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Data Structures – LECTURE 17 

Union-Find on disjoint sets
• Motivation

• Linked list representation

• Tree representation

• Union by rank and path compression heuristics

Chapter 21 in the textbook (pp 498—509).
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Motivation
• Perform repeated union and find operations on 

disjoint data sets.

• Examples:
– Kruskal’s MST algorithm

– Strongly connected components

• Goal: define an ADT that supports Union-Find 
queries on disjoint data sets efficiently.

• Target: average O(n) time, where n is the total 
number of elements in all sets. 
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Example: connected components

Initial set S = { { a} , { b} , { c} , { d} , { e} , { f} , { g} , { h} , { i} , { j} }
(b,d) S = { { a} , { b,d} , { c} , { e} , { f} , { g} , { h} , { i} , { j} }
(e,g) S = { { a} , { b,d} , { c} , { e,g} , { f} , { h} , { i} , { j} }
(a,c) S = { { a,c} , { b,d} , { e,g} , { f} , { h} , { i} , { j} }
(h,i) S = { { a,c} , { b,d} , { e,g} , { f} , { h,i} , { j} }
(a,b) S = { { a,c,b,d} , { e,g} , { f} , { h,i} , { j} }
(e,f) S = { { a,c,b,d} , { e,f,g} , { h,i} , { j} }
(b,c) S = { { a,c,b,d} , { e,f,g} , { h,i} , { j} }
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Union-Find Abstract Data Type

• Let  S = { S1,S2,…,Sk}  be a dynamic collection of 
disjoint sets.

• Each set Si is identified by a representative member.
• Operations:

Make-Set(x): create a new set Sx, whose only member is x 
(assuming x is not already in one of the sets).

Union(x, y): replace two disjoint sets Sx and Sy represented 
by x and y by their union.

Find-Set(x): find and return the representative of the set Sx
that contains x.
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Disjoint sets: linked list representation
• Each set is a linked list, and the representative is the 

head of the list. Elements point to the successor and 
to the head of the list. 

• Make-Set: create a new list: O(1).
• Find-Set: search for an element down the list: O(n). 
• Union: link the tail of L1 to the head of L2, and make 

each element of L2 point to the head of L1: O(n).
• A sequence of n Make-Set operations + n–1 Union 

operations will take n+�i = �(n2) operations.
• The amortized time for one operation is thus �(n). 
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Example: linked list representation

c h be
head

nullnull

tail

tail

f g d
head

nullnull

S1={ c,h,e,b}

S2={ f,g,d}
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Example: linked list representation

null

S1 U S2= ={ c,h,e,b} U{ f,g,d}  

c h be
head

null

f g d

tail
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Weighted-union heuristic
• When doing the union of two lists, append the 

shorter one to the longer one. 

• A single operation will still take O(n) time.

• However, for a sequence of m>n Make-Set, Union, 
and Find-Set operations, of which n are Make-Set, 
the total time is O(m + nlgn) instead of O(mn)!

• Proof outline: an object x has its pointer updated at 
most ceiling(lg n) times, since it cannot always be 
on a long list.
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Disjoint sets: tree representation
• Each set is a tree, and the representative is the root.  
• Each element points to its parent in the tree. The root 

points to itself.
• Make-Set: takes O(1).
• Find-Set: takes O(h) where h is the height of the tree. 
• Union is performed by finding the two roots, and 

choosing one of the roots, to point to the other. This 
takes O(h). 

• The complexity therefore depends on how the trees 
are maintained! In the worst case, no improvement.
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Example: disjoint sets tree representation
S={ S1, S2} ,  S1={ c,h,e,b} , S2={ f,g,d}
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Union by rank
• We want to make the trees as shallow as possible 
� trees must be balanced. 

• When taking the union of two trees, make the root 
of the shorter tree become the child of the root of 
the longer tree.

• Keep track of the estimated size of each sub-tree:  
� keep the rank of each node.

• Every time Union is performed, update the rank 
of the root.  
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Union by rank: pseudocode
Make-Set(x)

pointer[x] ���� x
rank[x] � 0

Union(x,y)
Link(Find-Set(x), Find-Set(y))

Find-Set(x)

if x � pointer[x] then pointer[x] � Find-Set(pointer[x])
return pointer[x]

Link(x,y)

if rank[x] > rank[y] then pointer[x] � y
else pointer[y] � x

if rank[x] = rank[y] then rank[x] � rank[y]+1
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Complexity of Find-Set (1)

• Claim: the maximum height of a tree when using 
height balancing is O(lg n). 

• Proof: By induction on the number of Union 
operations used to create the tree. 

When the tree height is h, the number of nodes is at 
least 2h. 

Basis: Clearly true for the first union operation, where 
h=1 and the resulting tree has two nodes.

Induction step:  True for tree of height h.
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Complexity of Find-Set (2)
For the next union operation, there are two cases:
• The tree height does not grow: one tree was shorter 

than the other, in which case it is clearly true, 
because h didn’ t grow and the number of nodes did. 

• The height does grow, because both tree heights 
were the same. By the induction hypothesis, each 
sub-tree has at least 2h nodes, so the new tree has at 
least 2.2h =2h+1 nodes. Thus, the height of the tree 
grew by 1 to h+1, which proves the induction step.

Overall complexity: O(m lg n).   

Data Structures, Spring 2004 © L. Joskowicz ��

Path compression
• Speed up Union-Find operations by shortening 

the sub-tree paths to the root. 

• During a Find-Set operation, make each node on 
the find path point directly to the root.

• Complexity: The worst-case time complexity of n 
Make-Set operations and m Find-Set operations 
is �(n + m(1+ log 2+n/m m)).  (Analysis omitted).
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Example: path compression

Before
Before After
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Union by rank and path compression 

• When both heuristics are used, the worst-case 
time complexity is O(m �(n)) where �(n) is 
the inverse Ackerman function.

• The inverse Ackerman function grows so 
slowly that for all practical purposes �(n)  4 
for very large n. 
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Summary

• Union-Find has many applications.

• For a sequence of m>n Make-Set, Union, and 
Find-Set operations, of which n are Make-Set:

– List implementation: O(m + nlgn) with 
weighted union heuristic.

– Tree implementation: union by rank + path 
compression yields O(m �(n)) complexity. 


