Tirgul 7

* Review of graphs
* Graph algorithms:
— BFS

T
more important definitions...

Connected graph: An undirected graph G is said to be

connected if for each two vertices u,v in the graph,

there is a path between u and v.

Strongly Connected graph: A directed graph G is

said to be strongly connected if for each two vertices

u,v in the graph, there is a path between u and v.

* Tree: A tree is an undirected, connected, a-cyclic
graph.

* Rooted Tree: A directed graph G is called a rooted

tree if there exists seV s.t. for each veV, there is

exactly one path between s and v.

» Forest: A forest (rooted forest) is a set of disjoint trees
(rooted trees).

Graph — a definition:

* A directed graph, G, is a couple (V,E) such that Vis a
finite set and E is a subset of ¥’xV. The set V is
denoted as the vertex set of G and the set E is denoted
as the edge set of G. Note that a directed graph may
contain self loops (an edge from a vertex to itself).

* In an undirected graph, the edges in E are not ordered,
in the sense of that an edge is a set {u,v} instead of an
ordered couple (u,v).

Graph representations: adjacency lists

* One natural way to represent graphs is to use
adjacency lists.

» For each vertex v there is a linked list of his neighbors.

» This representation is good for sparse graphs, since we
use only |V lists and in a sparse graph, each list is short
(overall representation size is V+E).

04
Some important graph definitions:

* Sub-graph: Let G(V,E) be a graph. We say that G’(E’,V”)
is a sub-graph of G if V’cV and E’cENV’xV’

» Path: Let u,v be vertices in the graph. A path of length k
between u and v is a sequence of vertices, v,,...,v,, such
that vy=v, v,=u, and for each ie {0..k-1}, (v;, v;;)eE. We
say that v, is the predecessor v,,, on the path

* If there is a path from v to u we say that v is an ancestor of
uand u is a descendant of v.

* Cycle: In a directed graph, a cycle is a path vj,..,v; such
that vj=v,. If the vertices v,...,v, are also pair wise
disjoint, the cycle is called simp}e.

* In an undirected graph, a (simple) cycle is a path v,,...,v,
such that vi=v,, k>3 and v,,...,v, are pair wise disjoint.

Graph representations: adjacency matrix

* Another way to represent a graph in the computer is to
use an adjacency matrix. This is a matrix of size
[VIx|V], we will denote it by T. The vertices are
enumerated, ViV Now, T; J-=1 & there is an edge
between the vertices v; and v; < (v;,v,)€E.

* Ifthe graph is undirected: T;71 <T; =1

* what is the meaning of T?, T, etc. 222

Review of graphs

* Graphs are a very useful tool in Computer Science.
Many problems can be reduced to problems on graphs,
and there exists many efficient algorithms that solves
graph problems.

* Today we will examine a few of these algorithms.

* We will focus on the shortest path problem (unweighted
graphs) which is a basic routine in many graph related
algorithm. We can define:

— Shortest path between s and ¢.
— Single source shortest path (shortest path between s and {V}).
— All pairs shortest path.

T
Breadth First Search (cont.)

* The BFS algorithm constructs a BFS tree, initially
containing only the root s (the source vertex).

* While scanning the neighbors of an already discovered
vertex u, whenever a white vertex v is discovered it is
added to the tree along with the edge (u,v).

* u is the parent of v in the BF'S tree.

e If u is on the pass in the tree from s to v then u is
ancestor of v and v is a descendant of u.

» The algorithm uses a queue (FIFO) to manage the set of
gray vertices.

Breadth First Search (BFS)

» The Breadth First Search (BFS) is one of the simplest
and most useful graph algorithms.

The algorithm systematically explores the edges of G
to find all vertices that are reachable from s and
computes distances to those vertices.

+ It also produces a “breadth first tree”, with s being the
root.

It is called breadth first search since it expands the
frontier between visited and non visited vertices
uniformly across the breadth of the frontier.

BFS — pseudo code
BFS (G, s)

//initializing.

for each vertex ueV[G]\{s} {
color[u] = white;
dist[u] = «;
parent[u] = NULL;

}

color[s] = GRAY;

dist[s] = 0;

parent[s] = NULL;

Q <- {s};

o4
Breadth First Search (cont.)

» To keep track of progress, BFS colors each vertex
according to their status.

* Vertices are initialized in white and are later
colored as they are discovered and being processed.

