82085
 Tirgul 7

- Review of graphs
- Graph algorithms:
- BFS
(next tirgul)
- DFS
- Properties of DFS
- Topological sort

BAS5

Graph - a definition:

- A directed graph, \boldsymbol{G}, is a couple $(\boldsymbol{V}, \boldsymbol{E})$ such that \boldsymbol{V} is a finite set and \boldsymbol{E} is a subset of $\boldsymbol{V} \times \boldsymbol{V}$. The set \boldsymbol{V} is denoted as the vertex set of \boldsymbol{G} and the set E is denoted as the edge set of \boldsymbol{G}. Note that a directed graph may contain self loops (an edge from a vertex to itself).
- In an undirected graph, the edges in \boldsymbol{E} are not ordered, in the sense of that an edge is a set $\{\boldsymbol{u}, \boldsymbol{v}\}$ instead of an ordered couple ($\boldsymbol{u}, \boldsymbol{v}$).

20988

Some important graph definitions:

- Sub-graph: Let $G(V, E)$ be a graph. We say that $G^{\prime}\left(E^{\prime}, V^{\prime}\right)$ is a sub-graph of G if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E} \cap \mathrm{V}^{\prime} \times \mathrm{V}^{\prime}$
- Path: Let u, v be vertices in the graph. A path of length k between u and v is a sequence of vertices, $v_{0}, \ldots, v_{\mathrm{k}}$, such that $\mathrm{v}_{0}=\mathrm{v}, \mathrm{v}_{\mathrm{k}}=\mathrm{u}$, and for each $\mathrm{i} \in\{0 . \mathrm{k}-1\},\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right) \in \mathrm{E}$. We say that v_{i} is the predecessor v_{i+1} on the path
- If there is a path from v to u we say that v is an ancestor of u and u is a descendant of v.
- Cycle: In a directed graph, a cycle is a path $\mathrm{v}_{0}, . ., \mathrm{v}_{\mathrm{k}}$, such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$. If the vertices $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ are also pair wise disjoint, the cycle is called simple.
- In an undirected graph, a (simple) cycle is a path $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}$ such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}, \mathrm{k} \geq 3$ and $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ are pair wise disjoint.
\qquad

more important definitions...

- Connected graph: An undirected graph G is said to be connected if for each two vertices u, v in the graph, there is a path between u and v.
- Strongly Connected graph: A directed graph G is said to be strongly connected if for each two vertices u, v in the graph, there is a path between u and v .
- Tree: A tree is an undirected, connected, a-cyclic graph.
- Rooted Tree: A directed graph G is called a rooted tree if there exists $s \in V$ s.t. for each $v \in V$, there is exactly one path between s and v .
- Forest: A forest (rooted forest) is a set of disjoint trees (rooted trees).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Graph representations: adjacency lists

- One natural way to represent graphs is to use adjacency lists.
- For each vertex \boldsymbol{v} there is a linked list of his neighbors. \qquad
- This representation is good for sparse graphs, since we use only $|\boldsymbol{V}|$ lists and in a sparse graph, each list is short \qquad (overall representation size is $\boldsymbol{V}+\boldsymbol{E}$).

2088

Graph representations: adjacency matrix

- Another way to represent a graph in the computer is to use an adjacency matrix. This is a matrix of size $|\boldsymbol{V} \times| \boldsymbol{V}$, we will denote it by \boldsymbol{T}. The vertices are enumerated, $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{V V}$. Now, $\boldsymbol{T}_{i, j}=1 \Leftrightarrow$ there is an edge between the vertices v_{i} and $\boldsymbol{v}_{\boldsymbol{j}} \Leftrightarrow\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{\boldsymbol{j}}\right) \in \boldsymbol{E}$.
- If the graph is undirected: $\boldsymbol{T}_{i, j}=1 \Leftrightarrow \boldsymbol{T}_{j, i}=1$
* what is the meaning of T^{2}, T^{3}, etc. ???

Review of graphs

- Graphs are a very useful tool in Computer Science. Many problems can be reduced to problems on graphs, and there exists many efficient algorithms that solves graph problems.
- Today we will examine a few of these algorithms.
- We will focus on the shortest path problem (unweighted graphs) which is a basic routine in many graph related algorithm. We can define:
- Shortest path between \boldsymbol{s} and \boldsymbol{t}.
- Single source shortest path (shortest path between \boldsymbol{s} and $\{\boldsymbol{V}\}$).
- All pairs shortest path.

