
�

Data Structures, Spring 2004 © L. Joskowicz �

Data Structures – LECTURE 16

All shortest paths algorithms

• Properties of all shortest paths

• Simple algorithm: O(|V|4) time

• Better algorithm: O(|V|3 lg |V|) time

• Floyd-Warshall algorithm: O(|V|3) time

Chapter 25 in the textbook (pp 620–635).
Data Structures, Spring 2004 © L. Joskowicz �

All shortest paths
• Generalization of the single source shortest-path

problem.

• Simple solution: run the shortest path algorithm for
each vertex � complexity is O(|E|.|V|.|V|) = O(|V|4)
for Bellman-Ford and O(|E|.lg |V|.|V|) = O(|V|3 lg |V|)
for Dijsktra.

• Can we do better? Intuitively it would seem so,
since there is a lot of repeated work � exploit the
optimal sub-path property.

• We indeed can do better: O(|V|3).

Data Structures, Spring 2004 © L. Joskowicz �

All-shortest paths: example (1)

2

31

5 4
6

�

2-4

�

8
3 4

-5

Data Structures, Spring 2004 © L. Joskowicz �

All-shortest paths: example (2)

2

31

5 4
6

�

2-4

�

8
3 4

-5

0

1

-3

-4 2

2

31

5 4
6

�

2-4

�

8
3 4

-5

)42310(��
1 2 3 4 5

dist)1543(�
1 2 3 4 5

pred

Data Structures, Spring 2004 © L. Joskowicz �

All-shortest paths: example (3)

2

31

5 4
6

�

2-4

�

8
3 4

-5

0

3 -4

1-1

2

31

5 4
6

�

2-4

�

8
3 4

-5

)11403(��
1 2 3 4 5

dist)1244(�
1 2 3 4 5

pred
Data Structures, Spring 2004 © L. Joskowicz �

All shortest-paths: representation
We will use matrices to represent the graph, the
shortest path lengths, and the predecessor sub-graphs.

• Edge matrix: entry (i,j) in adjacency matrix W is the
weight of the edge between vertex i and vertex j.

• Shortest-path lengths matrix: entry (i,j) in L is the
shortest path length between vertex i and vertex j.

• Predecessor matrix: entry (i,j) in � is the predecessor
of j on some shortest path from i (null when i = j or
when there is no path).

�

Data Structures, Spring 2004 © L. Joskowicz �

All-shortest paths: definitions

Ejiji

Ejiji

ji

jiwwi j

��

��

�

�
�

�
	

�

�

),(and

),(and

if

),(

0

Edge matrix: entry (i,j) in adjacency matrix W

is the weight of the edge between vertex i and vertex j.

Shortest-paths graph: the graphs G� ,i = (V� ,i, E� ,i)

are the shortest-path graphs rooted at vertex I, where:
}{}:{, inullVjV iji ���� ��

} }{:),{ (,, iVjjE ii ji ��� �� �
Data Structures, Spring 2004 © L. Joskowicz 	

Example: edge matrix

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

�

06

052

04

710

4830

W

1 2 3 4 5
1

2

3

4

5

Data Structures, Spring 2004 © L. Joskowicz

Example: shortest-paths matrix

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

L

1 2 3 4 5
1

2

3

4

5

Data Structures, Spring 2004 © L. Joskowicz ��

Example: predecessor matrix

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

��

null

null

null

null

null

5434

1434

1234

1244

1543
1 2 3 4 5

1

2

3

4

5

Data Structures, Spring 2004 © L. Joskowicz ��

The structure of a shortest path
1. All sub-paths of a shortest path are shortest paths.

Let p = <v1, .. vk> be the shortest path from v1 to
vk. The sub-path between vi and vj, where
1 � i,j � k, pij = <vi, .. vj> is a shortest path.

2. The shortest path from vertex i to vertex j with at
most m edges is either:

– the shortest path with at most (m-1) edges
(no improvement)

– the shortest path consisting of a shortest path within
the (m-1) vertices + the weight of the edge from a
vertex within the (m-1) vertices to an extra vertex m.

