Data Structures— LECTURE 15

Shortest paths agorithms

* Properties of shortest paths
* Bellman-Ford algorithm
« Dijsktra’ s algorithm

Chapter 24 in the textbook (pp 580-599).

Data Structures, Spring 2004 © L. Joskowicz

Weighted graphs -- reminder
» A weighted graph is graph in which edges
have weights (costs) w(v; v;) > 0.
« A graphisaweighted graph in which all costs are 1.

Two vertices with no edge (path) between them can
be thought of having an edge (path) with weight co.

2 The cost of a path is
o 9 e the sum of the costs
4 A I |35 ofitsedges
O==0OR0

Daa S, Sring 20040 L oskonicz 7 2

Example: weighted graph

Data Structures, Spring 2004 © L. Joskowicz

Two basic properties of shortest paths

Triangle inequality
Let G=(V,E) be aweighted directed graph, w: E > R
aweight function and seV be a source vertex. Then,
for al edges e=(u,v)<E:

a(s,v) < d(s,u) +w(u,v)

Optimal substructure of a shortest path
Let p =<v,, .. v,> be the shortest path between v, and
Vi The sub-path between v; and v,, where 1<i,j <k,
p; = <V;, .. > isashortest path.

Data Structures, Spring 2004 © L. Joskowicz 4

Negative-weight edges
* Shortest paths are well-defined as long as there
are no negative-weight cycles. In such cycles, the
longer the path, the lower the value > the
shortest path has an infinite number of edges!

-5 10

* Allow negative-weight edges, but disallow (or
dgtggzg negative-weight cycles!

Shortest paths and cycles

* The shortest path between any two vertices has no
positive-weight cycles.

» The representation for shortest paths between a
vertex and all other verticesis the same as the one
used in the unweigthed BFS: breath-first tree:

G, = (V. ,E,) suchthat V.= {veV:a[V] #null}\{s}
and E, = {(n[v].v), veV {s}}
* Wewill prove that a breath-first tree is a shortest-path tree

for itsroot sin which vertices reachable from sarein it
and the unique simple path from sto v is shortest.

Data Structures, Spring 2004 © L. Joskowicz 6

Example: shortest-path tree (1)

Example: shortest-path tree (2)

Data Structures, Spring 2004 © L. Joskowicz 7

Data Structures, Spring 2004 © L. Joskowicz

Estimated distance from source

» Asfor BFS on unweighted graphs, we keep alabel
which is the current best estimate of the shortest
distance between s and v.

Initialy, dist[s] = 0and dist[v] = for all v#s,
and n[V] = null.

At al times during the algorithm, dist[v] > d(s,v).
Attheend, dist[v] = d(s\v) and (n[V].v) € E,

Data Structures, Spring 2004 © L. Joskowicz

Edge relaxation

» The process of relaxing an edge (u,v) consists of
testing whether it can improve the shortest path
from sto v so far by going through u.

Relax(u,v
if dist[v] > dist[u] + w(u,v)
then dist[v] < dist[u] + w(u,v)
n[v] € u

Data Structures, Spring 2004 © L. Joskowicz

Properties of shortest paths and relaxation

Triangle inequality
Ve=(uVv)eE: (sv)<d(su) +w(u,v)
Upper-boundary property
VveV: dist[v] > d(s\v) at all times, and it keeps
decreasing.

No-path property
if thereis no path from sto v, then
dist[V]=d(sv) = o0

Data Structures, Spring 2004 © L. Joskowicz

Properties of shortest paths and relaxation

Convergence property
if s> u> visashortest path in G for some u and v, and
dist[u]= d(s,u) at any time prior to relaxing edge (u,v), then
dist[v]=d(s,v) at all times afterwards.
Path-relaxation property
Let p=<v, .. v> bethe shortest path between v, and v,. When
the edges are relaxed in the order (v, V), (V1, Vo), -.. (Vier, Vi),
then dist[v,]= d(s,\v).
Predecessor sub-graph property
once dist[v]=d(s,v) V veV, the predecessor subgraph isa
shortest-paths tree rooted at .

