Data Structures - LECTURE 16

All shortest paths algorithms

- Properties of all shortest paths
- Simple algorithm: $O\left(|V|^{4}\right)$ time
- Better algorithm: $O\left(|V|^{3} \lg |V|\right)$ time
- Floyd-Warshall algorithm: $O\left(|V|^{3}\right)$ time

Chapter 25 in the textbook (pp 620-635).

All shortest paths

- Generalization of the single source shortest-path problem.
- Simple solution: run the shortest path algorithm for each vertex \rightarrow complexity is $O(|E| .|V| \cdot|V|)=O\left(|V|^{4}\right)$ for Bellman-Ford and $O(|E| \cdot \lg |V| \cdot|V|)=O\left(|V|^{3} \lg |V|\right)$ for Dijsktra.
- Can we do better? Intuitively it would seem so, since there is a lot of repeated work \rightarrow exploit the optimal sub-path property.
- We indeed can do better: $O\left(|V|^{3}\right)$.

Datas Stucturuss. Spring 20040L.L. Jostowicz

All-shortest paths: example (1)

Data Stucuturs, Sping 2004 © L. I. Joskowic

All-shortest paths: example (3)

$\begin{array}{llllll}1 & 12 & 2 & 33 & 44 & 5\end{array}$
$\operatorname{djste}\left(\begin{array}{llll}(10 & \phi & -4 & 12\end{array}\right)$

All shortest-paths: representation

We will use matrices to represent the graph, the shortest path lengths, and the predecessor sub-graphs.

- Edge matrix: entry (i, j) in adjacency matrix W is the weight of the edge between vertex i and vertex j.
- Shortest-path lengths matrix: entry (i, j) in L is the shortest path length between vertex i and vertex j.
- Predecessor matrix: entry (i, j) in Π is the predecessor of j on some shortest path from i (null when $i=j$ or when there is no path).

All-shortest paths: definitions

Edge matrix: entry (i, j) in adjacency matrix W is the weight of the edge between vertex i and vertex j.

$$
w_{i j}=\left\{\begin{array}{cc}
0 & \text { if } i=j \\
w(i, j) & i \neq j \text { and }(i, j) \in E \\
\infty & i \neq j
\end{array} \text { and }(i, j) \notin E ~ \$\right.
$$

Shortest-paths graph: the graphs $G_{\pi, i}=\left(V_{\pi, i}, E_{\pi, i}\right)$ are the shortest-path graphs rooted at vertex I, where:

Example: shortest-paths matrix

The structure of a shortest path

1. All sub-paths of a shortest path are shortest paths. Let $p=\left\langle v_{l}, . . v_{k}\right\rangle$ be the shortest path from v_{1} to v_{k}. The sub-path between v_{i} and v_{j}, where $1 \leq i, j \leq k, p_{i j}=\left\langle v_{i}, . . v_{j}\right\rangle$ is a shortest path.
2. The shortest path from vertex i to vertex j with at most m edges is either:

- the shortest path with at most $(m-1)$ edges (no improvement)
- the shortest path consisting of a shortest path within the ($m-1$) vertices + the weight of the edge from a vertex within the $(m-1)$ vertices to an extra vertex m.

Recursive solution to all-shortest paths

Let $l^{(m)}{ }_{i j}$ be the minimum weight of any path from vertex i to vertex j that has at most m edges.
When $m=0$:

$$
l_{i j}^{(0)}= \begin{cases}0 & i=j \\ \infty & i \neq j\end{cases}
$$

For $m \geq 1, l^{(m)}{ }_{i j}$ is the minimum of $l^{(m-1)}{ }_{i j}$ and the shortest path going through the vertices neighbors:

Example: predecessor matrix

All-shortest-paths: solution

- Let $W=\left(w_{i j}\right)$ be the edge weight matrix and $L=\left(l_{i j}\right)$ the all-shortest shortest path matrix computed so far, both $n \times n$.
- Compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$ where for $m=1, \ldots, n-1, L^{(m)}=\left(l^{(m)}{ }_{i j}\right)$ is the matrix with the all-shortest-path lengths with at most m edges. Initially, $L^{(1)}=W$, and $L^{(n-1)}$ containts the actual shortest-paths.
- Basic step: compute $L^{(m)}$ from $L^{(m-1)}$ and W.

