Data Structures – LECTURE 17

Union-Find on disjoint sets

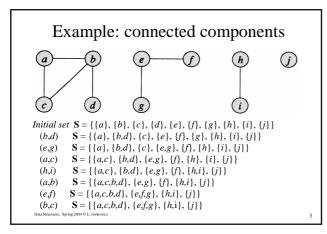
- Motivation
- · Linked list representation
- Tree representation
- Union by rank and path compression heuristics

Chapter 21 in the textbook (pp 498-509).

Motivation

- Perform repeated union and find operations on disjoint data sets.
- Examples:
 - Kruskal's MST algorithm
 - Strongly connected components
- <u>Goal</u>: define an ADT that supports Union-Find queries on disjoint data sets efficiently.
- <u>Target</u>: average O(n) time, where *n* is the total number of elements in all sets.

a Structures, Spring 2004 © L. Joskowicz



Union-Find Abstract Data Type Let S = {S₁,S₂,...,S_k} be a dynamic collection of disjoint sets.

- Each set S_i is identified by a representative member.
- Operations: <u>Make-Set(x)</u>: create a new set S_x, whose only member is x (assuming x is not already in one of the sets).
 - <u>Union(x, y)</u>: replace two disjoint sets S_x and S_y represented by x and y by their union.
 - <u>Find-Set(*x*):</u> find and return the representative of the set S_x that contains *x*.

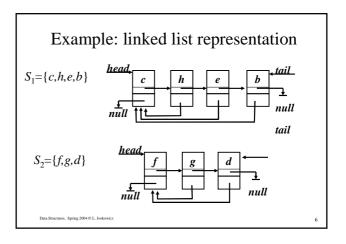
Data Structures, Spring 2004 © L. Joskowic

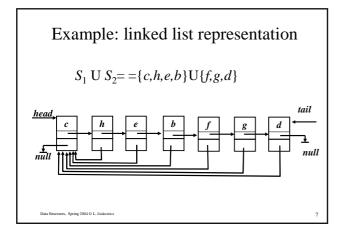
Disjoint sets: linked list representation

- Each set is a linked list, and the representative is the head of the list. Elements point to the successor and to the head of the list.
- <u>Make-Set</u>: create a new list: *O*(1).

Data Structures, Spring 2004 © L. Joskowic

- <u>Find-Set</u>: search for an element down the list: O(n).
- <u>Union</u>: link the tail of L_1 to the head of L_2 , and make each element of L_2 point to the head of L_1 : O(n).
- A sequence of *n* Make-Set operations + n-1 Union operations will take $n+\Sigma i = \Theta(n^2)$ operations.
- The amortized time for one operation is thus $\Theta(n)$.





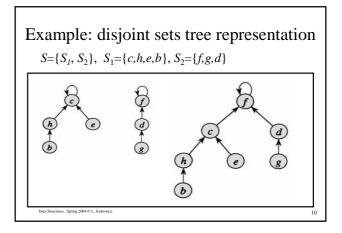
Weighted-union heuristic

- When doing the union of two lists, append the shorter one to the longer one.
- A single operation will still take *O*(*n*) time.
- However, for a sequence of *m*>*n* Make-Set, Union, and Find-Set operations, of which *n* are Make-Set, the total time is $O(m + n \lg n)$ instead of O(mn)!
- <u>Proof outline</u>: an object *x* has its pointer updated at most *ceiling*(lg *n*) times, since it cannot always be on a long list.

es, Spring 2004 © L. Joskowic

Disjoint sets: tree representation

- Each set is a tree, and the representative is the root.
- Each element points to its parent in the tree. The root points to itself.
- <u>Make-Set:</u> takes O(1).
- Find-Set: takes O(h) where h is the height of the tree.
- Union is performed by finding the two roots, and choosing one of the roots, to point to the other. This takes O(h).
- The complexity therefore depends on how the trees are maintained! In the worst case, no improvement. ctures, Spring 2004 © L. Josk



Union by rank

- We want to make the trees as shallow as possible \rightarrow trees must be balanced.
- When taking the union of two trees, make the root of the shorter tree become the child of the root of the longer tree.
- Keep track of the estimated size of each sub-tree: \rightarrow keep the *rank* of each node.
- Every time Union is performed, update the rank of the root.

Data Structures, Spring 2004 © L. Joskowic

Union by rank: pseudocode

Make-Set(x) Union(x, y) $pointer[x] \bigstar x$ Link(Find-Set(x), Find-Set(y)) $rank[x] \leftarrow 0$

Find-Set(x)

if $x \neq pointer[x]$ then $pointer[x] \leftarrow Find-Set(pointer[x])$ **return** *pointer*[*x*]

Link(x, y)

11

if rank[x] > rank[y] **then** $pointer[x] \leftarrow y$ else pointer[y] $\leftarrow x$

if rank[x] = rank[y] **then** $rank[x] \leftarrow rank[y]+1$

2

Complexity of Find-Set (1)

- <u>Claim</u>: the maximum height of a tree when using height balancing is $O(\lg n)$.
- <u>Proof</u>: By induction on the number of Union operations used to create the tree.
 When the tree height is *h*, the number of nodes is at least 2^{*h*}.
 Basis: Clearly true for the first union operation, where

<u>Basis</u>: Clearly true for the first union operation, where h=1 and the resulting tree has two nodes.

<u>Induction step</u>: True for tree of height h.

Complexity of Find-Set (2)

For the next union operation, there are two cases:

- The tree height does not grow: one tree was shorter than the other, in which case it is clearly true, because *h* didn't grow and the number of nodes did.
- The height does grow, because both tree heights were the same. By the induction hypothesis, each sub-tree has at least 2^h nodes, so the new tree has at least $2.2^h = 2^{h+1}$ nodes. Thus, the height of the tree grew by 1 to h+1, which proves the induction step.

Overall complexity: $O(m \lg n)$.

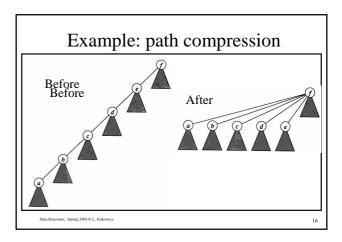
13

15

17

Path compression

- Speed up Union-Find operations by shortening the sub-tree paths to the root.
- During a Find-Set operation, make each node on the find path point directly to the root.
- <u>Complexity</u>: The worst-case time complexity of n Make-Set operations and m Find-Set operations is $\Theta(n + m(1 + \log_{2+n/m} m))$. (Analysis omitted).



Union by rank and path compression

- When both heuristics are used, the worst-case time complexity is $O(m \alpha(n))$ where $\alpha(n)$ is the *inverse Ackerman function*.
- The inverse Ackerman function grows so slowly that for all practical purposes $\alpha(n) \le 4$ for very large *n*.

Data Structures, Spring 2004 © L. Joskowic

Summary

• Union-Find has many applications.

Data Structures, Spring 2004 © L. Joskowic

- For a sequence of *m*>*n* Make-Set, Union, and Find-Set operations, of which *n* are Make-Set:
 - -<u>List implementation</u>: $O(m + n \lg n)$ with weighted union heuristic.
 - <u>Tree implementation</u>: union by rank + path compression yields $O(m \alpha(n))$ complexity.