Data Structures— LECTURE 17

Union-Find on digoint sets

» Motivation

Linked list representation

» Treerepresentation

 Union by rank and path compression heuristics

Chapter 21 in the textbook (pp 498—509).

Data Structures, Spring 2004 © L. Joskowicz 1

Motivation
* Perform repeated union and find operations on
digoint data sets.
e Examples:
— Kruskal’s MST algorithm
— Strongly connected components
e Goal: definean ADT that supports Union-Find
queries on digoint data sets efficiently.

 Target: average O(n) time, where n is the total
number of elementsin all sets.

Data Structures, Spring 2004 © L. Joskowicz

Example: connected components

i @
O @ &

Initial set S={{a},{b},{c},{d},{e}.{f}, {q}.{h} {i}.{j}}

(bd) S={{a},{bd} {c},{e}. {f}, {g}. {h} {i},{i}}

(eg S={{a},{bd}.{c},{eg} {f}. {h} {i},{i}}

(a0) S={{ac},{bd} {eg} {f}, {h}, {i},{i}}

(hi) S={{ac},{bd}, {ed {f}, {hi},{i}}

(ab) S={{acbd} {eg} {f}, {hi}, {i}}

(ef) S={{achd} {efg}, {hi} {i}}
(be) S={{acbd}, {efg} {hi} {i}}

Data Structures, Spring 2004 © L. Joskowicz

Union-Find Abstract Data Type

* Let S={S.;S,,...,S} be adynamic collection of
disoint sets.
» Each set § isidentified by a representative member.
¢ Operations:
Make-Set(x): create anew set S, whose only member is x
(assuming x is not already in one of the sets).
Union(x, y): replace two digjoint sets S and S; represented
by x and y by their union.
Find-Set(x): find and return the representative of the set S,
that contains x.

Data Structures, Spring 2004 © L. Joskowicz

Digoint sets: linked list representation

Each set isalinked list, and the representative isthe
head of the list. Elements point to the successor and
to the head of the list.

Make-Set: create anew list: O(1).
Find-Set: search for an element down the list: O(n).

Union: link the tail of L, to the head of L,, and make
each element of L, point to the head of L;: O(n).

A sequence of n Make-Set operations + n—1 Union
operations will take n+Zi = ®(n?) operations.

The amortized time for one operation is thus ®(n).

Data Structures, Spring 2004 © L. Joskowicz

Example: linked list representation

S={cheb} h‘mﬂ

=
—tlj-]

S~{f.g.d) miﬂ [o] [d]—
3

Data Structures, Spring 2004 © L. Joskowicz

Example: linked list representation

S, U S,=={c,h,eb}U{f,g,d}

Data Structures, Spring 2004 © L. Joskowicz 7

Weighted-union heuristic

» When doing the union of two lists, append the
shorter one to the longer one.

A single operation will still take O(n) time.

» However, for a sequence of m>n Make-Set, Union,
and Find-Set operations, of which n are Make-Set,
the total timeis O(m + nlgn) instead of O(mn)!
Proof outline: an object x hasits pointer updated at
most ceiling(lg n) times, since it cannot always be
onalong list.

Data Structures, Spring 2004 © L. Joskowicz

Digoint sets: tree representation

Each set isatree, and the representative is the root.

Each element pointsto its parent in the tree. The root
pointsto itself.

Make-Set: takes O(1).
Find-Set: takes O(h) where h is the height of the tree.

Union is performed by finding the two roots, and
choosing one of the roots, to point to the other. This
takes O(h).

The complexity therefore depends on how the trees
are maintained! In the worst case, no improvement.

Data Structures, Spring 2004 © L. Joskowicz 9

Example: digoint setstree representation

SHS, S}y S={cheb}, S={f,g.d}

O ()
& %)
ONRO® @ o ©

® @

® 0 @
®

Data Structures, Spring 2004 © L. Joskowicz

Union by rank

* We want to make the trees as shallow as possible
—> trees must be balanced.

» When taking the union of two trees, make the root
of the shorter tree become the child of the root of
the longer tree.

o Keep track of the estimated size of each sub-tree:
-> keep the rank of each node.

* Every time Union is performed, update the rank
of the root.

Data Structures, Spring 2004 © L. Joskowicz 1

Union by rank: pseudocode

Make-Set(x) Union(x.y)
pointer[x] € x Link(Find-Set(x), Find-Set(y))
rank[x] € 0

Find-Set(x)

if x # pointer[X] then pointer[x] < Find-Set(pointer[x])
return pointer[x]

Link(x,y)
if rank[x] > rank[y] then pointer[X] €y
else pointer[y] € x
if rank[x] = rank[y] then rank[x] < rank[y]+1

Data Structures, Spring 2004 © L. Joskowicz

Complexity of Find-Set (1)

 Claim: the maximum height of atree when using
height balancing is O(Ig n).
* Proof: By induction on the number of Union
operations used to create the tree.
When the tree height is h, the number of nodes is at
least 2",
Basis: Clearly true for the first union operation, where
h=1 and the resulting tree has two nodes.
Induction step: Truefor tree of height h.

Data Structures, Spring 2004 © L. Joskowicz 13

Complexity of Find-Set (2)
For the next union operation, there are two cases:

» Thetree height does not grow: one tree was shorter
than the other, in which case it is clearly true,
because h didn’t grow and the number of nodes did.

» The height does grow, because both tree heights
were the same. By the induction hypothesis, each
sub-tree has at least 2" nodes, so the new tree has at
least 2.2" =21 nodes. Thus, the height of the tree
grew by 1 to h+1, which proves the induction step.

Overall complexity: O(mIg n).

Data Structures, Spring 2004© L. Josk 14

Path compression
* Speed up Union-Find operations by shortening
the sub-tree paths to the root.

 During a Find-Set operation, make each node on
the find path point directly to the root.

» Complexity: The worst-case time complexity of n
Make-Set operations and m Find-Set operations
isO(n + m(1+ 109 5,ym M). (Analysis omitted).

Data Structures, Spring 2004 © L. Joskowicz 15

Example: path compression

Data Structures, Spring 2004 © L. Joskowicz 16

Union by rank and path compression

» When both heuristics are used, the worst-case
time complexity is O(m a(n)) where a(n) is
the inverse Ackerman function.

» The inverse Ackerman function grows so
slowly that for all practical purposes a(n) <4
for very largen.

Data Structures, Spring 2004 © L. Joskowicz 17

Summary

 Union-Find has many applications.

* For a sequence of m>n Make-Set, Union, and
Find-Set operations, of which n are Make-Set:
—List implementation: O(m + nlgn) with

weighted union heuristic.
—Tree implementation: union by rank + path
compression yields O(m a(n)) complexity.

Data Structures, Spring 2004 © L. Joskowicz 19

