Tirgul 13

\qquad
\qquad
\qquad
\qquad
\qquad

Unweighted Graphs

－Wishful Thinking－you decide to go to work on your sun－tan in＇Hatzuk＇beach in Tel－Aviv． Therefore，you take your swimming suit and Tel－Aviv＇s bus trails map，and go on bus 405 to the central station of Tel－Aviv．The bus ride inside the city costs 1 nis per station．
－How will you find the cheapest way from the \qquad central station to the beach？

Unweighted Graphs－cont．

－BFS finds shortest paths from a single source \qquad
（i．e－the central station）in an unweighted graph．
－How much will you pay？
－ n nis，when n is the number of stations you passed in your way．
－Can you think of an algorithm that finds a single shortest path，and always works better then BFS？
－No such algorithm is known．
\qquad
\qquad
\qquad
\qquad
\qquad

Weighted Graphs

－Now assume that you pay for the bus ride between stations according to the distance between the stations．That is－every＇edge＇is the bus trails map has a different price（＝weight）．
－Total payment＝sum over the costs between the stations on the way．
－Will BFS work？
－No－BFS counts the number of edges on the path， but does not refer to the edges weights．

是会部方

Other Versions of Shortest Paths

－If we know how to find shortest paths from a single source，we can also find：
－A shortest path between a pair of vertices
－The shortest paths from all vertices to a single source．How？
－By reversing the direction of the edges in the graph
－Shortest paths between every pair of vertices． How？
－By running the sssp from every vertex（there are more efficient solutions）
Observations
Observation 1：When can negative weights
become a problem？
• When there is a circle with negative
weight，reduce the weight of the path by
repeating the circle over and over．
－Solution：either require non－negative
weights，or identify and report circles with
negative weights

Observations - cont.

Observation 2: Let $\mathrm{u} \sim \mathrm{y} \sim \mathrm{z} \sim \mathrm{v}$ be the shortest path between u and v. Is $y \sim z$ optimal, too?

- Yes! If there was a shorter path between y and z, we could use it to shorten the path between u and $\mathrm{v} \rightarrow$ contradiction
- This property suggests that we can use greedy algorithms to find the shortest path

Relaxation

\qquad
The Idea: Build a shortest paths tree rooted in S.
For every vertex, v, keep a value, $d[v]$, of the shortest path from s that is currently known.
The general algorithm scheme:

- Initialization: $d[v]=\infty, d[s]=0$
- In every iteration of the algorithm we check if we can do relaxation - that is, find a shorter path from s to a vertex v then the path currently known.
We will learn two algorithms:
- Dijkstra - all weights are non-negative
- Belman-Ford - identifies circles with negative weight
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dijkstra

- The idea: Maintain a set of vertices whose final shortest path weights from s have already been determined
- How will we choose the next vertex to add to the set?
- We will take the vertex u with the minimal d value. This is also the 'real' value of the shortest path.
- What relaxation can be done?
- We can check all the edges leaving u.

Dijkstra Run Time

- How can we keep the vertices, so we can easily find the next vertex to insert?
- We need to extract the minimal d value in each iteration, so a binary heap is a good choice
- Run time alalysis:
- Build heap takes $\mathrm{O}(\mathrm{V})$
- Extract-Min $\mathrm{O}(\log \mathrm{V})$.
- Altogether O(VlogV).
- Altogether $O(V \log V)$.
- Going over the adjacent list $O(E)$,
- Going over the adjacent list $\mathrm{O}(\mathrm{E})$.
- Relaxation of values in
- Altogether $\mathrm{O}($ ElogV).
- Total run-time compexity: $\mathrm{O}(\mathrm{E} \log \mathrm{V}+\mathrm{V} \log \mathrm{V})=\mathrm{O}(\mathrm{E} \log \mathrm{V})$

Bellman-Ford's Algorithm

- Now we want to identify negative circles.
- Assume that every iteration we do relaxation from all the edges. What edges might be relaxed on iteration i?
- The edges that have a path with I edges from s (shorter paths - updated in previous iterations)
- What is the maximum number of edges in any shortest path from s?