* It also produces a “breadth first tree”, with s being
the root.

« If (u,v) € E and u is black then v is non white.

» Gray vertices represent the frontier between
discovered and undiscovered vertices.

BFS — pseudo code (cont.)

while (not Q.isEmpty()) {
u <- Q.head();
foreach v € u.neighbors() {
if color[v] # WHITE ({
color[v] = GRAY;
dist[v] = dist[u]+1;
parent[v] = u;
Q.enqueue (V) ;
}
Q.dequeue() ;
color[u] = BLACK;
}

BFES, an example:

t r S t

08 T8 T T

w u v w u v w u v w

B oEE oEEN o EEd
Q []ul

r r
u u
Q [Qe

BFES, proof of correctness (cont.):

» Claim 3: Suppose that during the execution of BFS on graph G, the
queue Q contains the nodes <v,, ..., v,>. Then:
dist[v,] <dist[v,]+ 1 and dist[v,] < dist[v,,,] Vi e {L,...,r =1}

* Proof 3: The proof is by induction on the number of queue
operations. The basis holds (only s is in the queue). When
dequeuing a vertex, dist[v,] < dist[v,]+1<dist[v,]+1 and the claim
holds. When enqueuing a node w, we have the node u at the head
of the queue => dist[v,,,] = dist[w] = dist[u]+1 = dist[v,]+1
and we also have:

dist[v,] < dist[v,]+1 = dist[u]+1 = dist[w] = dist[v,,,]

BFS, properties:

+ What can we say about time complexity?
* Why does it works? (intuition):

— We can think as if we have a set of nodes S and for all the
nodes in S, the distance is correct (S begins with just s).

— At step ¢, S contains the 7 closest nodes to s.

— At each step, the algorithm adds to S the next closest node to
s by finding the closest node to s in S that has neighbors out
of S and adding these neighbors to S (greedy algorithm).

— The proof of correctness uses the fact that we have already
discovered closer nodes and assigned them the correct
distance when we discover a new node that is a neighbor of
one of them.

T
BFS, proof of correctness (cont.):

* Claim 4: Let G=(V,E) be a graph and we run BF'S from se¥ on G.
Then the BFS discovers every vertex ve V that is reachable from s,
and upon termination, Vv €V, dist[v]=(s,v)

+ Proof4: If v is unreachable, we have dist[v]> d(s,v) =0, but
since v hasn’t been discovered since it has been initialized, we get:
oo =dist[v] > d(s,v) =0 = dist[v] = (s, V)

For vertices that are reachable from s, we define V, ={veV:d(s,v) =k}
For each v €V, we show by induction that during the execution of
the BFS, there is at most one point at which:

— vis grayed.

— dist[v] is set to k.

— if vs then parent[v] is set to u for some u V.

— vis inserted into the queue Q.

T
BFES, proof of correctness:

* Claim 1: Let G=(V,E) be a graph and let s€ V be an arbitrary
vertex. Then for any edge (u,v) €E: O(s,v) < 5(s,u)+1

» Proof 1: If u is reachable from s, so is v, otherwise J(s,u) =0

* Claim 2: Let G=(V,E) be a graph, and suppose we run BFS on G
from s. Upon termination, Vv eV, dist[v]> (s, V)

* Proof 2: The proof is by induction on the number of times a vertex
is placed in Q. The claim holds after placing s in Q (basis). For the
induction step, let’s look at a white vertex v discovered during the
search from u. By the hypothesis dist[#]> &(s,u). From claim 1
and the algorithm we get:dist[v] = dist[u]+1> 5(s,u)+12> 5(s,v)

T
BFS, proof of correctness (cont.):

¢ Proof4 (cont.): For k=0, the inductive hypothesis holds (basis).
For the inductive step, we first note that Q is never empty during
the algorithm execution and that once a vertex v is entered O,
dist[v] and parent[v] never changes. Let us consider an arbitrary
vertex v €V, (k> 1). From claim 3 (monotonicity),claim 2 (dist[v]
2Fk) and the inductive hypothesis we get that v must be discovered
after all vertices in V,_; are enqueued (if discovered at all).
Since O(s,Vv) =k, there is a path of length & from s to v => There
is a vertex u €V,_; such that (u,v) €E. Let u be the first such
vertex grayed. u will appear as the head of O, at that time, its
neighbors will be scanned and v will be discovered
=>d[v] = d[u]+1 = k and parent[v] = u.

