Tirgul 13

Si||ﬂ\G-SNIMG-SMHGSI-PMHS

Unweighted Graphs

*Wishful Thinking — you decide to go to work
on your sun-tan in ‘Hatzuk’ beach in Tel-Aviv.
Therefore, you take your swimming suit and
Tel-Aviv’s bus trails map , and go on bus 405 to
the central station of Tel-Aviv. The bus ride
inside the city costs 1 nis per station.

» How will you find the cheapest way from the
central station to the beach?

Unweighted Graphs- cont.

+ BFSfinds shortest paths from a single source
(i.e — the central station) in an unweighted
graph.

+ How much will you pay?

* n nis, when n is the number of stations you
passed in your way.

+Can you think of an algorithm that finds a
single shortest path, and always works better
then BFS?

+No such algorithm is known.

Weighted Graphs

+ Now assume that you pay for the bus ride between
stations according to the distance between the
stations. That is — every ‘edge’ is the bus trails
map has a different price (= weight).

+ Total payment = sum over the costs between the
stations on the way.

+ Will BFS work?

+ No - BFS counts the number of edges on the path,
but does not refer to the edges weights.

Other Versions of Shortest Paths

+ If we know how to find shortest paths from a
single source, we can also find:

+ A shortest path between a pair of vertices

+ The shortest paths from all vertices to a single
source. How?

+ By reversing the direction of the edges in the
graph

+ Shortest paths between every pair of vertices.
How?

+ By running the sssp from every vertex (there are
more efficient solutions)

Observations

Observation 1:When can negative weights
become a problem?

* When thereisa circle with negative
weight, reduce the weight of the path by
repeating the circle over and over.

 Solution: either require non-negative
weights, or identify and report circles with
negative weights

Observations — cont.

Observation 2: Let u~y ~ z ~ v be the shortest path
between u and v. Isy ~ z optimal, too?

+ Yes! If there was a shorter path between y and z,
we could use it to shorten the path between u and
v => contradiction

+ This property suggests that we can use greedy
algorithms to find the shortest path

44

Relaxation

The Idea: Build a shortest paths tree rooted in S.

For every vertex, v, keep a value, d[v], of the
shortest path from s that is currently known.

The general algorithm scheme:
- Initialization: d[v] = o, d[s] =0
- In every iteration of the algorithm we check if we

can do relaxation —that is, find a shorter path
from s to a vertex v then the path currently known.

We will learn two algorithms:
- Dijkstra —all weights are non-negative

- Belman-Ford — identifies circles with negative
weight

Dijkstra

The idea: Maintain a set of vertices whose final
shortest path weights from s have already been
determined

How will we choose the next vertex to add to the
set?

We will take the vertex u with the minimal d
value. This is also the ‘real’ value of the shortest
path.

What relaxation can be done?

We can check all the edges leaving u.

Dijkstra Run Time

¢ How can we keep the vertices, so we can easily find the
next vertex to insert?

* We need to extract the minimal d value in each iteration,
so abinary heap is agood choice.

Run time alalysis:
— Build heap takes O(V).
— Extract-Min O(logV).
— Altogether O(VlogV).
— Going over the adjacent list O(E).
— Relaxation of valuesin the heap O(logV).
— Altogether O(ElogV).

¢ Tota run-time compexity: O(ElogV+VlogV) = O(ElogV)

Bellman-Ford’ s Algorithm

* Now we want to identify negative circles.

« Assume that every iteration we do
relaxation from all the edges. What edges
might be relaxed on iteration i?

* The edges that have a path with | edges
from s (shorter paths — updated in previous
iterations)

* What is the maximum number of edgesin
any shortest path from s?

Bellman-Ford’ s Algorithm

¢ S0 —how many iterations are needed if
there are no negative circles?

¢ V|- 1. After the |V| - literation, al d
values will be the lengths of the shortest
paths.

¢ And how can we identify negative circles?