Algorithm for extending all-shortest paths by one edge: from $\mathrm{L}^{(m-1)}$ to $\mathrm{L}^{(m)}$

Extend-Shortest-Paths $\left(L=\left(l_{i j}\right), W\right)$
$n \leftarrow \operatorname{rows}[L]$
Let $L^{\prime}=\left(l^{\prime}{ }_{i j}\right)$ be an $n \times n$ matrix.
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$l_{i j}^{\prime} \leftarrow \infty$
for $k \leftarrow 1$ to n do

$$
l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)
$$

return L^{\prime}
Complexity: $\boldsymbol{\Theta}\left(|\mathbf{V}|^{3}\right)_{14}$

This is exactly as matrix multiplication!
Matrix-Multiply (A, B)
$n \leftarrow \operatorname{rows}[A]$
Let $C=\left(c_{i j}\right)$ be an $n \times n$ matrix.
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
c_{i j} \leftarrow 0 \quad\left(l_{i j}^{\prime} \leftarrow \infty\right)
$$

for $k \leftarrow 1$ to n do

$$
c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j} \quad\left(l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i j}+w_{k j}\right)\right)
$$

return L^{\prime}
Data Stucuturs, Sping 2004 © L L. Ioskowic

Paths with at most two edges

$L^{(1)}=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)$

$L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \hline \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)\left(\begin{array}{cccc|c}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right.$
$=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$

Paths with at most three edges
$L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$

$L^{(3)}=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)$
$=\left(\begin{array}{ccccc}0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)$

Paths with at most four edges
$L^{(3)}=\left(\begin{array}{ccccc}0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)$

$L^{(4)}=\left(\begin{array}{ccccc}0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0\end{array}\right)$

Paths with at most five edges

All-shortest paths algorithm

All-Shortest-Paths (W)
$n \leftarrow \operatorname{rows}[W]$
$L^{(1)} \leftarrow W$
for $m \leftarrow 2$ to $n-1$ do
$L^{(m)} \leftarrow$ Extend-Shortest-Paths $\left(L^{(m-1)}, W\right)$
return $L^{(m)}$

Complexity: $\Theta\left(|V|^{4}\right)$

Improved all-shortest paths algorithm

- The goal is to compute the final $L^{(n-1)}$, not all the $L^{(m)}$
- We can avoid computing most $L^{(m)}$ as follows:

$$
\begin{array}{ll}
L^{(1)}=W & \\
L^{(2)}=W \cdot W & \text { repeated squaring } \\
L^{(4)}=W^{4}=W^{2} \cdot W^{2} &
\end{array}
$$

Since $2^{[\lg (n-1)]} \geq n-1$ the final product is equal to $L^{(n-1)}$ only $|\lg (n-1)|$ iterations are necessary!

Faster-all-shortest paths algorithm
Faster-All-Shortest-Paths (W)

```
\(n \leftarrow \operatorname{rows}[W]\)
\(L^{(1)} \leftarrow W\)
while \(m<n-1\) do
    \(L^{(2 m)} \leftarrow\) Extend-Shortest-Paths \(\left(L^{(m)}, L^{(m)}\right)\)
    \(m \leftarrow 2 m\)
```

return $L^{(m)}$
Complexity: $\Theta\left(|V|^{3} \lg (|V|)\right)$

Floyd-Warshall algorithm

- Assumes there are no negative-weight cycles.
- Uses a different characterization of the structure of the shortest path. It exploits the properties of the intermediate vertices of the shortest path.
- Runs in $O\left(|V|^{3}\right)$.

Structure of the shortest path (1)

- An intermediate vertex v_{i} of a simple path $p=\left\langle v_{l}, . ., v_{k}\right\rangle$ is any vertex other than v_{l} or v_{k}.
- Let $V=\{1,2, \ldots, n\}$ and let $K=\{1,2, \ldots, k\}$ be a subset for $k \leq n$. For any pair of vertices i, j in V, consider all paths from i to j whose intermediate vertices are drawn from K. Let p be the minimum-weight path among them.