Two shortest-path algorithms

1. Bellmann-Ford agorithm
2. Dijkstra s algorithm — Generalization of BFS

Data Structures, Spring 2004 © L. Joskowicz

Bellman-Ford' s algorithm: overview

Allows negative weights. If there is a negative cycle,

returns “a negative cycle exists’.

» Theidea

—There isashortest path from sto any other vertex
that does not contain a non-negative cycle (can be
eliminated to produce a shorter path).

—The maximal number of edges in such a path with
no cyclesis [VI-1, because it can have at most |V|
nodes on the path if thereis no cycle.

—= it isenough to check paths of up to [V|-1 edges.

Data Structures, Spring 2004© L. Joskowicz

14

Bellman-Ford' s algorithm

Bellman - Ford(G, s)
Initialize(G, s)
fori <1toV| -1
for each edge (u, v)eE
doif dist[v] > dist[u] +w(u, v)
dist[v] €dist[u] +w(u, v)
A v]<€u
for each edge (U, v)€E
if dist[v]>d[u]+w(u, v)return " negative cycle

Data Structures, Spring 2004 © L. Joskowicz

Example: Bellman-Ford' s algorithm (1)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(d,s)
(d,b)
(sa)
(sb)

Data Structures, Spring 2004 © L. Joskowicz

Example: Bellman-Ford' s algorithm (2)

Edge
order
(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(d,s)
(d,b)
(sa)
(sc)

Data Structures, Spring 2004 © L. Joskowicz

17

Example: Bellman-Ford' s algorithm (3)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c.d)
(d,s)
(d,b)
(sa)
(sc)

Data Structures, Spring 2004 © L. Joskowicz

18

Example: Bellman-Ford' s algorithm (4)
&~

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(ds)
(d,b)
(sa)
(sb)y

Data Structures, Spring 2004 © L. Joskowicz

Example: Bellman-Ford' s algorithm (5)

Edge
order

(ab)
(ac)
(ad)
(b,a)
(cb)
(c,d)
(d,s)
(d,b)
(sa)
(sb)

DataStructures, Spring 2004 © L. Joskowicz ,2/

Bellman-Ford' s algorithm: properties

» Thefirst pass over the edges — only neighbors of s
are affected (1-edge paths). All shortest paths with
one edge are found.

» The second pass — shortest paths with edges are
found.

* After |V|-1 passes, al possible paths are checked.

» Claim: we need to update any vertex in the last
passif and only if there is a negative cycle
reachable fromsin G.

Data Structures, Spring 2004 © L. Joskowicz 21

Bellman Ford algorithm: proof (1)

« Onedirection we aready know: if we need to update an
edgein the last iteration then there is a negative cycle,
because we proved before that if there are no negative
cycles, and the shortest paths are well defined, we find them
inthe V-1 iteration.

* Weclaim that if thereis a negative cycle, we will discover a
problem in the last iteration. Because, suppose thereisa
negative cycle

« But the algorithm does not find any problem in the last
iteration, which means that for all edges, we have that

for all edgesin the cycle

Data Structures, Spring 2004 © L. Joskowicz 2

Bellman Ford algorithm: proof (2)

« Proof by contradiction: for all edgesin the cycle

« After summing up over al edgesin the cycle, we discover
that the term on the left is equal to the first term on the right
(just adifferent order of summation). We can subtract them,
and we get that the cycleis actually positive, whichisa
contradiction.

Data Structures, Spring 2004 © L. Joskowicz 23

Bellman-Ford' s algorithm: complexity

 Visits |V|-1 vertices > O(|V])
* Performs vertex relaxation on all edges > O(|E|)
 Overall, O(|V|.|E]) time and O(|V|+|E|) space.

