
1

Tirgul 11
• DFS
• Properties of DFS
• Topological sort

Depth First Search (DFS)
• We will now see another approach to graph traversal –

Depth First Search (DFS).
• The strategy that we use in DFS is to go as “deep” as

we can in the graph.
• We check the edges that expands from the last vertex

we checked, and that wasn’t checked yet.

DFS – cont.
• Like BFS, the DFS algorithm colors the vertices as it

goes. In the beginning of the algorithm, all the vertices
are white. In the first time that the algorithm sees a
vertex, it is painted in gray. When the algorithms
finishes handling a vertex, it is painted in black.

• In addition, each vertex v has two time stamps. The
first, v.d, is the time when it was painted in gray
(discovered). The second, v.f, is the time when it was
painted in black (finished).

2

DFS – pseudo code
DFS(G)

//initializing.

for each vertex u∈V[G] {
u.color = white;
u.prev = nil;

}
time = 0;

for each vertex u ∈V[G] {
if (u.color == white)

DFS-VISIT(u)
}

DFS – pseudo code (cont.)
DFS-VISIT(u)

u.color = gray;
u.d = ++time;

for each vertex v∈adj[u] {
if (v.color == white) {

v.prev = u;
DFS-VISIT(v);

}
}
u.color = black;
u.f = ++time;

A short example
u v

w

u v

w

1/

u v

w

1/ 2/
u v

w

1/ 2/

3/

3

A short example (cont.)
u v

w

1/ 2/

3/

u v

w

1/ 2/

3/4

u v

w

1/ 2/5

3/4

u v

w

1/6 2/5

3/4

Running time of DFS :
• What is the running time of DFS ?
• Both loops in the DFS procedure takes O(|V|) time, not

including the calls to DFS-VISIT.
• The algorithm calls DFS-VISIT exactly once for each

vertex, because it is only called on white vertices.
Each DFS-VISIT takes |adj[v]| to finish. Thus, the
running time of the second loop is:

• ∑v∈V|adj[v]| = Θ(E).
• And the total running time is:
• Θ(E+V).

predecessor subgraph of DFS
• Definition: the predecessor subgraph of DFS is the

graph Gπ(V,Eπ) when Eπ={(v.prev, v) | v∈V} (v.prev
is defined during the run of DFS).

• The predecessor subgraph of DFS creates a depth-first
rooted forest, which consists of several depth-first
rooted trees. The coloring of vertices and the fact that
we update the prev field only when we reach a white
vertex ensures that the trees in the first-depth forest are
disjoint.

4

Properties of DFS :
• The parenthesis theorem:
• Let G be a graph (directed or undirected) then after

DFS on the graph:
• For each two vertices u, v exactly one of the following

is true:
• [u.d, u.f] and [v.d, v.f] are disjoint.
• [u.d, u.f] ⊆ [v.d, v.f] and u is a descendant of v.
• [v.d, v.f] ⊆ [u.d, u.f] and v is a descendant of u.
• Immediate conclusion: a vertex v is a descendant of a

vertex u in the first-depth forest iff [v.d, v.f] ⊆ [u.d,
u.f] .

Proof of the parenthesis theorem :
• We will consider the case where u.d < v.d
• If u.f > v.d this means that we first encountered v when

u was still gray. Therefore, v is a descendant of u.
Furthermore, since v was discovered after u, all the
edges that expand from v are checked and it is painted
black before u is painted in black. Thus, v.f < u.f and
[v.d, v.f] ⊆ [u.d, u.f].

• If u.f < v.d then [u.d, u.f] and [v.d, v.f] are disjoint.
• The case which v.d < u.d is symmetrical, only switch u

and v in the above argument.

The DFS results:
• After DFS on directed graph.

Each vertex has a time
stamp. The edges in gray are
the edges in the depth-first
forest.

• The first-depth forest of the
above graph. There is a
correspondence between the
discover and finish times of
each vertex and the
parenthesis structure below.

5

The white path theorem:
• Theorem: in a depth-first forest of a graph G, a vertex v is

a descendant of a vertex u iff in the time u.d, which the
algorithm discovers u, there is a path from u to v which
consists only of white vertices.

• Proof: ⇒ Assume that u is a descendant of v, let w be a
vertex on the path from u to v in the depth-first tree. The
conclusion from the parenthesis theorem implies that
u.d<w.d and thus w is white in time u.d

The white path theorem (cont.)
• Proof: ⇐

• w.l.o.g. each other vertex along the path becomes a
descendant of u in the tree.

• Let w be the predecessor of u in the path.
• According to the parenthesis theorem:
• w.f≤u.f (they might be the same vertex).
• v.d>u.d and v.d<w.f.
• Thus, u.d<v.d<w.f ≤u.f. According to the parenthesis

theorem, [v.d, v.f] ⊆ [u.d, u.f], and v must be a
descendant of u.

u
v

w

edge classification:
• Another interesting property of depth-first search is

that it can be used to classify the edges of the graph.
This classification can give important information on
the graph.

• We define four types of edges:
1. tree edges are edges in Gπ.
2. back edges are edges which connects a vertex to it’s

ancestor in a first-depth tree (a cycle).
3. forward edges are edges which are not tree edges but

connects a vertex u to a descendant v in a first-depth tree.
4. cross edges are all the other edges.

6

A-cyclic graphs and DFS:
• A directed a-cyclic graph is denoted DAG.
• Theorem: A graph is a DAG iff during a DFS run on

the graph, there are no back edges.
• Proof: ⇐ Assume that there is a back edge, (u,v). So v

is an ancestor of u in the depth first tree and the edge
(u,v) completes a cycle.

• ⇒ Assume that G contains a cycle c. Let v be the first
vertex that DFS discovers. Let u be the predecessor of
v in the cycle. In time v.d, there is a white path from v
to u. According to the white path theorem, u is a
descendant of v in the depth first tree. Thus, the edge
(u,v) is a back edge.

Topological Sort
• A topological sort of a DAG G is a linear ordering of the

vertices in G, such that if G contains an edge (u,v), then u
appears before v in the ordering. If G contains a cycle, no
such ordering exists.

• Topological-Sort(G)
• call DFS on G. As each vertex is finished, insert it

onto the front of a linked list.
• What is topological sort good for ?
• DAG’s are used in many applications to denote precedence

order in a set of events. A Topological Sort of such a graph
suggests an order to the events.

Topological Sort - example
• How to dress in the morning ?

• After using DFS in order to compute the finish times
we have the vertices, ordered according to the finish
times and now we can dress…

• socks --- shirt --- tie --- pants --- shoes --- belts

pants

belt
shirt

tie

shoes socks1/6

2/3

4/5

7/10

8/9

11/12

