3
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Insert and delete operations
• First, we insert/delete the element, as in a regular 

binary search tree, and then we re-balance.
• Observation: only nodes on the path from the root 

to the node we changed may become unbalanced

If we went left from the root, then the right subtree 
was not changed, thus it remains balanced.
This continues when we go down the tree.

Insert and delete operations 
(continued)

• After adding/deleting a leaf, start to go up back to the 
root, and while going up, re-balance every node on the 
way (if needed). The path is O(log n) long, and each 
node balance takes O(1), thus the total time for every 
operation is O(log n).

• In fact, in the insertion we can do better - after the first 
balance (when going up), the subtree that was 
balanced has height as before, so all higher nodes are 
now balanced again. We can find this node in the pass 
down to the leaf, so one pass is enough.

Delete requires two passes
• In more sophisticated balanced trees (like red-

black and B-trees), delete also requires one pass. 
Here this is not the case. For example, deleting X
in the following tree: L
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A note about implementation
• In programming exercise 2, you will be required to 

implement a balanced tree.
• Converting an algorithm to a real program requires 

much thought. When done correctly, many bugs are 
avoided.

• Important principles:
– Do it as general as possible, without cut & paste. Although 

more complicated to design, it will reduce your total work 
time.

– Methods should be short and simple. If some method 
becomes too complicated, you missed something, and this is 
a sure bug!

Common mistakes in THW1


