
1

Tirgul 13
Unweighted Graphs

•Wishful Thinking – you decide to go to work
on your sun-tan in ‘Hatzuk’ beach in Tel-Aviv.
Therefore, you take your swimming suit and
Tel-Aviv’s bus trails map , and go on bus 405 to
the central station of Tel-Aviv. The bus ride
inside the city costs 1 nis per station.
• How will you find the cheapest way from the
central station to the beach?

Unweighted Graphs - cont.
• BFS finds shortest paths from a single source
(i.e – the central station) in an unweighted
graph.
• How much will you pay?
• n nis, when n is the number of stations you
passed in your way.
•Can you think of an algorithm that finds a
single shortest path, and always works better
then BFS?
•No such algorithm is known.

Weighted Graphs

• Now assume that you pay for the bus ride between
stations according to the distance between the
stations. That is – every ‘edge’ is the bus trails
map has a different price (= weight).

• Total payment = sum over the costs between the
stations on the way.

• Will BFS work?
• No – BFS counts the number of edges on the path,

but does not refer to the edges weights.

Other Versions of Shortest Paths

• If we know how to find shortest paths from a
single source, we can also find:

• A shortest path between a pair of vertices
• The shortest paths from all vertices to a single

source. How?
• By reversing the direction of the edges in the

graph
• Shortest paths between every pair of vertices.

How?
• By running the sssp from every vertex (there are

more efficient solutions)

Observations

Observation 1:When can negative weights
become a problem?

• When there is a circle with negative
weight, reduce the weight of the path by
repeating the circle over and over.

• Solution: either require non-negative
weights, or identify and report circles with
negative weights

2

Observations – cont.

Observation 2: Let u ~ y ~ z ~ v be the shortest path
between u and v. Is y ~ z optimal, too?

• Yes! If there was a shorter path between y and z,
we could use it to shorten the path between u and
v

�
contradiction

• This property suggests that we can use greedy
algorithms to find the shortest path

Relaxation
The Idea: Build a shortest paths tree rooted in S.
For every vertex, v, keep a value, d[v], of the

shortest path from s that is currently known.
The general algorithm scheme:
- Initialization: d[v] = � , d[s] = 0
- In every iteration of the algorithm we check if we

can do relaxation – that is, find a shorter path
from s to a vertex v then the path currently known.

We will learn two algorithms:
- Dijkstra – all weights are non-negative
- Belman-Ford – identifies circles with negative

weight

Dijkstra
• The idea: Maintain a set of vertices whose final

shortest path weights from s have already been
determined

• How will we choose the next vertex to add to the
set?

• We will take the vertex u with the minimal d
value. This is also the ‘real’ value of the shortest
path.

• What relaxation can be done?
• We can check all the edges leaving u.

Dijkstra Run Time
• How can we keep the vertices, so we can easily find the

next vertex to insert?
• We need to extract the minimal d value in each iteration,

so a binary heap is a good choice.

• Run time alalysis:
– Build heap takes O(V).
– Extract-Min O(logV).
– Altogether O(VlogV).
– Going over the adjacent list O(E).
– Relaxation of values in the heap O(logV).
– Altogether O(ElogV).

• Total run-time compexity: O(ElogV+VlogV) = O(ElogV)

Bellman-Ford’ s Algorithm

• Now we want to identify negative circles.

• Assume that every iteration we do
relaxation from all the edges. What edges
might be relaxed on iteration i?

• The edges that have a path with I edges
from s (shorter paths – updated in previous
iterations)

• What is the maximum number of edges in
any shortest path from s?

• If there are no circles – the number of edges

Bellman-Ford’ s Algorithm

• So – how many iterations are needed if
there are no negative circles?

• |V| - 1. After the |V| - 1 iteration, all d
values will be the lengths of the shortest
paths.

• And how can we identify negative circles?

• By running the |V| iteration – if we can find
a relaxation, then there is a negative circle
in the graph

3

Bellman-Ford’ s Algorithm

() []
()
() []

[] [] ()
 truereturn

false return,if

, edgeeach for

,,Relax do

, edgeeach for

1 to 1 for

),(Initialize

vuwudvd

GEvu

wvu

GEvu

Vi

sG

+>
∈

∈
−←

Bellman-Ford Run Time
• The algorithm run time is:

– Goes over v-1 vertexes, O(V)

– For each vertex relaxation over E, O(E)

– Altogether O(VE)

Application of Bellman-Ford

• Linear programming problems – find an
optimal value (min / max) of a linear
function of n variables, with linear
contraints.

