
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 15

Shortest paths algorithms

• Properties of shortest paths

• Bellman-Ford algorithm

• Dijsktra’salgorithm

Chapter 24 in the textbook (pp 580–599).

Data Structures, Spring 2004 © L. Joskowicz �

Weighted graphs -- reminder
• A weighted graph is graph in which edges

have weights (costs) w(vi, vj) > 0.

• A graph is a weighted graph in which all costs are 1.
Two vertices with no edge (path) between them can
be thought of having an edge (path) with weight � .

�

1 2 3

4 5 6

4

2

�
� �

The cost of a path is
the sum of the costs
of its edges:

�	� � �

� �

 k

i
ii vvwpw

1
1,

Data Structures, Spring 2004 © L. Joskowicz �

Example: weighted graph

1

2

10

5

2 3

4 6

9

7

s

a b

c d

Data Structures, Spring 2004 © L. Joskowicz �

Two basic properties of shortest paths
Triangle inequality

Let G=(V,E) be a weighted directed graph, w: E � R
a weight function and s� V be a source vertex. Then,
for all edges e=(u,v) � E:

�
(s,v) �

�
(s,u) + w(u,v)

Optimal substructure of a shortest path

Let p = <v1, .. vk> be the shortest path between v1 and
vk. The sub-path between vi and vj, where 1 � i,j � k,
pij = <vi, .. vj> is a shortest path.

Data Structures, Spring 2004 © L. Joskowicz �

Negative-weight edges
• Shortest paths are well-defined as long as there

are no negative-weight cycles. In such cycles, the
longer the path, the lower the value � the
shortest path has an infinite number of edges!

• Allow negative-weight edges, but disallow (or
detect) negative-weight cycles!

-5

1 3

a b c
10

c
-1

Data Structures, Spring 2004 © L. Joskowicz �

Shortest paths and cycles
• The shortest path between any two vertices has no

positive-weight cycles.

• The representation for shortest paths between a
vertex and all other vertices is the same as the one
used in the unweigthed BFS: breath-first tree:
G� = (V� ,E�) such that V� = { v � V: � [v] � null} � { s}

and E� = { (� [v],v), v � V –{ s} }

• We will prove that a breath-first tree is a shortest-path tree
for its root s in which vertices reachable from s are in it
and the unique simple path from s to v is shortest.

Data Structures, Spring 2004 © L. Joskowicz �

Example: shortest-path tree

6

6

3

5

2 1

2 7

4

3

s

a b

c d

� �

�

� � �
Data Structures, Spring 2004 © L. Joskowicz �

Example: shortest-path tree

6

6

3

5

2 1

2 7

4

3

s

a b

c d

� �

�

� � �

Data Structures, Spring 2004 © L. Joskowicz �

Estimated distance from source
• As for BFS on unweighted graphs, we keep a label

which is the current best estimate of the shortest
distance between sand v.

• Initially, dist[s] = 0 and dist[v] = � for all v
�

s,
and � [v] = null.

• At all times during the algorithm, dist[v] �
�
(s,v).

• At the end, dist[v] =
�
(s,v) and (� [v],v) � E�

Data Structures, Spring 2004 © L. Joskowicz
� �

Edge relaxation
• The process of relaxing an edge (u,v) consists of

testing whether it can improve the shortest path
from s to v so far by going through u.

Relax(u,v)

if dist[v] > dist[u] + w(u,v)

then dist[v] � dist[u] + w(u,v)

� [v] � u

Data Structures, Spring 2004 © L. Joskowicz
� �

Properties of shortest paths and relaxation
Triangle inequality

�
e = (u,v) � E:

�
(s,v) �

�
(s,u) + w(u,v)

Upper-boundary property
�

v � V: dist[v] �
�
(s,v) at all times, and it keeps

decreasing.

No-path property

if there is no path from s to v, then
dist[v]=

�
(s,v) = �

Data Structures, Spring 2004 © L. Joskowicz
� �

Properties of shortest paths and relaxation
Convergence property

if s � u� v is a shortest path in G for someu and v, and
dist[u]= 	 (s,u) at any time prior to relaxing edge (u,v), then
dist[v]= 	 (s,v) at all times afterwards.

Path-relaxation property

Let p = <v0, .. vk> be the shortest path between v0 and vk. When
the edges are relaxed in the order (v0, v1), (v1, v2), … (vk-1, vk),
then dist[vk]= 	 (s,vk).

