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Tirgul 13
Unweighted Graphs

•Wishful Thinking – you decide to go to work 
on your sun-tan in ‘Hatzuk’ beach in Tel-Aviv.  
Therefore, you take your swimming suit and 
Tel-Aviv’s bus trails map , and go on bus 405 to 
the central station of Tel-Aviv. The bus ride 
inside the city costs 1 nis per station.
• How will you find the cheapest way from the 
central station to the beach?

Unweighted Graphs - cont.
• BFS finds shortest paths from a single source 
(i.e – the central station) in an unweighted
graph.
• How much will you pay?
• n nis, when n is the number of stations you 
passed in your way.
•Can you think of an algorithm that finds a 
single shortest path, and always works better 
then BFS?
•No such algorithm is known.

Weighted Graphs

• Now assume that you pay for the bus ride between 
stations according to the distance between the 
stations. That is – every ‘edge’ is the bus trails 
map has a different price ( = weight).

• Total payment = sum over the costs between the 
stations on the way.

• Will BFS work?
• No – BFS counts the number of edges on the path, 

but does not refer to the edges weights.

Other Versions of Shortest Paths

• If we know how to find shortest paths from a 
single source, we can also find:

• A shortest path between a pair of vertices
• The shortest paths from all vertices to a single 

source. How?
• By reversing the direction of the edges in the 

graph
• Shortest paths between every pair of vertices. 

How?
• By running the sssp from every vertex (there are 

more efficient solutions)

Observations

Observation 1:When can negative weights
become a problem?

• When there is a  circle with negative 
weight, reduce the weight of the path by 
repeating the circle over and over.

• Solution: either require non-negative 
weights, or identify and report circles with 
negative weights
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Observations – cont.

Observation 2: Let u ~ y ~ z ~ v be the shortest path 
between u and v. Is y ~ z optimal, too?

• Yes! If there was a shorter path between y and z, 
we could use it to shorten the path between u and 
v 

�
contradiction 

• This property suggests that we can use greedy 
algorithms to find the shortest path

Relaxation 
The Idea: Build a shortest paths tree rooted in S.
For every vertex, v, keep a value, d[v],  of the 

shortest path from s that is currently known.
The general algorithm scheme: 
- Initialization: d[v] = � , d[s] = 0
- In every iteration of the algorithm we check if we 

can do relaxation – that is, find a shorter path 
from s to a vertex v then the path currently known.

We will learn two algorithms:
- Dijkstra – all weights are non-negative
- Belman-Ford – identifies circles with negative 

weight

Dijkstra
• The idea: Maintain a set of vertices whose final 

shortest path weights from s have already been 
determined

• How will we choose the next vertex to add to the 
set?

• We will take the vertex u with the minimal d 
value. This is also the ‘real’ value of the shortest 
path.

• What relaxation can be done?
• We can check all the edges leaving u.

Dijkstra Run Time
• How can we keep the vertices, so we can easily find the 

next vertex to insert?
• We need to extract the minimal d value in each iteration, 

so a binary heap is a good choice.

• Run time alalysis:
– Build heap takes O(V).
– Extract-Min O(logV).
– Altogether O(VlogV).
– Going over the adjacent list O(E).
– Relaxation of values in the heap O(logV).
– Altogether O(ElogV).

• Total run-time compexity: O(ElogV+VlogV) = O(ElogV)  

Bellman-Ford’ s Algorithm

• Now we want to identify negative circles.

• Assume that every iteration we do 
relaxation from all the edges. What edges 
might be relaxed on iteration i?

• The edges that have a path with I edges 
from s (shorter paths – updated in previous 
iterations)

• What is the maximum number of edges in 
any shortest path from s?

• If there are no circles – the number of edges 

Bellman-Ford’ s Algorithm

• So – how many iterations are needed if 
there are no negative circles?

• |V| - 1. After the |V| - 1 iteration, all d
values will be the lengths of the shortest 
paths.

• And how can we identify negative circles?

• By running the |V| iteration – if we can find 
a relaxation, then there is a negative circle 
in the graph
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Bellman-Ford’ s Algorithm
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Bellman-Ford Run Time
• The algorithm run time is:

– Goes over v-1 vertexes, O(V)

– For each vertex relaxation over E, O(E)

– Altogether O(VE)   

Application of Bellman-Ford

• Linear programming problems – find an 
optimal value (min / max) of a linear 
function of n variables, with linear 
contraints.

• A special case: Set of difference constraints
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Application of Bellman-Ford
• There are many uses for a set of difference constraints, for 

instance:

– The variables can represent the times of different events

– The inequalities are the constraints over there 
synchronization.

• The set of linear inequalities can also be expressed in 
matrix notation:

A · x   ≤≤≤≤ b

Application of Bellman-Ford

A ·x     ≤≤≤≤ b
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Application of Bellman-Ford
• What is the connection between the Bellman-Ford 

algorithm and a set of linear inequalities?

• We can interpret the problem as a directed graph.

• The graph is called the constraint graph of the problem

• After constructing the graph, we could use the Bellman-
Ford algorithm.

• The result of the Bellman-Ford algorithm is the vector x
that solves the set of inequalities.
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Application of Bellman-Ford
• Building the constraint graph out of matrix A:

– Each variable represents a vertex (node)

– Each constraint represents an edge

– If edge i goes out of vertex j than A[i,j]= -1

– If edge i goes into vertex j than A[i,j]= 1

– Otherwise A[i,j]= 0 
– Each row contains a single ‘1’ , a single ‘-1’ and zeros.

Application of Bellman-Ford
• The problem is represented by the graph:
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Application of Bellman-Ford
• How can we extend the constraint graph to a single-

source-shortest-paths problem?

• By adding vertex v0 that directs at all the other vertices.

• Weight all edges from v0 as zero. 

• The weight of the other edges is determined by the 
inequality constraints.

Application of Bellman-Ford
• Formally:

• Each node vi  corresponds to a variable xi in the original 
problem, and an extra node - v0 (will be s).

• Each edge is a constraint, except for edges (v0 ,vi ) that 
were added.

• Assign weights:
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Application of Bellman-Ford
• The extended constraint graph:
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Application of Bellman-Ford

• The solution:
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Application of Bellman-Ford
• The Bellman-Ford solution 

for the extended constraint graph is a set of values which 
meets the constraints.

• Formally:          

• Why is this correct?

( )0 , iv vδ
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Application of Bellman-Ford

• Because ,j i∀ j i≠

( ) ( ) ( )0 0, , ,j i i jv v v v w v vδ δ≤ +

( ) ( ) ( )0 0, , ,j i i jv v v v w v vδ δ⇒ − ≤
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Application of Bellman-Ford
• If there is a negative cycle reachable from v0 – there are no 

feasible solutions:

• Suppose the cycle is where vk=v1

• v0 cannot be on it ( it has no incoming edges)

• This cycle corresponds to :
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Application of Bellman-Ford
• The left side sums to 0.

• The right side sums to the cycle’ s weight w(c)

• We get

• But we assumed the cycle was negative…
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