Data Structures, Spring 2004 © L. Joskowicz 2

Bellman-Ford on DAGs

For Directed Acyclic Graphs (DAG), O(|V|+|E])
relaxations are sufficient when the vertices are visited in
topologically sorted order:

DA G-Shortest-Path(G)

1. Topologically sort the verticesin G

2. Initialize G (dist[v] and =(v)) with s as source.

3. for each vertex uin topologically sorted order do
4
5

for each vertex vincident to u do
Relax(u,v)

Data Structures, Spring 2004 © L. Joskowicz

25

Example: Bellman-Ford on aDAG (1)

Vertices sorted from left to right

Data Structures, Spring 2004 © L. Joskowicz 2%

Example: Bellman-Ford on aDAG (2)

Example: Bellman-Ford on aDAG (3)

Data Structures, Spring 2004 © L. Joskowicz

27

Data Structures, Spring 2004 © L. Joskowicz 28

Example: Bellman-Ford on aDAG (4)

Example: Bellman-Ford on aDAG (5)

Data Structures, Spring 2004 © L. Joskowicz

29

Data Structures, Spring 2004 © L. Joskowicz 30

Example: Bellman-Ford on aDAG (6)

Example: Bellman-Ford on aDAG (7)

Data Structures, Spring 2004 © L. Joskowicz

Data Structures, Spring 2004 © L. Joskowicz

Bellman-Ford on DAGSs; correctness

Path-rel axation property
Let p=<v,, .. v,> bethe shortest path between v,
and v,. When the edges are relaxed in the order
(Vgy V1)s (V, V), .. (Vieqs V), then dist[vi]= d(s,v,).

In aDAG, we have the correct ordering!
Therefore, the complexity is O([V|+|E|).

Data Structures, Spring 2004 © L. Joskowicz

Dijkstra’ s algorithm: overview

Idea: Do the same as BFS for unweighted graphs,
with two differences:

—use the cost as the distance function

—use aminimum priority queue instead of asimple
queue.

Data Structures, Spring 2004 © L. Joskowicz

The BFS agorithm
BFS(G, 9)

label[s] € current; dist[s] = O; n[s] = null
for all verticesuinV —{s} do
label[u] € not_visited; dist[u] = oo; [u] = null
EnQueue(Q,s)
while Q is not empty do
u < DeQueug(Q)
for each v that isaneighbor of u do
if label[v] = not_visited then label[v] < current
dist[v] € dist[u] + 1; n[v] € u
EnQueue(Q,v)
label[u] < visited

Data Structures, Spring 2004 L. Joskowicz

Example: BFS algorithm

Data Structures, Spring 2004 © L. Joskowicz

Example: Dijkstra’s algorithm

Data Structures, Spring 2004 © L. Joskowicz

Dijkstra’ s agorithm
Dijkstra(G, s)
label[s] < current; dist[s] = O; =[u] = null
for all verticesuinV —{s} do
label[u] € not_visited; dist[u] = oo; n[u] = null
Q¢€s
while Q is not empty do
u < Extract-Min(Q)
for each v that isaneighbor of u do
if div] >du] +w(u,v)
then d[v] € d[u] + w(u,v); z[v] =u
Insert-Queue(Q,v)

aaaaaaaa T ool

Example: Dijkstra s algorithm (1)

Data Structures, Spring 2004 © L. Joskowicz

Example: Dijkstra s algorithm (2)

o0
—)

Example: Dijkstra’s algorithm (3)

Example: Dijkstra's algorithm (4)

[—— 5 7

[—— 5 7

42

Example: Dijkstra’ s agorithm (5)

Example: Dijkstra’s algorithm (6)

Data Structures, Spring 2004 © L. Joskowicz 4

Data Structures, Spring 2004 © L. Joskowicz 44

Dijkstra’ s algorithm: correctness (1)

Theorem: Upon termination of the Dijkstra's algorithm,
for each dist[v] = d(s,v) for each vertex veV,
Definition: a path from sto v is said to be a special path if
it is the shortest path from sto v in which all vertices

(except maybefor v) areinside S.
Lemma: At the end of each iteration of the while loop, the
following two properties hold:
1. For each weS, dist[w] is the length of the shortest
path from sto w which staysinside S
2. For each weV-S, dist(w) is the length of the shortest
special path from stow.