Predecessor sub-graph property

once dist[v]= 	 (s,v)
 v � V, the predecessor subgraph is a
shortest-paths tree rooted at s.

Data Structures, Spring 2004 © L. Joskowicz
� �

Two shortest-path algorithms

1. Bellmann-Ford algorithm

2. Dijkstra’salgorithm – Generalization of BFS

Data Structures, Spring 2004 © L. Joskowicz
� �

Bellman-Ford’s algorithm: overview
• Allows negative weights. If there is a negative cycle,

returns “a negative cycle exists” .

• The idea:

– There is a shortest path from s to any other vertex
that does not contain a non-negative cycle (can be
eliminated to produce a shorter path).

– The maximal number of edges in such a path with
no cycles is |V|–1, because it can have at most |V|
nodes on the path if there is no cycle.

– � it is enough to check paths of up to |V|–1 edges.

Data Structures, Spring 2004 © L. Joskowicz
� �

Bellman-Ford’s algorithm

� �
� �

� �
��� ��� � �

cycle"negative"return,if

,edgeeachfor

][

),(][][

,dist[u]dist[v]ifdo

,edgeeachfor

1to1for

),(Initialize

),Ford(-Bellman

vuwudvdist

Evu

uv

vuwudistvdist

vuw

Evu

|V|i

sG

sG

��
�

�

�
�

��
�

	

�

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Bellman-Ford’s algorithm (1)

5

9

6

7

8
-3

2

s

a b

c d

�

� �

� �

-2

�-4

Edge
order
(a,b)
(a,c)
(a,d)
(b,a)
(c,b)
(c,d)
(d,s)
(d,b)
(s,a)
(s,b)

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Bellman-Ford’s algorithm (2)

5

9

6

7

8
-3

2

s

a b

c d

�

� �

� �

-2

�-4

Edge
order
(a,b)
(a,c)
(a,d)
(b,a)
(c,b)
(c,d)
(d,s)
(d,b)
(s,a)
(s,c)

�

�
Data Structures, Spring 2004 © L. Joskowicz

� �

Example: Bellman-Ford’s algorithm (3)

5

9

6

7

8
-3

2

s

a b

c d

�

� 	

�

-2

�-4

Edge
order
(a,b)
(a,c)
(a,d)
(b,a)
(c,b)
(c,d)
(d,s)
(d,b)
(s,a)
(s,c)

� �

�

�

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Bellman-Ford’s algorithm (4)

5

9

6

7

8
-3

2

s

a b

c d

�

 	

�

-2

�-4

Edge
order
(a,b)
(a,c)
(a,d)
(b,a)
(c,b)
(c,d)
(d,s)
(d,b)
(s,a)
(s,b)

�

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford’s algorithm (5)

5

9

6

7

8
-3

2

s

a b

c d

�

 	

� -

-2

�-4

Edge
order
(a,b)
(a,c)
(a,d)
(b,a)
(c,b)
(c,d)
(d,s)
(d,b)
(s,a)
(s,b)

Data Structures, Spring 2004 © L. Joskowicz � �

Bellman-Ford’s algorithm: properties
• The first pass over the edges – only neighbors of s

are affected (1-edge paths). All shortest paths with
one edge are found.

• The second pass – shortest paths with edges are
found.

• After |V|-1 passes, all possible paths are checked.

• Claim: we need to update any vertex in the last
pass if and only if there is a negative cycle
reachable from s in G.

Data Structures, Spring 2004 © L. Joskowicz � �

Bellman Ford algorithm: proof (1)
• One direction we already know: if we need to update an

edge in the last iteration then there is a negative cycle,
because we proved before that if there are no negative
cycles, and the shortest paths are well defined, we find them
in the |V|–1 iteration.

• We claim that if there is a negative cycle, we will discover a
problem in the last iteration. Because, suppose there is a
negative cycle

• But the algorithm does not find any problem in the last
iteration, which means that for all edges, we have that

for all edges in the cycle.

),([u][v] vuwdist dist �
�

010 ,,.... vvvv kk ��

Data Structures, Spring 2004 © L. Joskowicz � �

• Proof by contradiction: for all edges in the cycle

• After summing up over all edges in the cycle, we discover
that the term on the left is equal to the first term on the right
(just a different order of summation). We can subtract them,
and we get that the cycle is actually positive, which is a
contradiction.

