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• Order Statistics
– minimum/maximum
– Selection

• Heaps
– Overview
– Heapify
– Build-Heap

Order statistics

• The ith order statistics of a set of n elements is the ith smallest 
element.

• For example the minimum is the first order statistics of the set and 
the maximum is the nth.

• A median is the central element in the set.
• The median is a very important characteristic of a set and many 

times we will prefer using the median then using the average. 
(why?)

Minimum & Maximum

• How many comparisons are necessary to determine the 
minimum/maximum of a set of n elements?

• An upper bound of n-1 is easy to obtain, but can we do better?
• It is easy to show that the answer is no.
• How about finding both minimum and maximum, can we do 

better than 2*(n-1) ?
• yes

Selection in expected linear time

• What happens if we are not looking for the smallest or largest 
element, but for the ith order statistics?

• One optional solution: sort (Ө(n lg n)) and index, can we do 
better?

• We can still get an expected asymptotic running time of Θ(n) 
using a modification of a randomized quicksort. (average case 
analysis)

Randomized Select
RandomizedSelect(A,p,r,i)
1. if p==r
2. then return A[p]
3. q ← RandomizedPartition(A,p,r)
4. if i < q then return RandomizedSelect(A,p,q-1,i)
5. else if i >q then

return RandomizedSelect( A, q+1, r, i –q )
6. else return A[ q ]

Randomized Select
• We use the same RandomizedPartition like in the 

randomized quicksort.
• This time, instead of recursively sorting both sides of the pivot, 

we only deal with one.
• Are we guaranteed to do better than sort+select?
• No, like quicksort, we have a worst case of O(n2) (why?)

• But let’s look at the average case:
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Randomized Select
• We are using the same technique used to analyze the 

randomized quicksort.

• Assuming T(k) ≤ ck we get:

• We can pick c large enough such that:
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Order Statistics

• So we can find the ith order statistics either in Ө(n lg n) time, or in 
an average Ө(n) time, but with a worst case of O(n2).

• Can we do better?
• Yes we can, a modified version of quick-select has a linear worst 

case time (but with a larger constant).
• We won’t get into details (see Cormen, 10.3 – selection in worst-

case linear time).

Select in worst case linear time

• Proof idea:
– Asymptotically, at least ¼ of the elements

are larger than the pivot and at least ¼ are
smaller than the pivot.

– In the worst case, the number of elements
in the recursive call is 3n/4.

– You’ve seen in class that quicksort achieves n lg n time even when the 
recurrence is called for 9n/10 of the elements.

• select algorithm idea:
1. Devide the input into n/c groups of c elements (for example, c = 5)
2. Find the median of each group.
3. Find the median of these medians.
4. Partition the input around the median of medians and call  select recursively.

Heaps
• A heap is a complete binary tree, in which each node is larger than 

both its sons.
• The largest element of each sub tree is in the root of the sub tree.
• Note: this does not mean that the

root’s 2 sons are the next largest. 16
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Heaps
• A heap can be represented by an array.
• Levels are stored one after the other.

• The root is stored in A[1].
• The sons of A[i] are A[2i]

and A[2i+1].
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Heapify
• Assumes that both subtrees of the root are heaps, but the root may be 

smaller than one of its children.
• The idea is to let the value at the

root to “float down” to the
right position.

• What can we say about
complexity?

• Worst case complexity
of lg n (the tree is complete).
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Heapify

13

12

5 3

1 2

9

7 4

Heapify(Node x)
largest = max {left(x), right(x)}
if ( largest > x )

exchange (largest, x)
heapify (x)
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Heap-Extract-Max
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• Save the root as max.
• Remove the last node and place it in the root.
• Do Heapify.

• Return max.
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Heap-Insert
• Insert new value at the end of the heap.
• Let it “float up” to the right position.
• We still have an O(lg n) complexity.
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Priority Queue
• Each inserted element has a priority.
• Extraction order is according to priority.
• Supported operation are Insert, Maximum, Extract-Max.
• Easily implemented with heaps.

Priority Queue
• Priority Queues using heaps:

– Maximum operation takes O(1)
– Extract-Max operation takes O(log n) 
– Insert operation takes O(logn)

• Priority Queues using sorted list
– Maximum operation takes O(1)
– Extract-Max operation takes O(1)
– Insert operation takes O(n)

Build-Heap
Build-Heap(A)

for i = length[A]/2 downto 1
do Heapify[A,i]

3 5 7 2 1 9 4 12 16 13

3 5 7 2 13 9 4 12 16 1

3 5 7 16 13 9 4 12 2 1

3 5 9 16 13 7 4 12 2 1

3 16 9 12 13 7 4 5 2 1

16 13 9 12 3 7 4 5 2 1
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Build-Heap vs. Heap-Insert
• We want to create a new heap, containing n items, what should we do? 

Build a heap or insert the n items one by one?
• Build-Heap runs in O(n) (why?).
• Inserting n items takes O(nlogn).
• Sometimes Build-Heap and Heap-Insert create different heaps from 

the same input.
– For example: the input sequence 1, 2, 3, 4

4

2 3

1

Build-Heap: 4

3 2

1

Heap-Insert:

Heapsort
Heapsort(A)

Build-Heap(A)
for i=length[A] downto 2 do

exchange A[1] with A[i]
heap-size[A]=heap-size[A]-1
Heapify(A, 1)

16 13 9 12 3 7 4 5 2 1

13 12 9 5 3 7 4 1 2 16

12 5 9 2 3 7 4 1 13 16

9 5 7 2 3 1 4 12 13 16

7 5 4 2 3 1 9 12 13 16

5 3 4 2 1 7 9 12 13 16

Questions
• How to implement a stack/queue using a priority queue?
• How to implement an Increase-Key operation which increases the 

value of some node?
• How to delete a given node from the heap in O(log n)?
• How to search for a key in a heap?