Thethegrem.followswhen S=V. s

Dijkstra’ s algorithm: correctness (2)

Proof: by induction on thesize of S

» For |9=1, itisclearly true: dist[v] = oo except for the
neighbors of s, which contain the length of the shortest
special path.

* Induction step: suppose that in the last iteration node v
was added added to S. By the induction assumption,
dist[Vv] isthe length of the shortest special pathtov. It is
also the length of the general shortest path to v, since if
thereis ashorter path to v passing through nodes of S
and x isthefirst node of Sin that path, then x would have
been selected and not v. So thefirst property still holds.

Data Structures, Spring 2004 © L. Joskowicz 46

Dijkstra’ s algorithm: correctness (3)
Property 2: Let xe S Consider the shortest new special path to w
If it doesn’t include v, dist[x] isthe length of that path by the

induction assumption from the last iteration since dist[x] did
not change in the final iteration.

If it doesinclude v, then v can either be a node in the middle or
the last node before x. Note that v cannot be anode in the
middle since then the path would passfromstovtoyin S
but by property 1, the shortest path to y would have been
inside S v need not be included.

If visthelast node before x on the path, then dist[x] contains
the distance of that path, by the substitution
dist[x] = dist[v] + w(v,x) in the algorithm.

47

Dijkstra’ s agorithm: complexity
The algorithm performs |V| Extract-Min operations and |E|
Insert-Queue operations.

When the priority queue isimplemented as a heap, insert
takes O(Ig|V]) and Extract-Min takes O(Ig(]V|). Thetotal
timeis O(|V|IglV |) + O([E|IgIV]) = O(|E]IgIV])
When |E| = O(|V|?), thisis not optimal. In this case, there are
many more insert than extract operations.
Solution: Implement the priority queue asan array! Insert
will take O(1) and Extract-Min O(|V|) >

O(IVI?) + O([E]) = O(IVP)
which is better than the heap as long as |E| is O(|V[Z/1g (|V])).

Data Structures, Spring 2004 © L. Joskowicz 48

Application: difference constraints

Example: difference constraints (1)
X —X,< 0

« Given a system of m difference constraints over n X, —Xs < -1
variables, find a solution if one exists. o —x.< 1
2~ X<
R T Y Xs—X < 5
forl<i,j<nandl<k<m X —x. < 4
+ Constraint graph G: each variable x; is a vertex, x4—x1; 1
each constraint x, —x; < b, is a directed edge from 478
X, to x; with weight b . X5 —X3= -3
 When G does not have negative cycles, the X5 =Xy < -3
minimum path distances of the vertices are the Solution:
solution to the system of constraint differences. X = (-5,-3,0,-1,-4)
Example: difference constraints (2) Why does this work?

Theorem: Let Ax < b be a set of mdifference
constraints over n variables, and G=(V,E) its
corresponding constraint graph. If G has no
negative weight cycles, then

X = (8(Vov).8(Vo,Va), - 8(VouVy)
isafeasible solution for the system. If G hasa
negative cycle, then there is no feasible solution.

Proof outline: For all edges (v;,v) in E:

. 5 8(Vo,Vj) < 8(Vo,vy) + W(V;,vi)
Solution:
- 8(Vorv;) — 8(Vo, i) < w(Vi,V)
X =(-5,-3,0,-1,-4) — % <W(V,V)
DetaSiuctures, Spring 20046 L. Joskowicz 51 DetaSiuctures, Spring 20046 L. Joskoticz] ! 52
Summary

* Solving the shortest-path problem on weighted
graphsis performed by relaxation, based on the
path triangle inequality: for all edges e=(u,v)eE:

o(sv) <d(s,u) +w(u,v)

» Two algorithms for solving the problem:

— Bellman Ford: for each vertex, relaxation on all edges.
Takes O(|E|.|V|) time. Works on graphs with non-
negative cycles.

— Dijkstra: BFS-like, takes O(JE|Ig|V|) time.

Data Structures, Spring 2004 © L. Joskowicz 53