� �
� �

� �

� �� �

� � ��

�
	

	

	

	

1

1 1
1

1

11

2112

1001

),(][][

,][v][v

...

,][v][v

,][v][v

k

i

k

i
iii

k

i
i

kkk-k

vvwvdistvdist

vvwdistdist

vvwdistdist

vvwdistdist

Bellman Ford algorithm: proof (2)

Data Structures, Spring 2004 © L. Joskowicz � �

Bellman-Ford’s algorithm: complexity
• Visits |V|–1 vertices � O(|V|)

• Performs vertex relaxation on all edges � O(|E|)

• Overall, O(|V|.|E|) time and O(|V|+|E|) space.

Data Structures, Spring 2004 © L. Joskowicz � �

Bellman-Ford on DAGs
For Directed Acyclic Graphs (DAG), O(|V|+|E|)
relaxations are sufficient when the vertices are visited in
topologically sorted order:

DAG-Shortest-Path(G)
1. Topologically sort the vertices in G
2. Initialize G (dist[v] and � (v)) with s as source.
3. for each vertex u in topologically sorted order do
4. for each vertex v incident to u do
5. Relax(u,v)

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (1)

5
a s

��

2
b

�

7
c

�

-1
d

�

-2
e

�

6 1

3
4

2

Vertices sorted from left to right

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (2)

5
a s

��

2
b

�

7
c

�

-1
d

�

-2
e

�

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (3)

5
a s

��

2
b

7
c

�

-1
d

�

-2
e

�

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (4)

5
a s

��

2
b

7
c

�

-1
d

�

-2
e

	

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (5)

5
a s

��

2
b

7
c

�

-1
d

�

-2
e

	

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (6)

5
a s

��

2
b

7
c

�

-1
d

�

-2
e

�

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Bellman-Ford on a DAG (7)

5
a s

��

2
b

7
c

�

-1
d

�

-2
e

�

6 1

3
4

2

Data Structures, Spring 2004 © L. Joskowicz � �

Bellman-Ford on DAGs: correctness

Path-relaxation property

Let p = <v0, .. vk> be the shortest path between v0

and vk. When the edges are relaxed in the order
(v0, v1), (v1, v2), … (vk-1, vk), then dist[vk]=

�
(s,vk).

In a DAG, we have the correct ordering!

Therefore, the complexity is O(|V|+|E|).

Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm: overview

Idea: Do the same as BFS for unweighted graphs,
with two differences:

– use the cost as the distance function

– use a minimum priority queue instead of a simple
queue.

Data Structures, Spring 2004 © L. Joskowicz � �

The BFS algorithm
BFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null
for all vertices u in V – { s} do

label[u] � not_visited; dist[u] = � ; � [u] = null
EnQueue(Q,s)
while Q is not empty do

u � DeQueue(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
dist[v] � dist[u] + 1; � [v] � u
EnQueue(Q,v)

label[u] � visited
Data Structures, Spring 2004 © L. Joskowicz � �

Example: BFS algorithm

s

a b

c d

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm

1

2

10

5

9

7

s

a b

c d

�

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm
Dijkstra(G, s)
label[s] � current; dist[s] = 0; � [u] = null
for all vertices u in V – { s} do

label[u] � not_visited; dist[u] = � ; � [u] = null
Q � s
while Q is not empty do

u � Extract-Min(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
if d[v] > d[u] + w(u,v)

then d[v] � d[u] + w(u,v); � [v] = u
Insert-Queue(Q,v)

label[u] = visited

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (1)

1

2

10

5

9

7

s

a b

c d

�

� �

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (2)

1

2

10

5

9

7

s

a b

c d

�

� � �

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (3)

1

2

10

5

9

7

s

a b

c d

�

� � 	

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (4)

1

2

10

5

9

7

s

a b

c d

�

� � �

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (5)

1

2

10

5

9

7

s

a b

c d

�

� �

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Dijkstra’s algorithm (6)

1

2

10

5

9

7

s

a b

c d

�

� �

� �

�42 �

Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm: correctness (1)
Theorem: Upon termination of the Dijkstra’s algorithm,

for each dist[v] =
�
(s,v) for each vertex v � V,

Definition: a path from s to v is said to be a special path if
it is the shortest path from s to v in which all vertices
(except maybe for v) are inside S.