Data Structures, Spring 2004 © L. Joskowicz ��

Recursive solution to all-shortest paths

}){min,min()1(

1

)1()(
kj

m
ik

nk

m
ij

m
ij wlll �� �

��

�

}{min)1(

1 kj
m

ik
nk

wl �� �

��

�
	

�

�

�
�

ji

ji
l ij

0)0(

Let l(m)
ij be the minimum weight of any path from

vertex i to vertex j that has at most m edges.
When m=0:

For m
 1, l (m)
ij is the minimum of l(m–1)

ij and the
shortest path going through the vertices neighbors:

�

Data Structures, Spring 2004 © L. Joskowicz ��

All-shortest-paths: solution
• Let W=(wij) be the edge weight matrix and L=(l ij)

the all-shortest shortest path matrix computed so
far, both n×n.

• Compute a series of matrices L(1), L(2), …, L(n–1)

where for m = 1,…,n–1, L(m) = (l(m)
ij) is the matrix

with the all-shortest-path lengths with at most m
edges.�Initially, L(1) = W, and L(n–1) containts the
actual shortest-paths.

• Basic step: compute L(m) from L(m–1) and W. �

Data Structures, Spring 2004 © L. Joskowicz ��

Algorithm for extending all-shortest
paths by one edge: from L(m-1) to L(m)

Extend-Shortest-Paths(L=(l ij),W)
n � rows[L]
Let L’ =(l’ ij) be an n×n matrix.
for i � 1 to n do

for j � 1 to n do
l’ ij � �

for k � 1 to n do
l’ ij � min(l’ ij, l ik + wkj)

return L’ Complexity: �(|V|3)

Data Structures, Spring 2004 © L. Joskowicz ��

This is exactly as matrix multiplication!
Matrix-Multiply(A,B)

n � rows[A]

Let C =(cij) be an n×n matrix.

for i � 1 to n do
for j � 1 to n do

cij � 0 (l’ ij � �)

for k � 1 to n do
cij � cij+ aik.bkj (l’ ij � min(l’ ij, l ij + wkj))

return L’
Data Structures, Spring 2004 © L. Joskowicz ��

�

�

�
�
�
�
�
�

�

�

�

���

�

�

�

�

0618

20512

11504

71403

42830

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

�

06

052

04

710

4830

)2(L

Paths with at most two edges

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

�

06

052

04

710

4830

)1(L

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

06

052

04

710

4830

2

31

5 4
6

�

2-4

�

8
3 4

-5

Data Structures, Spring 2004 © L. Joskowicz ��

Paths with at most three edges

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

06

052

04

710

4830

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

115047

11403

42330

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

�

���

�

�

�

�

0618

20512

11504

71403

42830

)2(L

�

�

�
�
�
�
�
�

�

�

�

���

�

�

�

�

0618

20512

11504

71403

42830

)3(L

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

115047

11403

42330

Data Structures, Spring 2004 © L. Joskowicz �	

Paths with at most four edges

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

115047

11403

42330

)3(L

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

06

052

04

710

4830

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

115047

11403

42330

)4(L

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

�

Data Structures, Spring 2004 © L. Joskowicz �

Paths with at most five edges

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

)4(L

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

06

052

04

710

4830

2

31

5 4
6

�

2-4

�

8
3 4

-5

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

)5(L

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

Data Structures, Spring 2004 © L. Joskowicz ��

All-shortest paths algorithm

All-Shortest-Paths(W)

n � rows[W]

L(1) � W

for m� 2 to n–1 do
L(m) � Extend-Shortest-Paths(L(m–1),W)

return L(m)

Complexity: �(|V|4)

Data Structures, Spring 2004 © L. Joskowicz ��

Improved all-shortest paths algorithm
• The goal is to compute the final L(n–1), not all the L(m)

• We can avoid computing most L(m) as follows:

L(1) = W

L(2) = W.W

L(4) = W4 = W2.W2

…
� � � � � � � �)12()12()2()2()1lg()1lg()1lg()1lg(

. �� ����

��
nnnn

WWWL

Since the final product is equal to L(n–1)� � 12)1lg(��� nn

only |lg(n–1)| iterations are necessary!

repeated squaring

Data Structures, Spring 2004 © L. Joskowicz ��

Faster-all-shortest paths algorithm

Faster-All-Shortest-Paths(W)

n � rows[W]

L(1) � W

while m < n–1 do
L(2m) � Extend-Shortest-Paths(L(m),L(m))

m�2m

return L(m)

Complexity: �(|V|3 lg (|V|))

Data Structures, Spring 2004 © L. Joskowicz ��

Floyd-Warshall algorithm

• Assumes there are no negative-weight cycles.

• Uses a different characterization of the structure
of the shortest path. It exploits the properties of
the intermediate vertices of the shortest path.

• Runs in O(|V|3).

Data Structures, Spring 2004 © L. Joskowicz ��

Structure of the shortest path (1)
• An intermediate vertex vi of a simple path p=<v1,..,vk>

is any vertex other than v1 or vk.

• Let V={ 1,2,…,n} and let K={ 1,2,…,k} be a subset
for k � n. For any pair of vertices i,j in V, consider all
paths from i to j whose intermediate vertices are
drawn from K. Let p be the minimum-weight path
among them.

i
k1

j

k2

p

�

Data Structures, Spring 2004 © L. Joskowicz ��

Structure of the shortest path (2)
1. k is not an intermediate vertex of path p:

All vertices of path p are in the set { 1,2,…,k–1}

� a shortest path from i to j with all intermediate
vertices in { 1,2,…,k–1} is also a shortest path
with all intermediate vertices in { 1,2,…,k} .

2. k is an intermediate vertex of path p:
Break p into two pieces: p1 from i to k and p2

from k to j. �Path p1 is a shortest path from i to k
and path p2 is a shortest path from k to j with all
intermediate vertices in { 1,2,…,k–1} .

Data Structures, Spring 2004 © L. Joskowicz ��

Structure of the shortest path (3)

i k j
p2

all intermediate vertices
in { 1,2,…,k–1}

all intermediate vertices
in { 1,2,…,k}

p1

all intermediate vertices
in { 1,2,…,k–1}

Data Structures, Spring 2004 © L. Joskowicz ��

Recursive definition

�
	

��

�
� ��� 1if),min(

0if
)1()1()1(

)(

kddd

kw
d k

kj
k

ik
k

ij

ijk
ij

Let d(k)
ij be the weight of a shortest path from

vertex i to vertex j for which all intermediate vertices
are in the set { 1,2,…,k} . Then:

The matrices D(k) = (d(k)
ij) will keep the intermediate

solutions.

Data Structures, Spring 2004 © L. Joskowicz �	

Example: Floyd-Warshall algorithm (1)

�

�

�
�
�
�
�
�

�

�

���

���

���

��

��

�

06

052

04

710

4830

)0(D

�

�

�
�
�
�
�
�

�

�

���

��

���

��

��

�

06

20552

04

710

4830

)1(D

2

31

5 4
6

�

2-4

�

8
3 4

-5

K={ 1}

Improvements: (4,2) and (4,5)

Data Structures, Spring 2004 © L. Joskowicz �

Example: Floyd-Warshall algorithm (2)

�

�

�
�
�
�
�
�

�

�

���

��

�

��

�

�

06

20552

11504

710

44830

)2(D

�

�

�
�
�
�
�
�

�

�

���

��

���

��

��

�

06

20552

04

710

4830

)1(D
2

31

5 4
6

�

2-4

�

8
3 4

-5

K={ 1,2}

Improvements: (1,4) (3,4),(3,5) Data Structures, Spring 2004 © L. Joskowicz ��

�

�

�
�
�
�
�
�

�

�

���

��

�

��

�

�

06

20552

11504

710

44830

)2(D

Example: Floyd-Warshall algorithm (3)

