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Data Structures – LECTURE 16 

All shortest paths algorithms

• Properties of all shortest paths

• Simple algorithm: O(|V|4) time 

• Better algorithm: O(|V|3 lg |V|) time

• Floyd-Warshall algorithm: O(|V|3) time

Chapter 25 in the textbook (pp 620–635).
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All shortest paths
• Generalization of the single source shortest-path 

problem.

• Simple solution: run the shortest path algorithm for 
each vertex � complexity is O(|E|.|V|.|V|) = O(|V|4) 
for Bellman-Ford and O(|E|.lg |V|.|V|) = O(|V|3 lg |V|) 
for Dijsktra. 

• Can we do better?  Intuitively it would seem so, 
since there is a lot of repeated work  � exploit the 
optimal sub-path property.

• We indeed can do better: O(|V|3).
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All-shortest paths: example (1)

2

31

5 4
6

�

2-4

�

8
3 4

-5

Data Structures, Spring 2004 © L. Joskowicz �

All-shortest paths: example (2)
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All-shortest paths: example (3)
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All shortest-paths: representation
We will use matrices to represent the graph, the 
shortest path lengths, and the predecessor sub-graphs.

• Edge matrix: entry (i,j) in adjacency matrix W is the 
weight of the edge between vertex i and vertex j.

• Shortest-path lengths matrix: entry (i,j) in L is the 
shortest path length between vertex i and vertex j.

• Predecessor matrix: entry (i,j) in � is the predecessor 
of j on some shortest path from i (null when i = j or 
when there is no path).  
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All-shortest paths: definitions
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Edge matrix: entry (i,j) in adjacency matrix W

is the weight of the edge between vertex i and vertex j.

Shortest-paths graph: the graphs G� ,i = (V� ,i, E� ,i)

are the shortest-path graphs rooted at vertex I, where:
}{}:{, inullVjV iji ���� ��

} }{:),{ ( ,, iVjjE ii ji ��� �� �
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Example: edge matrix 
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Example: shortest-paths matrix
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Example: predecessor matrix

2

31

5 4
6

�

2-4

�

8
3 4

-5













�

�

�
�
�
�
�
�

�

�

��

null

null

null

null

null

5434

1434

1234

1244

1543
1      2       3       4        5

1

2       

3       

4        

5

Data Structures, Spring 2004 © L. Joskowicz ��

The structure of a shortest path
1. All sub-paths of a shortest path are shortest paths. 

Let p = <v1, .. vk> be the shortest path from v1 to 
vk.  The sub-path between vi and vj, where             
1 � i,j � k, pij = <vi, .. vj> is a shortest path.

2. The shortest path from vertex i to vertex j with at 
most m edges is either:

– the shortest path with at most (m-1) edges                 
(no improvement)

– the shortest path consisting of a shortest path within 
the (m-1) vertices + the weight of the edge from a 
vertex within the (m-1) vertices to an extra vertex m.
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Recursive solution to all-shortest paths
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Let l(m)
ij be the minimum weight of any path from  

vertex i to vertex j that has at most m edges.
When m=0: 

For m
 1, l (m)
ij is the minimum of l(m–1)

ij and the 
shortest path going through the vertices neighbors: 



�

Data Structures, Spring 2004 © L. Joskowicz ��

All-shortest-paths: solution
• Let W=(wij) be the edge weight matrix and L=(l ij)

the all-shortest shortest path matrix computed so 
far, both n×n.

• Compute a series of matrices L(1), L(2), …, L(n–1)

where for m = 1,…,n–1, L(m) = (l(m)
ij) is the matrix 

with the all-shortest-path lengths with at most m 
edges.�Initially, L(1) = W, and L(n–1) containts the 
actual shortest-paths.

• Basic step: compute L(m) from L(m–1) and W. �
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Algorithm for extending all-shortest 
paths by one edge: from L(m-1) to L(m)

Extend-Shortest-Paths(L=(l ij),W)
n � rows[L]
Let L’ =(l’ ij) be an n×n matrix.
for i � 1 to n do

for j � 1 to n do
l’ ij � �

for k � 1 to n do
l’ ij � min(l’ ij, l ik + wkj)

return L’ Complexity: �(|V|3)
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This is exactly as matrix multiplication!
Matrix-Multiply(A,B)

n � rows[A]

Let C =(cij) be an n×n matrix.

for i � 1 to n do
for j � 1 to n do

cij � 0                            (l’ ij � �)

for k � 1 to n do
cij � cij+ aik.bkj (l’ ij � min(l’ ij, l ij + wkj))

return L’
Data Structures, Spring 2004 © L. Joskowicz ��
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Paths with at most two edges
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Paths with at most three edges
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Paths with at most four edges
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Paths with at most five edges
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All-shortest paths algorithm

All-Shortest-Paths(W)

n � rows[W]

L(1) � W

for m� 2 to n–1 do
L(m) � Extend-Shortest-Paths(L(m–1),W)

return L(m)

Complexity: �(|V|4)
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Improved all-shortest paths algorithm
• The goal is to compute the final L(n–1), not all the L(m)

• We can avoid computing most L(m) as follows:

L(1) = W

L(2) = W.W

L(4) = W4 = W2.W2

…
� � � � � � � � )12()12()2()2( )1lg()1lg()1lg()1lg(

. �� ����

��
nnnn

WWWL

Since                            the final product is equal to L(n–1)� � 12 )1lg( ��� nn

only |lg(n–1)| iterations are necessary!

repeated squaring
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Faster-all-shortest paths algorithm

Faster-All-Shortest-Paths(W)

n � rows[W]

L(1) � W

while m < n–1 do
L(2m) � Extend-Shortest-Paths(L(m),L(m))

m�2m

return L(m)

Complexity: �(|V|3 lg (|V|))

Data Structures, Spring 2004 © L. Joskowicz ��

Floyd-Warshall algorithm

• Assumes there are no negative-weight cycles.

• Uses a different characterization of the structure 
of the shortest path. It exploits the properties of 
the intermediate vertices of the shortest path.

• Runs in O(|V|3).
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Structure of the shortest path (1)
• An intermediate vertex vi of a simple path p=<v1,..,vk> 

is any vertex other than v1 or vk. 

• Let V={ 1,2,…,n}  and let K={ 1,2,…,k}  be a subset  
for k � n. For any pair of vertices i,j in V, consider all 
paths from i to j whose intermediate vertices are 
drawn from K. Let p be the minimum-weight path 
among them. 

i
k1

j

k2

p
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Structure of the shortest path (2)
1. k is not an intermediate vertex of path p:              

All vertices of path p are in the set { 1,2,…,k–1}

� a shortest path from i to j with all intermediate   
vertices in { 1,2,…,k–1}  is also a shortest path 
with all intermediate vertices in { 1,2,…,k} .

2. k is an intermediate vertex of path p:                
Break p into two pieces: p1 from i to k and p2

from k to j. �Path p1 is a shortest path from i to k 
and path p2 is a shortest path from k to j with all 
intermediate vertices in { 1,2,…,k–1} .
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Structure of the shortest path (3)

i k j
p2

all intermediate vertices 
in { 1,2,…,k–1}

all intermediate vertices 
in { 1,2,…,k}

p1

all intermediate vertices 
in { 1,2,…,k–1}
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Recursive definition
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Let d(k)
ij be the weight of a shortest path from  

vertex i to vertex j for which all intermediate vertices
are in the set { 1,2,…,k} . Then:

The matrices D(k) = (d(k)
ij) will keep the intermediate

solutions. 
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Example: Floyd-Warshall algorithm (1)
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Improvements: (4,2) and (4,5)
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Example: Floyd-Warshall algorithm (2)
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Example: Floyd-Warshall algorithm (3)
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Example: Floyd-Warshall algorithm (4)
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Example: Floyd-Warshall algorithm (5)
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Transitive closure (1)
• Given a directed graph G=(V,E) with vertices      

V = { 1,2,…,n}  determine for every pair of 
vertices (i,j) if there is a path between them.

• The transitive closure graph of G, G*=(V,E*) is 
such that E* = { (i,j): if there is a path i and j} .

• Represent E* as a binary matrix and perform 
logical binary operations AND (/\) and OR (\/) 
instead of min and + in the Floyd-Warshall
algorithm.
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Transitive closure (2)

                     0for 

),( and0if   

),( and0if

)/\(/\

1

0

)1()1()1(

)(

�

��

��

�
�

�
	




�
��� k

Ejik

Ejik

ttt

t
k

kj
k

ik
k

ij

k
ij

The definition of the transitive closure is:

The matrices T(k)  indicate if there is a path with
at most k edges between sand i.
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Transitive closure algorithm
Transitive-Closure(W)
n � rows[W]
T(0) � Binarize(W)
for k � 1 to n do

for i � 1 to n do
for j � 1 to n do

return T(n)

Complexity: �(|V|3)
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Summary
• Adjacency matrix representation is the most 

convenient for representing all-shortest-paths.
• Computing all shortest-paths is akin to taking the 

transitive closure of the edge weights.
• Matrix multiplication algorithm runs in�O(|V|3 lg |V|).
• The Floyd-Warshall algorithm improves paths 

through intermediate vertices instead of working on 
individual edges.

• Its running time:  O(|V|3).
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Other graph algorithms
• Many more interesting problems, including 

network flow, graph isomorphism, coloring, 
partition, etc.

• Problems can be classified by the type of solution.
• Easy problems: polynomial-time solutions O(f (n)) 

where f (n) is a polynomial function of degree at 
most k. 

• Hard problems: exponential-time solutions O(f (n)) 
where f (n) is an exponential function, usually 2n. 

Data Structures, Spring 2004 © L. Joskowicz �	

Easy graph problems

• Network flow – maximum flow problem

• Maximum bipartite matching

• Planarity testing and plane embedding.
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Hard graph problems
• Graph and sub-graph isomorphism.

• Largest clique, Independent set

• Vertex tour (Traveling Salesman problem)

• Graph partition

• Vertex coloring

However, not all is lost!

• Good heuristics that perform well in most cases

• Polynomial-time approximation algorithms 