Lemma: At the end of each iteration of the while loop, the
following two properties hold:

1. For each w � S, dist[w] is the length of the shortest
path from s to w which stays inside S.

2. For each w � V–S , dist(w) is the length of the shortest
special path from s to w.

The theorem follows when S= V. Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm: correctness (2)
Proof: by induction on the size of S.

• For |S|=1, it is clearly true: dist[v] = � except for the
neighbors of s, which contain the length of the shortest
special path.

• Induction step: suppose that in the last iteration node v
was added added to S. By the induction assumption,
dist[v] is the length of the shortest special path to v. It is
also the length of the general shortest path to v, since if
there is a shorter path to v passing through nodes of S,
and x is the first node of S in that path, then x would have
been selected and not v. So the first property still holds.

Data Structures, Spring 2004 © L. Joskowicz � �

Property 2: Let x � S. Consider the shortest new special path to w

If it doesn’ t include v, dist[x] is the length of that path by the
induction assumption from the last iteration since dist[x] did
not change in the final iteration.

If it does include v, then v can either be a node in the middle or
the last node before x. Note that v cannot be a node in the
middle since then the path would pass from s to v to y in S,
but by property 1, the shortest path to y would have been
inside S� v need not be included.

If v is the last node before x on the path, then dist[x] contains
the distance of that path, by the substitution
dist[x] = dist[v] + w(v,x) in the algorithm.

Dijkstra’s algorithm: correctness (3)

Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm: complexity
• The algorithm performs |V| Extract-Min operations and |E|

Insert-Queue operations.

• When the priority queue is implemented as a heap, insert
takes O(lg|V|) and Extract-Min takes O(lg(|V|). The total
time is O(|V|lg|V |) + O(|E|lg|V|) = O(|E|lg|V|)

• When |E| = O(|V|2), this is not optimal. In this case, there are
many more insert than extract operations.

• Solution: Implement the priority queue as an array! Insert
will take O(1) and Extract-Min O(|V|) �

O(|V|2) + O(|E|) = O(|V|2)

which is better than the heap as long as |E| is O(|V|2/lg (|V|)).

Data Structures, Spring 2004 © L. Joskowicz � �

Application: difference constraints
• Given a system of m difference constraints over n

variables, find a solution if one exists.
xi – xj � bk

for 1 � i, j � n and 1 � k � m
• Constraint graph G: each variable xi is a vertex,

each constraint xi – xj � bk is a directed edge from
xi to xj with weight bk .

• When G does not have negative cycles, the
minimum path distances of the vertices are the
solution to the system of constraint differences.

Data Structures, Spring 2004 © L. Joskowicz � �

Example: difference constraints (1)
x1 – x2 � 0
x1 – x5 � -1
x2 – x5 � 1
x3 – x1 � 5
x4 – x1 � 4
x4 – x3 � -1
x5 – x3 � -3
x5 – x4 � -3

Solution:
x = (-5,-3,0,-1,-4)

0

x1

x2x5

x4 x3

s

-1

	

-3-3
�

1
-1 0

0

0

0

0

Data Structures, Spring 2004 © L. Joskowicz � �

Example: difference constraints

Solution:
x = (-5,-3,0,-1,-4)

0

x1x2x5x4x3s
-1

	
-3

-3

�

-1

1
0

0

0
0

0

00

-1 -4 -3 -5

Data Structures, Spring 2004 © L. Joskowicz � �

Why does this work?
Theorem: Let Ax � b be a set of m difference

constraints over n variables, and G=(V,E) its
corresponding constraint graph. If G has no
negative weight cycles, then

x = (
�
(v0,v1),

�
(v0,v2), … ,

�
(v0,vn))

is a feasible solution for the system. If G has a
negative cycle, then there is no feasible solution.

Proof outline: For all edges (vi,vj) in E:
�
(v0,vj) �

�
(v0,vi) + w(vi,vj)

�
(v0,vj) –

�
(v0,vi) � w(vi,vj)

xj – xj � w(vi,vj)

Data Structures, Spring 2004 © L. Joskowicz � �

Summary
• Solving the shortest-path problem on weighted

graphs is performed by relaxation, based on the
path triangle inequality: for all edges e=(u,v) � E:

�
(s,v) �

�
(s,u) + w(u,v)

• Two algorithms for solving the problem:
– Bellman Ford: for each vertex, relaxation on all edges.

Takes O(|E|.|V|) time. Works on graphs with non-
negative cycles.

– Dijkstra: BFS-like, takes O(|E|lg|V|) time.

