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Tirgul 11
• DFS
• Properties of DFS
• Topological sort

Depth First Search (DFS)
• We will now see another approach to graph traversal –

Depth First Search (DFS).
• The strategy that we use in DFS is to go as “deep” as 

we can in the graph.
• We check the edges that expands from the last vertex 

we checked, and that wasn’t checked yet.

DFS – cont.
• Like BFS, the DFS algorithm colors the vertices as it 

goes. In the beginning of the algorithm, all the vertices 
are white.  In the first time that the algorithm sees a 
vertex, it is painted in gray.  When the algorithms 
finishes handling a vertex, it is painted in black.

• In addition, each vertex v has two time stamps.  The 
first, v.d, is the time when it was painted in gray 
(discovered).  The second, v.f, is the time when it was 
painted in black (finished).
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DFS – pseudo code
DFS(G)

//initializing.  

for each vertex u∈V[G] {
u.color = white;
u.prev = nil;

}
time = 0;

for each vertex u ∈V[G] {
if (u.color == white)

DFS-VISIT(u)
}

DFS – pseudo code (cont.)
DFS-VISIT(u)

u.color = gray;
u.d = ++time;

for each vertex v∈adj[u] {
if (v.color == white) {

v.prev = u;
DFS-VISIT(v);

}
}
u.color = black;
u.f = ++time;
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A short example (cont.)
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Running time of DFS :
• What is the running time of DFS ?
• Both loops in the DFS procedure takes O(|V|) time, not 

including the calls to DFS-VISIT.
• The algorithm calls DFS-VISIT exactly once for each 

vertex, because it is only called on white vertices.  
Each DFS-VISIT takes |adj[v]| to finish.  Thus, the 
running time of the second loop is:

• ∑v∈V|adj[v]| = Θ(E).
• And the total running time is: 
• Θ(E+V).

predecessor subgraph of DFS
• Definition: the predecessor subgraph of DFS is the 

graph Gπ(V,Eπ) when Eπ={(v.prev, v) | v∈V} (v.prev
is defined during the run of DFS).

• The predecessor subgraph of DFS creates a depth-first 
rooted forest, which consists of several depth-first 
rooted trees.  The coloring of vertices and the fact that 
we update the prev field only when we reach a white 
vertex ensures that the trees in the first-depth forest are 
disjoint.
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Properties of DFS :
• The parenthesis theorem:
• Let G be a graph (directed or undirected) then after 

DFS on the graph:
• For each two vertices u, v exactly one of the following 

is true:
• [u.d, u.f] and [v.d, v.f] are disjoint.
• [u.d, u.f] ⊆ [v.d, v.f] and u is a descendant of v.
• [v.d, v.f] ⊆ [u.d, u.f] and v is a descendant of u.
• Immediate conclusion: a vertex v is a descendant of a 

vertex u in the first-depth forest iff [v.d, v.f] ⊆ [u.d, 
u.f] .

Proof of the parenthesis theorem :
• We will consider the case where u.d < v.d
• If u.f > v.d this means that we first encountered v when 

u was still gray.  Therefore, v is a descendant of u.  
Furthermore, since v was discovered after u, all the 
edges that expand from v are checked and it is painted 
black before u is painted in black.  Thus, v.f < u.f and 
[v.d, v.f] ⊆ [u.d, u.f].

• If u.f < v.d then [u.d, u.f] and [v.d, v.f] are disjoint.
• The case which v.d < u.d is symmetrical, only switch u 

and v in the above argument.

The DFS results:
• After DFS on directed graph.  

Each vertex has a time 
stamp.  The edges in gray are 
the edges in the depth-first 
forest.

• The first-depth forest of the 
above graph.  There is a 
correspondence between the 
discover and finish times of 
each vertex and the 
parenthesis structure below.
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The white path theorem:
• Theorem: in a depth-first forest of a graph G, a vertex v is 

a descendant of a vertex u iff in the time u.d, which the 
algorithm discovers u, there is a path from u to v which 
consists only of white vertices.

• Proof: ⇒ Assume that u is a descendant of v, let w be a 
vertex on the path from u to v in the depth-first tree.  The 
conclusion from the parenthesis theorem implies that 
u.d<w.d and thus w is white in time u.d

The white path theorem (cont.)
• Proof:   ⇐

• w.l.o.g. each other vertex along the path becomes a 
descendant of u in the tree.  

• Let w be the predecessor of u in the path.
• According to the parenthesis theorem:
• w.f≤u.f (they might be the same vertex). 
• v.d>u.d and v.d<w.f.  
• Thus, u.d<v.d<w.f ≤u.f. According to the parenthesis 

theorem, [v.d, v.f] ⊆ [u.d, u.f], and v must be a 
descendant of u.

u
v

w

edge classification:
• Another interesting property of depth-first search is 

that it can be used to classify the edges of the graph.  
This classification can give important information on 
the graph. 

• We define four types of edges:
1. tree edges are edges in Gπ.
2. back edges are edges which connects a vertex to it’s 

ancestor in a first-depth tree (a cycle).
3. forward edges are edges which are not tree edges but 

connects a vertex u to a descendant v in a first-depth tree.
4. cross edges are all the other edges.
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A-cyclic graphs and DFS:
• A directed a-cyclic graph is denoted DAG.
• Theorem: A graph is a DAG iff during a DFS run on 

the graph, there are no back edges.
• Proof: ⇐ Assume that there is a back edge, (u,v).  So v 

is an ancestor of u in the depth first tree and the edge 
(u,v) completes a cycle.

• ⇒ Assume that G contains a cycle c.  Let v be the first 
vertex that DFS discovers.  Let u be the predecessor of 
v in the cycle.  In time v.d, there is a white path from v 
to u.  According to the white path theorem, u is a 
descendant of v in the depth first tree.  Thus, the edge 
(u,v) is a back edge.

Topological Sort
• A topological sort of a DAG G is a linear ordering of the 

vertices in G, such that if G contains an edge (u,v), then u 
appears before v in the ordering.  If G contains a cycle, no 
such ordering exists.

• Topological-Sort(G)
• call DFS on G.  As each vertex is finished, insert it 

onto the front of a linked list.
• What is topological sort good for ?
• DAG’s are used in many applications to denote  precedence

order in a set of events.  A Topological Sort of such a graph 
suggests an order to the events.

Topological Sort - example
• How to dress in the morning ?

• After using DFS in order to compute the finish times 
we have the vertices, ordered according to the finish 
times and now we can dress…

• socks --- shirt --- tie --- pants --- shoes --- belts
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