Bellman-Ford's Algorithm

- So - how many iterations are needed if there are no negative circles?
- $|\mathrm{V}|-1$. After the $|\mathrm{V}|-1$ iteration, all d values will be the lengths of the shortest paths.
- And how can we identify negative circles?
- By running the $|\mathrm{V}|$ iteration - if we can find a relaxation, then there is a negative circle in the graph
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bellman-Ford's Algorithm

Initialize (G, s)
for $i \leftarrow 1$ to $|V|-1$
for each edge $(u, v) \in E[G]$

$$
\text { do } \operatorname{Relax}(u, v, w)
$$

for each edge $(u, v) \in E[G]$
if $d[v]>d[u]+w(u, v)$ return false
return true

Bellman-Ford Run Time

- The algorithm run time is:
- Goes over v-1 vertexes, $\mathrm{O}(\mathrm{V})$
- For each vertex relaxation over $\mathrm{E}, \mathrm{O}(\mathrm{E})$
- Altogether O(VE)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Bellman-Ford

- Linear programming problems - find an optimal value (\min / \max) of a linear function of n variables, with linear contraints ${ }_{i}-x_{2} \leq 0$

$x_{3}-x_{1} \leq 5$
$x_{4}-x_{1} \leq 4$
$x_{4}-x_{3} \leq-1$
$x_{5}-x_{3} \leq-3$
$x_{5}-x_{4} \leq-3$

Application of Bellman-Ford

- There are many uses for a set of difference constraints, for instance:
- The variables can represent the times of different events
- The inequalities are the constraints over there synchronization.
- The set of linear inequalities can also be expressed in matrix notation:

$$
A \cdot x \leq b
$$

Application of Bellman-Ford

\boldsymbol{A} | $\boldsymbol{x} \leq \boldsymbol{b}$ |
| :---: |
| $\left(\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right) \leq\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3\end{array}\right)$ |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Bellman-Ford

- What is the connection between the Bellman-Ford \qquad algorithm and a set of linear inequalities?
- We can interpret the problem as a directed graph.
- The graph is called the constraint graph of the problem \qquad
- After constructing the graph, we could use the Bellman- \qquad Ford algorithm.
- The result of the Bellman-Ford algorithm is the vector x that solves the set of inequalities.

Application of Bellman-Ford

- Building the constraint graph out of matrix A:
- Each variable represents a vertex (node)
- Each constraint represents an edge
- If edge i goes out of vertex j than $A[i, j]=-1$
- If edge i goes into vertex j than $A[i, j]=1$
- Otherwise $A[i, j]=0$
- Each row contains a single ' 1 ', a single ' -1 ' and zeros.
Application of Bellman-Ford
- The problem is represented by the graph:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Bellman-Ford

- Formally:
- Each node v_{i} corresponds to a variable x_{i} in the original problem, and an extra node - v_{0} (will be s).
$V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$
- Each edge is a constraint, except for edges $\left(v_{0}, v_{i}\right)$ that were added.
$E=\left\{\left(v_{i}, v_{j}\right) \mid x_{j}-x_{i} \leq b\right.$ is a constraint $\} \cup\left\{\left(v_{0}, v_{i}\right) \mid i=1 . . n\right\}$
- Assign weights:
$w\left(v_{0}, v_{i}\right)=0 \quad$ for $i=1 \ldots n$
$w\left(v_{i}, v_{j}\right)=b_{k} \quad$ if $\quad x_{i}-x_{j} \leq b_{k}$ is a constraint

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Bellman-Ford

- The Bellman-Ford solution $\delta\left(v_{0}, v_{i}\right)$
for the extended constraint graph is a set of values which meets the constraints. \qquad
- Formally: $x_{i}:=\delta\left(v_{0}, v_{i}\right)$
- Why is this correct? \qquad
\qquad
\qquad

Application of Bellman-Ford

- Because $\forall j, i \quad j \neq i$

$$
\begin{aligned}
& \delta\left(v_{0}, v_{j}\right) \leq \delta\left(v_{0}, v_{i}\right)+w\left(v_{i}, v_{j}\right) \\
& \Rightarrow \delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{i}\right) \leq w\left(v_{i}, v_{j}\right) \\
& \Rightarrow x_{j}-x_{i} \leq b_{k} \quad(\text { for some } k)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Bellman-Ford

- If there is a negative cycle reachable from v_{0} - there are no feasible solutions: \qquad
- Suppose the cycle is $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ where $\mathrm{v}_{\mathrm{k}}=\mathrm{v}_{1}$
- v_{0} cannot be on it (it has no incoming edges)
- This cycle corresponds to

$$
\begin{aligned}
& x_{2}-x_{1} \leq b_{k_{2,1}}=w\left(v_{1}, v_{2}\right) \\
& x_{3}-x_{2} \leq b_{k_{3,2}}=w\left(v_{2}, v_{3}\right) \\
& \vdots \\
& x_{1}-x_{k-1} \leq b_{k_{1, k-1}}=w\left(v_{1}, v_{k-1}\right)
\end{aligned}
$$

Application of Bellman-Ford - The left side sums to 0 . $\sum_{i=1}^{k-1}\left(x_{i+1}-x_{i}\right)=x_{k}-x_{1}=0$ - The right side sums to the cycle's weight $w(c)$ - We get $0 \leq w(c)$ - But we assumed the cycle was negative...

