
1

Tirgul 7
• Review of graphs
• Graph algorithms:

– BFS
(next tirgul)

– DFS
– Properties of DFS
– Topological sort

Graph – a definition:
• A directed graph, G, is a couple (V,E) such that V is a 

finite set and E is a subset of V×V.  The set V is 
denoted as the vertex set of G and the set E is denoted 
as the edge set of G.  Note that a directed graph may 
contain self loops (an edge from a vertex to itself).

• In an undirected graph, the edges in E are not ordered, 
in the sense of that an edge is a set {u,v} instead of an 
ordered couple (u,v).

Some important graph definitions:
• Sub-graph: Let G(V,E) be a graph.  We say that G’(E’,V’) 

is a sub-graph of G if V’⊆V and E’⊆E∩V’×V’
• Path: Let u,v be vertices in the graph.  A path of length k 

between u and v is a sequence of vertices, v0,…,vk, such 
that v0=v, vk=u, and for each i∈{0..k-1}, (vi, vi+1)∈E.  We 
say that vi is the predecessor vi+1 on the path

• If there is a path from v to u we say that v is an ancestor of 
u and u is a descendant of v.

• Cycle: In a directed graph, a cycle is a path v0,..,vk, such 
that v0=vk.  If the vertices v1,…,vk are also pair wise 
disjoint, the cycle is called simple.

• In an undirected graph, a (simple) cycle is a path v0,…,vk
such that v0=vk, k≥3 and v1,…,vk are pair wise disjoint.

more important definitions…
• Connected graph: An undirected graph G is said to be 

connected if for each two vertices u,v in the graph, 
there is a path between u and v.

• Strongly Connected graph: A directed graph G is 
said to be strongly connected if for each two vertices 
u,v in the graph, there is a path between u and v.

• Tree: A tree is an undirected, connected, a-cyclic 
graph.

• Rooted Tree: A directed graph G is called a rooted 
tree if there exists s∈V s.t. for each v∈V, there is 
exactly one path between s and v.

• Forest: A forest (rooted forest) is a set of disjoint trees 
(rooted trees).

Graph representations: adjacency lists
• One natural way to represent graphs is to use 

adjacency lists.
• For each vertex v there is a linked list of his neighbors.
• This representation is good for sparse graphs, since we 

use only |V| lists and in a sparse graph, each list is short 
(overall representation size is V+E).

Graph representations: adjacency matrix
• Another way to represent a graph in the computer is to 

use an adjacency matrix.  This is a matrix of size 
|V|×|V|, we will denote it by T.  The vertices are 
enumerated, v1,…,v|V|. Now, Ti,j=1 ⇔ there is an edge 
between the vertices vi and vj ⇔ (vi,vj)∈E.

• If the graph is undirected:  Ti,j=1 ⇔Tj,i=1

* what is the meaning of T2, T3, etc. ???



2

Review of graphs
• Graphs are a very useful tool in Computer Science.  

Many problems can be reduced to problems on graphs, 
and there exists many efficient algorithms that solves 
graph problems.

• Today we will examine a few of these algorithms.
• We will focus on the shortest path problem (unweighted 

graphs) which is a basic routine in many graph related 
algorithm. We can define:
– Shortest path between s and t.
– Single source shortest path (shortest path between s and {V}).
– All pairs shortest path.

Breadth First Search (BFS)
• The Breadth First Search (BFS) is one of the simplest 

and most useful graph algorithms.
• The algorithm systematically explores the edges of G

to find all vertices that are reachable from s and 
computes distances to those vertices.

• It also produces a “breadth first tree”, with s being the 
root.

• It is called breadth first search since it expands the 
frontier between visited and non visited vertices 
uniformly across the breadth of the frontier.

Breadth First Search (cont.)
• To keep track of progress, BFS colors each vertex 

according to their status.
• Vertices are initialized in white and are later 

colored as they are discovered and being processed.
• It also produces a “breadth first tree”, with s being 

the root.
• If                   and u is black then v is non white.
• Gray vertices represent the frontier between 

discovered and undiscovered vertices.

Evu ∈),(

Breadth First Search (cont.)
• The BFS algorithm constructs a BFS tree, initially 

containing only the root s (the source vertex).
• While scanning the neighbors of an already discovered 

vertex u, whenever a white vertex v is discovered it is 
added to the tree along with the edge (u,v).

• u is the parent of v in the BFS tree.
• If u is on the pass in the tree from s to v then u is 

ancestor of v and v is a descendant of u.
• The algorithm uses a queue (FIFO) to manage the set of 

gray vertices.