BA8

Breadth First Search (BFS)

- The Breadth First Search (BFS) is one of the simplest and most useful graph algorithms.
- The algorithm systematically explores the edges of \boldsymbol{G} to find all vertices that are reachable from s and computes distances to those vertices.
- It also produces a "breadth first tree", with s being the root.
- It is called breadth first search since it expands the frontier between visited and non visited vertices uniformly across the breadth of the frontier.

20 08

Breadth First Search (cont.)

- To keep track of progress, $B F S$ colors each vertex according to their status.
- Vertices are initialized in white and are later colored as they are discovered and being processed.
- It also produces a "breadth first tree", with s being the root.
- If $(u, v) \in E$ and u is black then v is non white.
- Gray vertices represent the frontier between discovered and undiscovered vertices.

Breadth First Search (cont.)

- The BFS algorithm constructs a BFS tree, initially containing only the root \boldsymbol{s} (the source vertex).
- While scanning the neighbors of an already discovered vertex \boldsymbol{u}, whenever a white vertex \boldsymbol{v} is discovered it is added to the tree along with the edge $(\boldsymbol{u}, \boldsymbol{v})$.
- \boldsymbol{u} is the parent of \boldsymbol{v} in the BFS tree.
- If \boldsymbol{u} is on the pass in the tree from \boldsymbol{s} to \boldsymbol{v} then \boldsymbol{u} is ancestor of \boldsymbol{v} and \boldsymbol{v} is a descendant of \boldsymbol{u}.
- The algorithm uses a queue (FIFO) to manage the set of gray vertices.

```
(B)
```

```
    BFS - pseudo code
BFS (G,s)
    //initializing.
    for each vertex u\inV[G]\{s} {
            color[u] = white;
            dist[u] = \infty;
            parent[u] = NULL;
    }
    color[s] = GRAY;
    dist[s] = 0;
    parent[s] = NULL;
    Q <- {s};
```

```
1045%
BFS - pseudo code (cont.)
    while (not Q.isEmpty()) {
            u <- Q.head();
            foreach v \in u.neighbors() {
                if color[v] # WHITE {
                    color[v] = GRAY;
                    dist[v] = dist[u]+1;
                    parent[v] = u;
                    Q.enqueue(v);
            }
            Q.dequeue();
            color[u] = BLACK;
    }
```

\qquad

10)

BFS, properties:

- What can we say about time complexity?
- Why does it works? (intuition):
- We can think as if we have a set of nodes \boldsymbol{S} and for all the nodes in \boldsymbol{S}, the distance is correct (\boldsymbol{S} begins with just \boldsymbol{s}).
- At step t, \boldsymbol{S} contains the t closest nodes to \boldsymbol{s}.
- At each step, the algorithm adds to S the next closest node to s by finding the closest node to s in S that has neighbors out of S and adding these neighbors to S (greedy algorithm).
- The proof of correctness uses the fact that we have already discovered closer nodes and assigned them the correct distance when we discover a new node that is a neighbor of one of them.

(3) 8

BFS, proof of correctness:

- Claim 1: Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a graph and let $\mathrm{s} \in \boldsymbol{V}$ be an arbitrary vertex. Then for any edge $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{E}: \quad \delta(s, v) \leq \delta(s, u)+1$
- Proof 1: If \boldsymbol{u} is reachable from \boldsymbol{s}, so is \boldsymbol{v}, otherwise $\delta(s, u)=\infty$
- Claim 2: Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a graph, and suppose we run $B F S$ on \boldsymbol{G} from s. Upon termination, $\forall v \in V, \operatorname{dist}[v] \geq \delta(s, v)$
- Proof 2: The proof is by induction on the number of times a vertex is placed in \boldsymbol{Q}. The claim holds after placing \boldsymbol{s} in \boldsymbol{Q} (basis). For the induction step, let's look at a white vertex v discovered during the search from u . By the hypothesis $\operatorname{dist}[u] \geq \delta(s, u)$. From claim 1 and the algorithm we get: $\operatorname{dist}[v]=\operatorname{dist}[u]+1 \geq \delta(s, u)+1 \geq \delta(s, v)$

