Tirgul 4

- Order Statistics
- minimum/maximum
\qquad
- Selection
- Heaps
- Overview
- Heapify
- Build-Heap \qquad
\qquad

Order statistics

- The $\boldsymbol{i}^{\text {th }}$ order statistics of a set of \boldsymbol{n} elements is the $\boldsymbol{i}^{\boldsymbol{t h}}$ smallest element.
- For example the minimum is the first order statistics of the set and the maximum is the $\boldsymbol{n}^{\text {th }}$.
- A median is the central element in the set.
- The median is a very important characteristic of a set and many times we will prefer using the median then using the average. (why?)

Minimum \& Maximum

- How many comparisons are necessary to determine the minimum/maximum of a set of n elements?
- An upper bound of $n-1$ is easy to obtain, but can we do better?
\qquad
- It is easy to show that the answer is no.
- How about finding both minimum and maximum, can we do better than $2 *(n-1)$?
- yes \qquad
\qquad
\qquad

Selection in expected linear time

- What happens if we are not looking for the smallest or largest element, but for the $i^{\text {th }}$ order statistics?
- One optional solution: sort $(\Theta(n \lg n))$ and index, can we do better?
- We can still get an expected asymptotic running time of $\Theta(n)$ using a modification of a randomized quicksort. (average case analysis)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Randomized Select

RandomizedSelect($A, p, r, i)$

1. if $\mathrm{p}==\mathrm{r}$
2. then return $A[p]$
3. $q \leftarrow$ RandomizedPartition (A, p, r)
4. if $i<q$ then return RandomizedSelect $(A, p, q-1, i)$
5. else if $i>q$ then
return RandomizedSelect $(A, q+1, r, i-q)$
6. else return $A[q]$

Randomized Select

- We use the same RandomizedPartition like in the randomized quicksort.
- This time, instead of recursively sorting both sides of the pivot, we only deal with one.
- Are we guaranteed to do better than sort+select?
- No, like quicksort, we have a worst case of $O\left(n^{2}\right)$ (why?)
- But let's look at the average case:

Randomized Select

- We are using the same technique used to analyze the randomized quicksort. ${ }_{T}(n) \leq \frac{1}{n}\left(\sum_{k=1}^{n-1}(\max (T(k), T(n-k)))\right)+d n$

$$
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1}(T(k))+d n
$$

- Assuming $\mathrm{T}(k) \leq c k$ we get: $\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} c k+d n=\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2} k\right)+d n$ $=\frac{2 c}{n}\left(\frac{n(n-1)}{2}-\frac{n / 2(n / 2-1)}{2}\right)+d n$ $\leq c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+d n=c\left(\frac{3}{4} n-\frac{1}{2}\right)+d n$
- We can pick c large enough such that: $3 / 4 c n-1 / 2 c+d n \leq c n$

Order Statistics

- So we can find the $i^{\text {th }}$ order statistics either in $\Theta(n \lg n)$ time, or in an average $\Theta(n)$ time, but with a worst case of $O\left(n^{2}\right)$.
- Can we do better?
- Yes we can, a modified version of quick-select has a linear worst case time (but with a larger constant).
- We won't get into details (see Cormen, 10.3 - selection in worstcase linear time).

(290

Select in worst case linear time

- select algorithm idea:

1. Devide the input into n / c groups of c elements (for example, $c=5$)
2. Find the median of each group.
3. Find the median of these medians.
4. Partition the input around the median of medians and call select recursively.

- Proof idea:

Asymptotically, at least $1 / 4$ of the elements are larger than the pivot and at least $1 / 4$ are smaller than the pivot.

- In the worst case, the number of elements in the recursive call is $3 \boldsymbol{n} / 4$.

- You've seen in class that quicksort achieves $\boldsymbol{n} \lg \boldsymbol{n}$ time even when the recurrence is called for $9 \boldsymbol{n} / 10$ of the elements.

Heaps

- A heap is a complete binary tree, in which each node is larger than both its sons.
- The largest element of each sub tree is in the root of the sub tree.
- Note: this does not mean that the root's 2 sons are the next largest.

Heaps

- A heap can be represented by an array.
\qquad
- Levels are stored one after the other.
- The root is stored in \mathbf{A} [1] .
- The sons of $\mathbf{A}[\mathbf{i}]$ are $\mathbf{A}[2 i]$ and $\mathbf{A}[2 i+1]$.

Heapify

- Assumes that both subtrees of the root are heaps, but the root may be smaller than one of its children.
- The idea is to let the value at the root to "float down" to the right position.
- What can we say about complexity?
- Worst case complexity of $\lg n$ (the tree is complete)

Heap-Extract-Max

- Save the root as max.
- Remove the last node and place it in the root
- Do Heapify.
- Return max.

Heap-Insert

- Insert new value at the end of the heap.
- Let it "float up" to the right position.
- We still have an $O(\lg n)$ complexity.

(1) 5

\qquad

Priority Queue

- Each inserted element has a priority.
- Extraction order is according to priority.
- Supported operation are Insert, Maximum, Extract-Max.
- Easily implemented with heaps.

28x

Priority Queue

- Priority Queues using heaps:
- Maximum operation takes $O(1)$
- Extract-Max operation takes $O(\log n)$
- Insert operation takes $O(\log n)$
- Priority Queues using sorted list
- Maximum operation takes $O(1)$
- Extract-Max operation takes $O(1)$
- Insert operation takes $O(n)$

Build-Heap vs. Heap-Insert

- We want to create a new heap, containing n items, what should we do? Build a heap or insert the n items one by one?
- Build-Heap runs in $O(n)$ (why?).
- Inserting n items takes $O(n \log n)$
- Sometimes Build-Heap and Heap-Insert create different heaps from the same input.
- For example: the input sequence 1,2,3,4

Build-Heap:

\qquad

Questions

- How to implement a stack/queue using a priority queue?
- How to implement an Increase-Key operation which increases the value of some node?
- How to delete a given node from the heap in $O(\log n)$?
- How to search for a key in a heap?

