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Tirgul 11
• DFS
• Properties of DFS
• Topological sort

Depth First Search (DFS)
• We will now see another approach to graph traversal –

Depth First Search (DFS).
• The strategy that we use in DFS is to go as “deep” as 

we can in the graph.
• We check the edges that expands from the last vertex 

we checked, and that wasn’t checked yet.

DFS – cont.
• Like BFS, the DFS algorithm colors the vertices as it 

goes. In the beginning of the algorithm, all the vertices 
are white.  In the first time that the algorithm sees a 
vertex, it is painted in gray.  When the algorithms 
finishes handling a vertex, it is painted in black.

• In addition, each vertex v has two time stamps.  The 
first, v.d, is the time when it was painted in gray 
(discovered).  The second, v.f, is the time when it was 
painted in black (finished).

DFS – pseudo code
DFS(G)

//initializing.  

for each vertex u∈V[G] {
u.color = white;
u.prev = nil;

}
time = 0;

for each vertex u ∈V[G] {
if (u.color == white)

DFS-VISIT(u)
}

DFS – pseudo code (cont.)
DFS-VISIT(u)

u.color = gray;
u.d = ++time;

for each vertex v∈adj[u] {
if (v.color == white) {

v.prev = u;
DFS-VISIT(v);

}
}
u.color = black;
u.f = ++time;
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A short example (cont.)
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Running time of DFS :
• What is the running time of DFS ?
• Both loops in the DFS procedure takes O(|V|) time, not 

including the calls to DFS-VISIT.
• The algorithm calls DFS-VISIT exactly once for each 

vertex, because it is only called on white vertices.  
Each DFS-VISIT takes |adj[v]| to finish.  Thus, the 
running time of the second loop is:

• ∑v∈V|adj[v]| = Θ(E).
• And the total running time is: 
• Θ(E+V).

predecessor subgraph of DFS
• Definition: the predecessor subgraph of DFS is the 

graph Gπ(V,Eπ) when Eπ={(v.prev, v) | v∈V} (v.prev
is defined during the run of DFS).

• The predecessor subgraph of DFS creates a depth-first 
rooted forest, which consists of several depth-first 
rooted trees.  The coloring of vertices and the fact that 
we update the prev field only when we reach a white 
vertex ensures that the trees in the first-depth forest are 
disjoint.

Properties of DFS :
• The parenthesis theorem:
• Let G be a graph (directed or undirected) then after 

DFS on the graph:
• For each two vertices u, v exactly one of the following 

is true:
• [u.d, u.f] and [v.d, v.f] are disjoint.
• [u.d, u.f] ⊆ [v.d, v.f] and u is a descendant of v.
• [v.d, v.f] ⊆ [u.d, u.f] and v is a descendant of u.
• Immediate conclusion: a vertex v is a descendant of a 

vertex u in the first-depth forest iff [v.d, v.f] ⊆ [u.d, 
u.f] .

Proof of the parenthesis theorem :
• We will consider the case where u.d < v.d
• If u.f > v.d this means that we first encountered v when 

u was still gray.  Therefore, v is a descendant of u.  
Furthermore, since v was discovered after u, all the 
edges that expand from v are checked and it is painted 
black before u is painted in black.  Thus, v.f < u.f and 
[v.d, v.f] ⊆ [u.d, u.f].

• If u.f < v.d then [u.d, u.f] and [v.d, v.f] are disjoint.
• The case which v.d < u.d is symmetrical, only switch u 

and v in the above argument.

The DFS results:
• After DFS on directed graph.  

Each vertex has a time 
stamp.  The edges in gray are 
the edges in the depth-first 
forest.

• The first-depth forest of the 
above graph.  There is a 
correspondence between the 
discover and finish times of 
each vertex and the 
parenthesis structure below.
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The white path theorem:
• Theorem: in a depth-first forest of a graph G, a vertex v is 

a descendant of a vertex u iff in the time u.d, which the 
algorithm discovers u, there is a path from u to v which 
consists only of white vertices.

• Proof: ⇒ Assume that u is a descendant of v, let w be a 
vertex on the path from u to v in the depth-first tree.  The 
conclusion from the parenthesis theorem implies that 
u.d<w.d and thus w is white in time u.d

The white path theorem (cont.)
• Proof:   ⇐

• w.l.o.g. each other vertex along the path becomes a 
descendant of u in the tree.  

• Let w be the predecessor of u in the path.
• According to the parenthesis theorem:
• w.f≤u.f (they might be the same vertex). 
• v.d>u.d and v.d<w.f.  
• Thus, u.d<v.d<w.f ≤u.f. According to the parenthesis 

theorem, [v.d, v.f] ⊆ [u.d, u.f], and v must be a 
descendant of u.

u
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w

edge classification:
• Another interesting property of depth-first search is 

that it can be used to classify the edges of the graph.  
This classification can give important information on 
the graph. 

• We define four types of edges:
1. tree edges are edges in Gπ.
2. back edges are edges which connects a vertex to it’s 

ancestor in a first-depth tree (a cycle).
3. forward edges are edges which are not tree edges but 

connects a vertex u to a descendant v in a first-depth tree.
4. cross edges are all the other edges.

A-cyclic graphs and DFS:
• A directed a-cyclic graph is denoted DAG.
• Theorem: A graph is a DAG iff during a DFS run on 

the graph, there are no back edges.
• Proof: ⇐ Assume that there is a back edge, (u,v).  So v 

is an ancestor of u in the depth first tree and the edge 
(u,v) completes a cycle.

• ⇒ Assume that G contains a cycle c.  Let v be the first 
vertex that DFS discovers.  Let u be the predecessor of 
v in the cycle.  In time v.d, there is a white path from v 
to u.  According to the white path theorem, u is a 
descendant of v in the depth first tree.  Thus, the edge 
(u,v) is a back edge.

Topological Sort
• A topological sort of a DAG G is a linear ordering of the 

vertices in G, such that if G contains an edge (u,v), then u 
appears before v in the ordering.  If G contains a cycle, no 
such ordering exists.

• Topological-Sort(G)
• call DFS on G.  As each vertex is finished, insert it 

onto the front of a linked list.
• What is topological sort good for ?
• DAG’s are used in many applications to denote  precedence

order in a set of events.  A Topological Sort of such a graph 
suggests an order to the events.

Topological Sort - example
• How to dress in the morning ?

• After using DFS in order to compute the finish times 
we have the vertices, ordered according to the finish 
times and now we can dress…

• socks --- shirt --- tie --- pants --- shoes --- belts
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