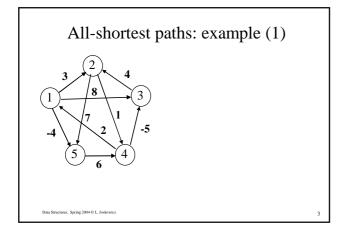
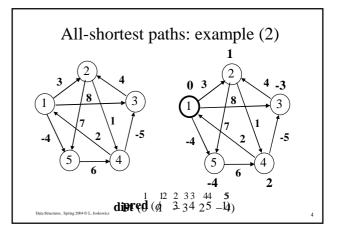
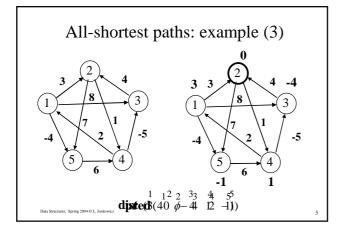


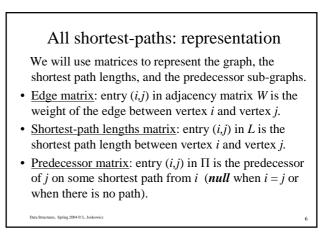
All shortest paths

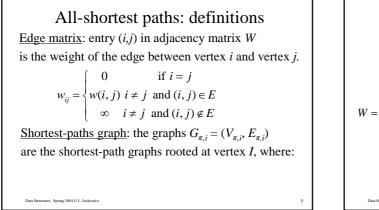
- Generalization of the single source shortest-path problem.
- <u>Simple solution</u>: run the shortest path algorithm for each vertex \rightarrow complexity is $O(|E/.|V|.|V|) = O(|V|^4)$ for Bellman-Ford and $O(|E/.lg|V|.|V|) = O(|V|^3 \lg |V|)$ for Dijsktra.
- Can we do better? Intuitively it would seem so, since there is a lot of repeated work → exploit the optimal sub-path property.
- We indeed can do better: $O(|V|^3)$.

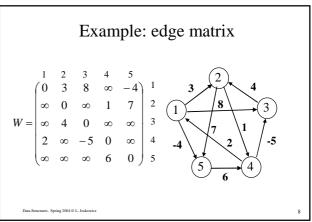


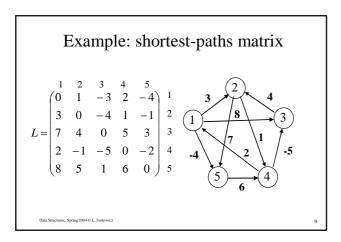


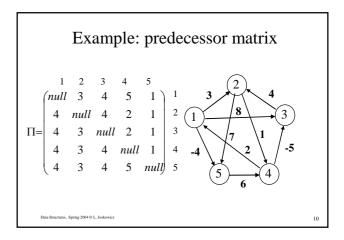


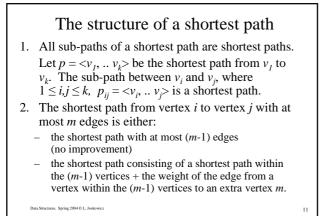


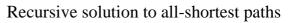












Let $l^{(m)}_{ij}$ be the minimum weight of any path from vertex *i* to vertex *j* that has at most *m* edges. When *m*=0:

$$l_{ij}^{(0)} = \begin{cases} 0 & i = j \\ \infty & i \neq j \end{cases}$$

Data Structures, Spring 2004 © L. Joskowicz

For $m \ge 1$, $l^{(m)}_{ij}$ is the minimum of $l^{(m-1)}_{ij}$ and the shortest path going through the vertices neighbors:

All-shortest-paths: solution

- Let *W*=(*w_{ij}*) be the edge weight matrix and *L*=(*l_{ij}*) the all-shortest shortest path matrix computed so far, both *n*×*n*.
- Compute a series of matrices $L^{(1)}, L^{(2)}, ..., L^{(n-1)}$ where for $m = 1, ..., n-1, L^{(m)} = (l^{(m)}_{ij})$ is the matrix with the all-shortest-path lengths with at most medges. Initially, $L^{(1)} = W$, and $L^{(n-1)}$ containts the actual shortest-paths.