By running the |V | iteration — if we can find

arelaxation, then there is a negative circle

in the graph

Bellman-Ford’ s Algorithm

Initialize(G, s)
fori — 1tov|-1
for each edge (u,v) D E[G]
do Relax(u,v, W)
for each edge (u,v) D E[G]
if d[v]>d[u]+w(u,v) return false
return true

Bellman-Ford Run Time

* Theagorithm runtimeis:
— Goes over v-1 vertexes, O(V)
— For each vertex relaxation over E, O(E)
— Altogether O(VE)

Application of Bellman-Ford

* Linear programming problems —find an
optimal value (min/ max) of alinear
function of n variables, with linear
contraints. - x, < 0

* A specidf case!sSgt pf'difference constraints
2 5 = 5

Xy = X; <

X, = X, £4
X, = X< -1
Xg — X3 £ -3
Xs — X, < -3

ézg
Application of Bellman-Ford

« There aremany uses for a set of difference constraints, for
instance:

— The variables can represent the times of different events

— Theinequalities are the constraints over there
synchronization.

* The set of linear inequalities can also be expressed in
matrix notation:

A-x b

Application of Bellman-Ford

A X < b

1 -1 0 0 0 0

S1 0 0 0 —1H E—l@
20 1 0 0 -1 H alg
o1 0 1 0 ofl*0 g5
1 0 0 1 O Jis 040
oo 0 -1 1 0 4@ 0-10
0o 0 -1 0 1 030
Ho o o -1 1 H-3H

Application of Bellman-Ford

* What is the connection between the Bellman-Ford
agorithm and a set of linear inequalities?

* Wecan interpret the problem as a directed graph.
« Thegraph is called the constraint graph of the problem

« After constructing the graph, we could use the Bellman-
Ford agorithm.

¢ Theresult of the Bellman-Ford algorithm is the vector x
that solves the set of inequalities.

Application of Bellman-Ford

+ Building the constraint graph out of matrix A:
— Each variable represents a vertex (node)

— Each constraint represents an edge
— If edge i goes out of vertex j than Afi,j]= -1
— If edge i goes into vertex j than Ali,j]= 1

— Otherwise Ali,j]= 0
— Each row contains a single ‘1, a single ‘-1' and zeros.

Application of Bellman-Ford

+ The problem is represented by the graph:

Vi

Application of Bellman-Ford

+ How can we extend the constraint graph to a single-
source-shortest-paths problem?

+ By adding vertex v, that directs at all the other vertices.
+ Weight all edges from v, as zero.

+ The weight of the other edges is determined by the
inequality constraints.

Application of Bellman-Ford

¢+ Formally:

+ Each node v; corresponds to a variable x; in the original
problem, and an extra node - v, (will be s).
V ={voVi,.. ,Vn}

+ Each edge is a constraint, except for edges (v, ,v;) that
were added.

E={(v,v;)Ix; =% <b isaconstraint } O{(v,,)|i =1..n}

+ Assign weights:
W(Vy, ;) =0 for i =L..n
w(v;,v;) =b if X% —X < Db« isaconstraint

Application of Bellman-Ford

+ The extended constraint graph:

Application of Bellman-Ford

+ The solution:

Application of Bellman-Ford
+ The Bellman-Ford solution &(v,,v;)
for the extended constraint graph is a set of values which

meets the constraints.

+ Formally:
X, = 6(ve,v,)

+ Why is this correct?

Application of Bellman-Ford

+ Because Oj,i j#i
J(VO,vj)sd(vo,vi)+w(vi,vj)
| 5(VO,VJ)—5(VO,V|)SW(VI,VJ)

0 x; —% <b, (for somek)

Application of Bellman-Ford

+ If there is a negative cycle reachable from v, —there are no
feasible solutions:

+ Suppose the cycle is <V1,V2 Vk> where v,=v,
*+ v, cannot be on it (it has no incoming edges)

+ This cycle corresponds to :
X=X s qm = W(Vuvz)
X=X <h, = w(v,V)

X=X S h‘mq = W(Vlvvk—l)

Application of Bellman-Ford

¢ The left side sums to 0.

k-1

Z(x+1—>e)=xk—x1=0

5
+ The right side sums to the cycle’'s weight w(c)
« Weget 0<w(c)

+ But we assumed the cycle was negative...