BFS – pseudo code
BFS(G,s)

//initializing.  
for each vertex u∈V[G]\{s} {

color[u] = white;
dist[u] = ∞;
parent[u] = NULL;

}
color[s] = GRAY;
dist[s] = 0;
parent[s] = NULL;
Q <- {s};

BFS – pseudo code (cont.)
...
while (not Q.isEmpty()) {

u <- Q.head();
foreach v ∈ u.neighbors() {

if color[v] ≠ WHITE {
color[v] = GRAY;
dist[v] = dist[u]+1;
parent[v] = u;
Q.enqueue(v);

}
Q.dequeue();
color[u] = BLACK;

}



3

BFS, an example:
∞
r

0
s

∞
t

∞ ∞ ∞
u v w

1
r

0
s

∞
t

∞ 1 ∞
u v w

1
r

0
s

2
t

∞ 1 2
u v w u v w

1
r

0
s

2
t

2 1 2

Q s Q Q

Q w Q u

v r r t w Q t w u

u v w

1
r

0
s

2
t

2 1 2

u

u v w

1
r

0
s

2
t

2 1 2
u v w

1
r

0
s

2
t

2 1 2

Q   Ø

BFS, properties:
• What can we say about time complexity?
• Why does it works? (intuition):

– We can think as if we have a set of nodes S and for all the 
nodes in S, the distance is correct (S begins with just s).

– At step t, S contains the t closest nodes to s.
– At each step, the algorithm adds to S the next closest node to 

s by finding the closest node to s in S that has neighbors out 
of S and adding these neighbors to S (greedy algorithm).

– The proof of correctness uses the fact that we have already 
discovered closer nodes and assigned them the correct 
distance when we discover a new node that is a neighbor of 
one of them.

BFS, proof of correctness:
• Claim 1: Let G=(V,E) be a graph and let s∈V be an arbitrary 

vertex. Then for any edge (u,v) ∈E :
• Proof 1: If u is reachable from s, so is v, otherwise 
• Claim 2: Let G=(V,E) be a graph, and suppose we run BFS on G

from s. Upon termination, 
• Proof 2: The proof is by induction on the number of times a vertex 

is placed in Q. The claim holds after placing s in Q (basis). For the 
induction step, let’s look at a white vertex v discovered during the 
search from u. By the hypothesis                            . From claim 1 
and the algorithm we get:

1),(),( +≤ usvs δδ
∞=),( usδ

),(]dist[, vsvVv δ≥∈∀

),(]dist[ usu δ≥
),(1),(1]dist[]dist[ vsusuv δδ ≥+≥+=

BFS, proof of correctness (cont.):
• Claim 3: Suppose that during the execution of BFS on graph G, the 

queue Q contains the nodes <v1, ..., vr>. Then:

• Proof 3: The proof is by induction on the number of queue 
operations. The basis holds (only s is in the queue). When 
dequeuing a vertex,                                                     and the claim 
holds. When enqueuing a node w, we have the node u at the head 
of the queue =>                                                 
and we also have:

}1,...,1{ ]dist[]dist[ and 1]dist[]dist[ 11 −∈∀≤+≤ + rivvvv iir

1]dist[  1]dist[]dist[ 21 +≤+≤ vvvr

1]dist[1]dist[]dist[]dist[ 11 +=+==+ vuwvr

]dist[]dist[1]dist[1]dist[]dist[ 11 +==+=+≤ rr vwuvv

BFS, proof of correctness (cont.):
• Claim 4: Let G=(V,E) be a graph and we run BFS from s∈V on G. 

Then the BFS discovers every vertex v∈V that is reachable from s, 
and upon termination,  

• Proof 4: If v is unreachable, we have                                    , but 
since v hasn’t been discovered since it has been initialized, we get:

For vertices that are reachable from s, we define               
For each v ∈Vk we show by induction that during the execution of 
the BFS, there is at most one point at which:
– v is grayed.
– dist[v] is set to k.
– if v≠s then parent[v] is set to u for some u ∈Vk-1.
– v is inserted into the queue Q.

),(]dist[, vsvVv δ=∈∀

}),(:{ kvsVvVk =∈= δ
),(]dist[),(]dist[ vsvvsv δδ =⇒∞=≥=∞

∞=≥ ),(]dist[ vsv δ

BFS, proof of correctness (cont.):
• Proof 4 (cont.): For k=0, the inductive hypothesis holds (basis). 

For the inductive step, we first note that Q is never empty during 
the algorithm execution and that once a vertex v is entered Q, 
dist[v] and parent[v] never changes. Let us consider an arbitrary 
vertex v ∈Vk (k > 1). From claim 3 (monotonicity),claim 2 (dist[v] 
≥k) and the inductive hypothesis we get that v must be discovered 
after all vertices in Vk-1 are enqueued (if discovered at all).     
Since                    , there is a path of length k from s to v => There 
is a vertex u ∈Vk-1 such that (u,v) ∈E. Let u be the first such 
vertex grayed. u will appear as the head of Q, at that time, its 
neighbors will be scanned and v will be discovered                      
=> d[v] = d[u]+1 = k and parent[v] = u. 

kvs =),(δ