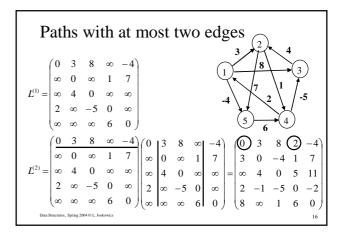
13

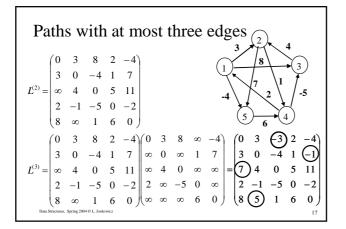
• <u>Basic step</u>: compute $L^{(m)}$ from $L^{(m-1)}$ and W.

ares, Spring 2004 © L. Jos

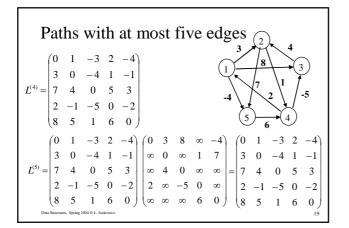
Algorithm for extending all-shortest paths by one edge: from $L^{(m-1)}$ to $L^{(m)}$ <u>Extend-Shortest-Paths</u> $(L=(l_{ij}), W)$ $n \leftarrow rows[L]$ Let $L' = (l'_{ij})$ be an $n \times n$ matrix. for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $l'_{ij} \leftarrow \infty$ for $k \leftarrow 1$ to n do $l'_{ij} \leftarrow \min(l'_{ij}, l_{ik} + w_{kj})$ return L'December Autor Index

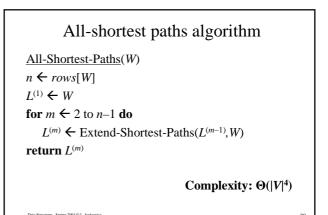
This is exactly as matrix multiplication!	
Matrix-Multiply(<i>A</i> , <i>B</i>)	
$n \leftarrow rows[A]$	
Let $C = (c_{ij})$ be an $n \times n$ matrix.	
for $i \leftarrow 1$ to n do	
for $j \leftarrow 1$ to n do	
$c_{ij} \leftarrow 0 \qquad \qquad (l'_{ij} \leftarrow \infty)$	
for $k \leftarrow 1$ to n do	
$c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} (l'_{ij} \leftarrow \min(l'_{ij}, l_{ij} + w_{kj}))$	
return L'	
Data Structures, Spring 2004 O L. Jockowicz	15









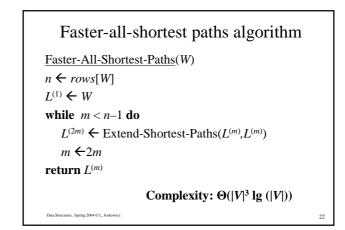


Improved all-shortest paths algorithm

- The goal is to compute the final $L^{(n-1)}$, not all the $L^{(m)}$
- We can avoid computing most $L^{(m)}$ as follows:

 $L^{(1)} = W$ $L^{(2)} = W.W$ repeated squaring $L^{(4)} = W^4 = W^2.W^2$

Since $2^{\lceil \lg(n-1) \rceil} \ge n-1$ the final product is equal to $L^{(n-1)}$ only $|\lg(n-1)|$ iterations are necessary!



Floyd-Warshall algorithm

- Assumes there are no negative-weight cycles.
- Uses a different characterization of the structure of the shortest path. It exploits the properties of the intermediate vertices of the shortest path.
- Runs in $O(|V|^3)$.

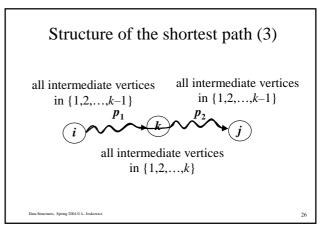
Data Structures, Spring 2004 © L. Joskowic

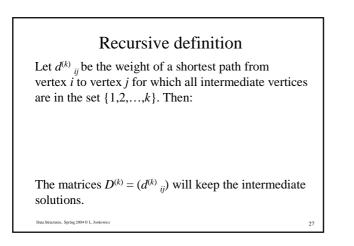
23

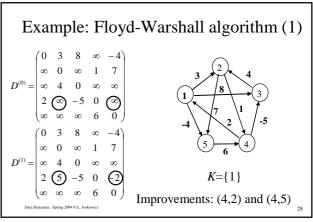
Structure of the shortest path (1)
An intermediate vertex v_i of a simple path p=<v₁,...,v_k> is any vertex other than v₁ or v_k.
Let V={1,2,...,n} and let K={1,2,...,k} be a subset for k ≤ n. For any pair of vertices i,j in V, consider all paths from i to j whose intermediate vertices are drawn from K. Let p be the minimum-weight path among them.