B4 408
 BFS, proof of correctness (cont.):

- Claim 3: Suppose that during the execution of $B F S$ on graph \boldsymbol{G}, the queue \boldsymbol{Q} contains the nodes $\left\langle\boldsymbol{v}_{l}, \ldots, \boldsymbol{v}_{r}\right\rangle$. Then: $\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}\left[v_{1}\right]+1$ and $\operatorname{dist}\left[v_{i}\right] \leq \operatorname{dist}\left[v_{i+1}\right] \forall i \in\{1, \ldots, r-1\}$
- Proof 3: The proof is by induction on the number of queue operations. The basis holds (only \boldsymbol{s} is in the queue). When dequeuing a vertex, $\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}\left[v_{1}\right]+1 \leq \operatorname{dist}\left[v_{2}\right]+1$ and the claim holds. When enqueuing a node \boldsymbol{w}, we have the node \boldsymbol{u} at the head of the queue $=>\operatorname{dist}\left[v_{r+1}\right]=\operatorname{dist}[w]=\operatorname{dist}[u]+1=\operatorname{dist}\left[v_{1}\right]+1$ and we also have:

$$
\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}\left[v_{1}\right]+1=\operatorname{dist}[u]+1=\operatorname{dist}[w]=\operatorname{dist}\left[v_{r+1}\right]
$$

2) 8

BFS, proof of correctness (cont.):

- Claim 4: Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a graph and we run $B F S$ from $\boldsymbol{s} \in \boldsymbol{V}$ on \boldsymbol{G}. Then the BFS discovers every vertex $\boldsymbol{v} \in \boldsymbol{V}$ that is reachable from s, and upon termination, $\forall v \in V, \operatorname{dist}[v]=\delta(s, v)$
- Proof 4: If v is unreachable, we have $\operatorname{dist}[v] \geq \delta(s, v)=\infty$, but since \boldsymbol{v} hasn't been discovered since it has been initialized, we get: $\infty=\operatorname{dist}[v] \geq \delta(s, v)=\infty \Rightarrow \operatorname{dist}[v]=\delta(s, v)$
For vertices that are reachable from s, we define $V_{k}=\{v \in V: \delta(s, v)=k\}$ For each $\mathrm{v} \in \boldsymbol{V}_{k}$ we show by induction that during the execution of the $B F S$, there is at most one point at which:
\boldsymbol{v} is grayed.
dist $[v]$ is set to k.
- if $\boldsymbol{v} \neq \boldsymbol{s}$ then parent $[\boldsymbol{v}]$ is set to \boldsymbol{u} for some $\boldsymbol{u} \in \boldsymbol{V}_{k-1}$.
\boldsymbol{v} is inserted into the queue \boldsymbol{Q}
\qquad

BFS, proof of correctness (cont.):

- Proof 4 (cont.): For $k=0$, the inductive hypothesis holds (basis). For the inductive step, we first note that Q is never empty during the algorithm execution and that once a vertex \boldsymbol{v} is entered Q, $\operatorname{dist}[\boldsymbol{v}]$ and parent $[\boldsymbol{v}]$ never changes. Let us consider an arbitrary vertex $\boldsymbol{v} \in \boldsymbol{V}_{k}(k>1)$. From claim 3 (monotonicity), claim 2 (dist[$\left.\boldsymbol{v}\right]$ $\geq k$) and the inductive hypothesis we get that v must be discovered after all vertices in \boldsymbol{V}_{k-1} are enqueued (if discovered at all). Since $\delta(s, v)=k$, there is a path of length k from s to $v \Rightarrow$ There is a vertex $\boldsymbol{u} \in \boldsymbol{V}_{k-1}$ such that $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{E}$. Let \boldsymbol{u} be the first such vertex grayed. \boldsymbol{u} will appear as the head of Q, at that time, its neighbors will be scanned and v will be discovered $\Rightarrow \mathrm{d}[\boldsymbol{v}]=\mathrm{d}[\boldsymbol{u}]+1=k$ and parent $[\boldsymbol{v}]=\boldsymbol{u}$.

