
1

Tirgul 11
• DFS
• Properties of DFS
• Topological sort

Depth First Search (DFS)
• We will now see another approach to graph traversal –

Depth First Search (DFS).
• The strategy that we use in DFS is to go as “deep” as

we can in the graph.
• We check the edges that expands from the last vertex

we checked, and that wasn’t checked yet.

DFS – cont.
• Like BFS, the DFS algorithm colors the vertices as it

goes. In the beginning of the algorithm, all the vertices
are white. In the first time that the algorithm sees a
vertex, it is painted in gray. When the algorithms
finishes handling a vertex, it is painted in black.

• In addition, each vertex v has two time stamps. The
first, v.d, is the time when it was painted in gray
(discovered). The second, v.f, is the time when it was
painted in black (finished).

DFS – pseudo code
DFS(G)

//initializing.

for each vertex u∈V[G] {
u.color = white;
u.prev = nil;

}
time = 0;

for each vertex u ∈V[G] {
if (u.color == white)

DFS-VISIT(u)
}

DFS – pseudo code (cont.)
DFS-VISIT(u)

u.color = gray;
u.d = ++time;

for each vertex v∈adj[u] {
if (v.color == white) {

v.prev = u;
DFS-VISIT(v);

}
}
u.color = black;
u.f = ++time;

A short example
u v

w

u v

w

1/

u v

w

1/ 2/
u v

w

1/ 2/

3/

2

A short example (cont.)
u v

w

1/ 2/

3/

u v

w

1/ 2/

3/4

u v

w

1/ 2/5

3/4

u v

w

1/6 2/5

3/4

Running time of DFS :
• What is the running time of DFS ?
• Both loops in the DFS procedure takes O(|V|) time, not

including the calls to DFS-VISIT.
• The algorithm calls DFS-VISIT exactly once for each

vertex, because it is only called on white vertices.
Each DFS-VISIT takes |adj[v]| to finish. Thus, the
running time of the second loop is:

• ∑v∈V|adj[v]| = Θ(E).
• And the total running time is:
• Θ(E+V).

predecessor subgraph of DFS
• Definition: the predecessor subgraph of DFS is the

graph Gπ(V,Eπ) when Eπ={(v.prev, v) | v∈V} (v.prev
is defined during the run of DFS).

• The predecessor subgraph of DFS creates a depth-first
rooted forest, which consists of several depth-first
rooted trees. The coloring of vertices and the fact that
we update the prev field only when we reach a white
vertex ensures that the trees in the first-depth forest are
disjoint.

Properties of DFS :
• The parenthesis theorem:
• Let G be a graph (directed or undirected) then after

DFS on the graph:
• For each two vertices u, v exactly one of the following

is true:
• [u.d, u.f] and [v.d, v.f] are disjoint.
• [u.d, u.f] ⊆ [v.d, v.f] and u is a descendant of v.
• [v.d, v.f] ⊆ [u.d, u.f] and v is a descendant of u.
• Immediate conclusion: a vertex v is a descendant of a

vertex u in the first-depth forest iff [v.d, v.f] ⊆ [u.d,
u.f] .

Proof of the parenthesis theorem :
• We will consider the case where u.d < v.d
• If u.f > v.d this means that we first encountered v when

u was still gray. Therefore, v is a descendant of u.
Furthermore, since v was discovered after u, all the
edges that expand from v are checked and it is painted
black before u is painted in black. Thus, v.f < u.f and
[v.d, v.f] ⊆ [u.d, u.f].

• If u.f < v.d then [u.d, u.f] and [v.d, v.f] are disjoint.
• The case which v.d < u.d is symmetrical, only switch u

and v in the above argument.

The DFS results:
• After DFS on directed graph.

Each vertex has a time
stamp. The edges in gray are
the edges in the depth-first
forest.

• The first-depth forest of the
above graph. There is a
correspondence between the
discover and finish times of
each vertex and the
parenthesis structure below.

3

The white path theorem:
• Theorem: in a depth-first forest of a graph G, a vertex v is

a descendant of a vertex u iff in the time u.d, which the
algorithm discovers u, there is a path from u to v which
consists only of white vertices.

• Proof: ⇒ Assume that u is a descendant of v, let w be a
vertex on the path from u to v in the depth-first tree. The
conclusion from the parenthesis theorem implies that
u.d<w.d and thus w is white in time u.d

The white path theorem (cont.)
• Proof: ⇐

• w.l.o.g. each other vertex along the path becomes a
descendant of u in the tree.

• Let w be the predecessor of u in the path.
• According to the parenthesis theorem:
• w.f≤u.f (they might be the same vertex).
• v.d>u.d and v.d<w.f.
• Thus, u.d<v.d<w.f ≤u.f. According to the parenthesis

theorem, [v.d, v.f] ⊆ [u.d, u.f], and v must be a
descendant of u.

u
v

w

edge classification:
• Another interesting property of depth-first search is

that it can be used to classify the edges of the graph.
This classification can give important information on
the graph.

• We define four types of edges:
1. tree edges are edges in Gπ.
2. back edges are edges which connects a vertex to it’s

ancestor in a first-depth tree (a cycle).
3. forward edges are edges which are not tree edges but

connects a vertex u to a descendant v in a first-depth tree.
4. cross edges are all the other edges.

A-cyclic graphs and DFS:
• A directed a-cyclic graph is denoted DAG.
• Theorem: A graph is a DAG iff during a DFS run on

the graph, there are no back edges.
• Proof: ⇐ Assume that there is a back edge, (u,v). So v

is an ancestor of u in the depth first tree and the edge
(u,v) completes a cycle.

• ⇒ Assume that G contains a cycle c. Let v be the first
vertex that DFS discovers. Let u be the predecessor of
v in the cycle. In time v.d, there is a white path from v
to u. According to the white path theorem, u is a
descendant of v in the depth first tree. Thus, the edge
(u,v) is a back edge.

Topological Sort
• A topological sort of a DAG G is a linear ordering of the

vertices in G, such that if G contains an edge (u,v), then u
appears before v in the ordering. If G contains a cycle, no
such ordering exists.

• Topological-Sort(G)
• call DFS on G. As each vertex is finished, insert it

onto the front of a linked list.
• What is topological sort good for ?
• DAG’s are used in many applications to denote precedence

order in a set of events. A Topological Sort of such a graph
suggests an order to the events.

Topological Sort - example
• How to dress in the morning ?

• After using DFS in order to compute the finish times
we have the vertices, ordered according to the finish
times and now we can dress…

• socks --- shirt --- tie --- pants --- shoes --- belts

pants

belt
shirt

tie

shoes socks1/6

2/3

4/5

7/10

8/9

11/12