.anicz

Structure of the shortest path (2)

1. k is not an intermediate vertex of path p : All vertices of path p are in the set $\{1,2, \ldots, k-1\}$
\rightarrow a shortest path from i to j with all intermediate vertices in $\{1,2, \ldots, k-1\}$ is also a shortest path with all intermediate vertices in $\{1,2, \ldots, k\}$.
2. k is an intermediate vertex of path p : Break p into two pieces: p_{1} from i to k and p_{2} from k to j. Path p_{1} is a shortest path from i to k and path p_{2} is a shortest path from k to j with all intermediate vertices in $\{1,2, \ldots, k-1\}$.

Structure of the shortest path (3)

all intermediate vertices all intermediate vertices in $\{1,2, \ldots, k-1\} \quad$ in $\{1,2, \ldots, k-1\}$

all intermediate vertices in $\{1,2, \ldots, k\}$

Recursive definition

Let $d^{(k)}{ }_{i j}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$. Then:

The matrices $D^{(k)}=\left(d^{(k)}{ }_{i j}\right)$ will keep the intermediate solutions.

Example: Floyd-Warshall algorithm (1)

$K=\{1\}$
Improvements: $(4,2)$ and $(4,5)$

Example: Floyd-Warshall algorithm (2)

Example: Floyd-Warshall algorithm (3)

$$
\begin{aligned}
D^{(2)} & =\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
D^{(3)} & =\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right)
\end{aligned}
$$

$K=\{1,2,3\}$
Improvement: $(4,2)$

Example: Floyd-Warshall algorithm (4)

Example: Floyd-Warshall algorithm (5)

Transitive closure (1)

- Given a directed graph $G=(V, E)$ with vertices $V=\{1,2, \ldots, n\}$ determine for every pair of vertices (i, j) if there is a path between them.
- The transitive closure graph of $G, G^{*}=\left(V, E^{*}\right)$ is such that $E^{*}=\{(i, j)$: if there is a path i and $j\}$.
- Represent E^{*} as a binary matrix and perform logical binary operations AND (\wedge) and OR (V) instead of \min and + in the Floyd-Warshall algorithm.

Transitive closure algorithm

Transitive-Closure (W)
$n \leftarrow \operatorname{rows}[W]$
$T^{(0)} \leftarrow \operatorname{Binarize}(W)$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
return $T^{(n)}$
Complexity: $\Theta\left(|\mathrm{V}|^{3}\right)$

Transitive closure algorithm	
Transitive-Closure (W)	
$n \leftarrow$ rows[W]	
$T^{(0)} \leftarrow \operatorname{Binarize}(W)$	
$\text { for } k \leftarrow 1 \text { to } n \text { do }$$\text { for } i \leftarrow 1 \text { to } n \text { do }$	
for $j \leqslant 1$ to n do	
return $T^{(n)}$	
	${ }_{3}$

Transitive closure (2)

The definition of the transitive closure is:

The matrices $T^{(k)}$ indicate if there is a path with at most k edges between s and i.

Summary

- Adjacency matrix representation is the most convenient for representing all-shortest-paths.
- Computing all shortest-paths is akin to taking the transitive closure of the edge weights.
- Matrix multiplication algorithm runs in $O\left(|V|^{3} \lg |V|\right)$.
- The Floyd-Warshall algorithm improves paths through intermediate vertices instead of working on individual edges.
- Its running time: $O\left(|V|^{3}\right)$.

Other graph algorithms

- Many more interesting problems, including network flow, graph isomorphism, coloring, partition, etc.
- Problems can be classified by the type of solution.
- Easy problems: polynomial-time solutions $O(f(n))$ where $f(n)$ is a polynomial function of degree at most k.
- Hard problems: exponential-time solutions $O(f(n))$ where $f(n)$ is an exponential function, usually 2^{n}.

Easy graph problems

- Network flow - maximum flow problem
- Maximum bipartite matching
- Planarity testing and plane embedding.

Hard graph problems

- Graph and sub-graph isomorphism.
- Largest clique, Independent set
- Vertex tour (Traveling Salesman problem)
- Graph partition
- Vertex coloring

However, not all is lost!

- Good heuristics that perform well in most cases
- Polynomial-time approximation algorithms