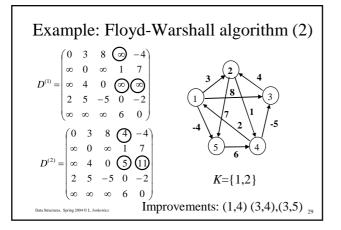
Structure of the shortest path (2)

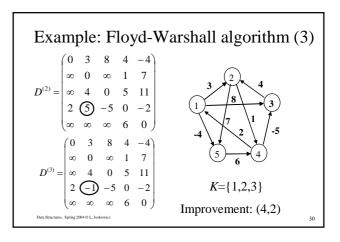
- k is not an intermediate vertex of path p: All vertices of path p are in the set {1,2,...,k-1}
 → a shortest path from i to j with all intermediate vertices in {1,2,...,k-1} is also a shortest path with all intermediate vertices in {1,2,...,k}.
- 2. <u>*k* is an intermediate vertex of path *p*</u>: Break *p* into two pieces: p_1 from *i* to *k* and p_2 from *k* to *j*. Path p_1 is a shortest path from *i* to *k* and path p_2 is a shortest path from *k* to *j* with all intermediate vertices in $\{1, 2, ..., k-1\}$.

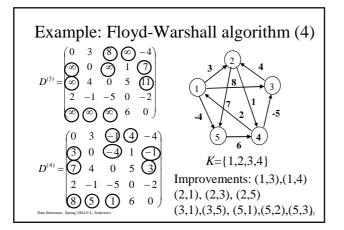


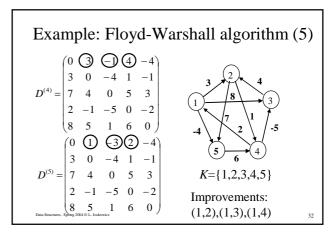










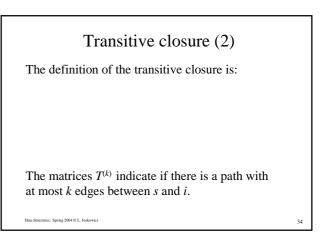


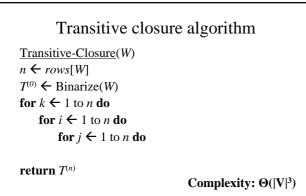
Transitive closure (1)

- Given a directed graph G=(V,E) with vertices
 V = {1,2,...,n} determine for every pair of vertices (i,j) if there is a path between them.
- The *transitive closure graph* of *G*, *G**=(*V*,*E**) is such that *E** = {(*i*,*j*): if there is a path *i* and *j*}.
- Represent *E** as a binary matrix and perform logical binary operations AND (∧) and OR (∨) instead of *min* and + in the Floyd-Warshall algorithm.

33

25





Spring 2004 © L. Jos

- Adjacency matrix representation is the most convenient for representing all-shortest-paths.
- Computing all shortest-paths is akin to taking the transitive closure of the edge weights.
- Matrix multiplication algorithm runs in $O(|V|^3 \lg |V|)$.
- The Floyd-Warshall algorithm improves paths through intermediate vertices instead of working on individual edges.
- Its running time: $O(|V|^3)$.

Data Structures, Spring 2004 © L. Joskowicz

Other graph algorithms

- Many more interesting problems, including network flow, graph isomorphism, coloring, partition, etc.
- Problems can be classified by the type of solution.
- <u>Easy problems</u>: polynomial-time solutions O(f(n)) where f(n) is a polynomial function of degree at most *k*.
- <u>Hard problems</u>: exponential-time solutions O(f(n)) where f(n) is an exponential function, usually 2^n .

Easy graph problems

- Network flow maximum flow problem
- Maximum bipartite matching
- Planarity testing and plane embedding.

Data Structures, Spring 2004 © L. Joskowicz

37

39

Hard graph problems

- Graph and sub-graph isomorphism.
- Largest clique, Independent set
- Vertex tour (Traveling Salesman problem)
- Graph partition

tures, Spring 2004 © L. Joskowic

• Vertex coloring

However, not all is lost!

- Good heuristics that perform well in most cases
- Polynomial-time approximation algorithms

Data Structures, Spring 2004 © L. Joskowicz