�

�

�
�
�
�
�
�

�

�

���

���

�

��

�

�

06

20512

11504

710

44830

)3(D

2

31

5 4
6

�

2-4

�

8
3 4

-5

K={ 1,2,3}

Improvement: (4,2)

�

Data Structures, Spring 2004 © L. Joskowicz ��

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

44130

)4(D

Example: Floyd-Warshall algorithm (4)

�

�

�
�
�
�
�
�

�

�

���

���

�

��

��

�

06

20512

11504

710

4830

)3(D

2

31

5 4
6

�

2-4

�

8
3 4

-5

K={ 1,2,3,4}

Improvements: (1,3),(1,4)
(2,1), (2,3), (2,5)
(3,1),(3,5), (5,1),(5,2),(5,3) Data Structures, Spring 2004 © L. Joskowicz ��

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

44130

)4(D

Example: Floyd-Warshall algorithm (5)

�

�

�
�
�
�
�
�

�

�

���

��

��

�

06158

20512

35047

11403

42310

)5(D

2

31

5 4
6

�

2-4

�

8
3 4

-5

K={ 1,2,3,4,5}

Improvements:
(1,2),(1,3),(1,4)

Data Structures, Spring 2004 © L. Joskowicz ��

Transitive closure (1)
• Given a directed graph G=(V,E) with vertices

V = { 1,2,…,n} determine for every pair of
vertices (i,j) if there is a path between them.

• The transitive closure graph of G, G*=(V,E*) is
such that E* = { (i,j): if there is a path i and j} .

• Represent E* as a binary matrix and perform
logical binary operations AND (/\) and OR (\/)
instead of min and + in the Floyd-Warshall
algorithm.

Data Structures, Spring 2004 © L. Joskowicz ��

Transitive closure (2)

 0for

),(and0if

),(and0if

)/\(/\

1

0

)1()1()1(

)(

�

��

��

�
�

�
	

�
��� k

Ejik

Ejik

ttt

t
k

kj
k

ik
k

ij

k
ij

The definition of the transitive closure is:

The matrices T(k) indicate if there is a path with
at most k edges between sand i.

Data Structures, Spring 2004 © L. Joskowicz ��

Transitive closure algorithm
Transitive-Closure(W)
n � rows[W]
T(0) � Binarize(W)
for k � 1 to n do

for i � 1 to n do
for j � 1 to n do

return T(n)

Complexity: �(|V|3)

)/\(/\)1()1()1()(���� k
kj

k
ik

k
ij

k
ij tttt

Data Structures, Spring 2004 © L. Joskowicz ��

Summary
• Adjacency matrix representation is the most

convenient for representing all-shortest-paths.
• Computing all shortest-paths is akin to taking the

transitive closure of the edge weights.
• Matrix multiplication algorithm runs in�O(|V|3 lg |V|).
• The Floyd-Warshall algorithm improves paths

through intermediate vertices instead of working on
individual edges.

• Its running time: O(|V|3).

�

Data Structures, Spring 2004 © L. Joskowicz ��

Other graph algorithms
• Many more interesting problems, including

network flow, graph isomorphism, coloring,
partition, etc.

• Problems can be classified by the type of solution.
• Easy problems: polynomial-time solutions O(f (n))

where f (n) is a polynomial function of degree at
most k.

• Hard problems: exponential-time solutions O(f (n))
where f (n) is an exponential function, usually 2n.

Data Structures, Spring 2004 © L. Joskowicz �	

Easy graph problems

• Network flow – maximum flow problem

• Maximum bipartite matching

• Planarity testing and plane embedding.

Data Structures, Spring 2004 © L. Joskowicz �

Hard graph problems
• Graph and sub-graph isomorphism.

• Largest clique, Independent set

• Vertex tour (Traveling Salesman problem)

• Graph partition

• Vertex coloring

However, not all is lost!

• Good heuristics that perform well in most cases

• Polynomial-time approximation algorithms