• A special case: Set of difference constraints

3
3
1

4
5
1

1
0

45

35

34

14

13

52

51

21

−≤−
−≤−
−≤−

≤−
≤−
≤−

−≤−
≤−

xx
xx
xx
xx
xx
xx
xx
xx

Application of Bellman-Ford
• There are many uses for a set of difference constraints, for

instance:

– The variables can represent the times of different events

– The inequalities are the constraints over there
synchronization.

• The set of linear inequalities can also be expressed in
matrix notation:

A · x ≤≤≤≤ b

Application of Bellman-Ford

A ·x ≤≤≤≤ b



























−
−
−

−

≤















































−
−
−

−
−

−
−

−

3
3
1

4
5
1
1

0

11000
10100
01100
01001
00101
10010
10001

00011

5

4

3

2

1

x
x
x
x
x

Application of Bellman-Ford
• What is the connection between the Bellman-Ford

algorithm and a set of linear inequalities?

• We can interpret the problem as a directed graph.

• The graph is called the constraint graph of the problem

• After constructing the graph, we could use the Bellman-
Ford algorithm.

• The result of the Bellman-Ford algorithm is the vector x
that solves the set of inequalities.

4

Application of Bellman-Ford
• Building the constraint graph out of matrix A:

– Each variable represents a vertex (node)

– Each constraint represents an edge

– If edge i goes out of vertex j than A[i,j]= -1

– If edge i goes into vertex j than A[i,j]= 1

– Otherwise A[i,j]= 0
– Each row contains a single ‘1’ , a single ‘-1’ and zeros.

Application of Bellman-Ford
• The problem is represented by the graph:

v1

v5

v4

v3

v2

Application of Bellman-Ford
• How can we extend the constraint graph to a single-

source-shortest-paths problem?

• By adding vertex v0 that directs at all the other vertices.

• Weight all edges from v0 as zero.

• The weight of the other edges is determined by the
inequality constraints.

Application of Bellman-Ford
• Formally:

• Each node vi corresponds to a variable xi in the original
problem, and an extra node - v0 (will be s).

• Each edge is a constraint, except for edges (v0 ,vi) that
were added.

• Assign weights:

n})|i,v{(v}bx)|x,v{(vE i ijji ..10 constraint a is =∪≤−=

},v,,vv{V n�10=

0 for

if is a constraint

(,) 0 1

(,)
i

i j k i j k

w v v i n

w v v b x x b

= =
= − ≤

�

Application of Bellman-Ford
• The extended constraint graph:

v0

v1

v5

v4

v3

v2

0

0

0

0

0

-1

0

1
5

4

-3
-3

-1

Application of Bellman-Ford

• The solution:

v1

v5

v3

v2

0

0

0

0

0

-1

0

1
5

4

-3
-3

-1

-4

v0

v4

-5

-3

-1

0

5

Application of Bellman-Ford
• The Bellman-Ford solution

for the extended constraint graph is a set of values which
meets the constraints.

• Formally:

• Why is this correct?

()0 , iv vδ

()ii vvx ,: 0δ=

Application of Bellman-Ford

• Because ,j i∀ j i≠

() () ()0 0, , ,j i i jv v v v w v vδ δ≤ +

() () ()0 0, , ,j i i jv v v v w v vδ δ⇒ − ≤

()for some j i kx x b k⇒ − ≤

Application of Bellman-Ford
• If there is a negative cycle reachable from v0 – there are no

feasible solutions:

• Suppose the cycle is where vk=v1

• v0 cannot be on it (it has no incoming edges)

• This cycle corresponds to :

kvvv ,,, �21

()
()

()

2,1

3,2

1, 1

2 1 1 2

3 2 2 3

1 1 1 1

,

,

,
k

k

k

k k k

x x b w v v

x x b w v v

x x b w v v
−− −

− ≤ =

− ≤ =

− ≤ =

�

Application of Bellman-Ford
• The left side sums to 0.

• The right side sums to the cycle’ s weight w(c)

• We get

• But we assumed the cycle was negative…

()cw≤0

0)(1

1

1
1 =−=−∑

−

=
+ xxxx k

k

i
ii

