Data Structures - LECTURE 15

Shortest paths algorithms

- Properties of shortest paths
- Bellman-Ford algorithm
- Dijsktra's algorithm

Chapter 24 in the textbook (pp 580-599).

Two basic properties of shortest paths

Triangle inequality

Let $G=(V, E)$ be a weighted directed graph, $w: E \rightarrow \mathrm{R}$ a weight function and $s \in V$ be a source vertex. Then, for all edges $e=(u, v) \in E$:

$$
\delta(s, v) \leq \delta(s, u)+w(u, v)
$$

Optimal substructure of a shortest path
Let $p=\left\langle v_{1}, . . v_{k}\right\rangle$ be the shortest path between v_{1} and v_{k}. The sub-path between v_{i} and v_{j}, where $1 \leq i, j \leq k$, $p_{i j}=\left\langle v_{i}, . . v_{j}\right\rangle$ is a shortest path.

Negative-weight edges

- Shortest paths are well-defined as long as there are no negative-weight cycles. In such cycles, the longer the path, the lower the value \rightarrow the shortest path has an infinite number of edges!

- Allow negative-weight edges, but disallow (or detect) negative-weight cycles!

Weighted graphs -- reminder

- A weighted graph is graph in which edges have weights (costs) $w\left(v_{i}, v_{j}\right)>0$.
- A graph is a weighted graph in which all costs are 1. Two vertices with no edge (path) between them can be thought of having an edge (path) with weight ∞.

The cost of a path is the sum of the costs of its edges:

Example: shortest-path tree (1)

Data Smuctursc. Spring 2040.1. . ososowicz

Estimated distance from source

- As for BFS on unweighted graphs, we keep a label which is the current best estimate of the shortest distance between s and v.
- Initially, $\operatorname{dist}[s]=0$ and $\operatorname{dist}[v]=\infty$ for all $v \neq s$, and $\pi[\nu]=$ null.
- At all times during the algorithm, $\operatorname{dist}[v] \geq \delta(s, v)$.
- At the end, $\operatorname{dist}[v]=\delta(s, v)$ and $(\pi[v], v) \in E_{\pi}$

Properties of shortest paths and relaxation

Triangle inequality
$\forall e=(u, v) \in E: \delta(s, v) \leq \delta(s, u)+w(u, v)$
Upper-boundary property
$\forall v \in V: \operatorname{dist}[v] \geq \delta(s, v)$ at all times, and it keeps decreasing.
No-path property
if there is no path from s to v, then
$\operatorname{dist}[v]=\delta(s, v)=\infty$

Example: shortest-path tree (2)

Data Surctures. Sping 2040 © L Joskowicz

Edge relaxation

- The process of relaxing an edge (u, v) consists of testing whether it can improve the shortest path from s to v so far by going through u.

Relax (u, v)
if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
then $\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)$

$$
\pi[v] \leftarrow u
$$

Properties of shortest paths and relaxation

Convergence property

if $s \rightarrow u \rightarrow v$ is a shortest path in G for some u and v, and $\operatorname{dist}[u]=\delta(s, u)$ at any time prior to relaxing edge (u, v), then $\operatorname{dist}[v]=\delta(s, v)$ at all times afterwards.
Path-relaxation property
Let $p=\left\langle v_{0}, . . v_{k}\right\rangle$ be the shortest path between v_{0} and v_{k}. When the edges are relaxed in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots\left(v_{k-1}, v_{k}\right)$, then $\operatorname{dist}\left[v_{k}\right]=\delta\left(s, v_{k}\right)$.
Predecessor sub-graph property
once $\operatorname{dist}[v]=\delta(s, v) \forall v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

Two shortest-path algorithms

1. Bellmann-Ford algorithm
2. Dijkstra's algorithm - Generalization of BFS

Bellman-Ford's algorithm
Bellman $=\operatorname{Ford}(G, s)$
Initialize (G, s)
for $i \leftarrow 1$ to $|V|-1$
for each edge $(u, v) \in E$
do if $\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v)$
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+w(u, v)$
$\pi[v] \leftarrow u$
for each edge $(u, v) \in E$
if dist $[v]>d[u]+w(u, v)$ return " negative cycle"

Bellman-Ford's algorithm: overview

- Allows negative weights. If there is a negative cycle, returns "a negative cycle exists".
- The idea:
- There is a shortest path from s to any other vertex that does not contain a non-negative cycle (can be eliminated to produce a shorter path).
- The maximal number of edges in such a path with no cycles is $|V|-1$, because it can have at most $|V|$ nodes on the path if there is no cycle.
$-\Rightarrow$ it is enough to check paths of up to $|V|-1$ edges.

Example: Bellman-Ford's algorithm (1)

Example: Bellman-Ford's algorithm (2)

Example: Bellman-Ford's algorithm (3)

Example: Bellman-Ford's algorithm (4)

Edge order $\overline{(a, b)}$ (a,c) (a, d)
$7(b, a)$
(c, b)
(c, d)
(d,s)
(d, b)
(s, a)
$(s, b) \quad 19$

Example: Bellman-Ford's algorithm (5)

Bellman-Ford's algorithm: properties

- The first pass over the edges - only neighbors of s are affected (1-edge paths). All shortest paths with one edge are found.
- The second pass - shortest paths with edges are found.
- After $|V|-1$ passes, all possible paths are checked.
- Claim: we need to update any vertex in the last pass if and only if there is a negative cycle reachable from s in G.

Bellman Ford algorithm: proof (1)

- One direction we already know: if we need to update an edge in the last iteration then there is a negative cycle, because we proved before that if there are no negative cycles, and the shortest paths are well defined, we find them in the $|V|-1$ iteration.
- We claim that if there is a negative cycle, we will discover a problem in the last iteration. Because, suppose there is a negative cycle
- But the algorithm does not find any problem in the last iteration, which means that for all edges, we have that
for all edges in the cycle.
Data Sturuturs. Spring 2004 OL. Iososowicz

Bellman Ford algorithm: proof (2)

- Proof by contradiction: for all edges in the cycle
- After summing up over all edges in the cycle, we discover that the term on the left is equal to the first term on the right (just a different order of summation). We can subtract them, and we get that the cycle is actually positive, which is a contradiction.
Data Stucturss. Sping 20040 L. . Ioskowic

Bellman-Ford's algorithm: complexity

- Visits $|V|-1$ vertices $\rightarrow O(|V|)$
- Performs vertex relaxation on all edges $\rightarrow O(|E|)$
- Overall, $O(|V| .|E|)$ time and $O(|V|+|E|)$ space.

Bellman-Ford on DAGs

For Directed Acyclic Graphs (DAG), $O(|V|+|E|)$
relaxations are sufficient when the vertices are visited in topologically sorted order:

DAG-Shortest-Path (G)

1. Topologically sort the vertices in G
2. Initialize $G(\operatorname{dist}[v]$ and $\pi(v))$ with s as source.
3. for each vertex u in topologically sorted order do
4. for each vertex v incident to u do
5. $\operatorname{Relax}(u, v)$

Example: Bellman-Ford on a DAG (1)

Vertices sorted from left to right
\qquad

Example: Bellman-Ford on a DAG (2)

Example: Bellman-Ford on a DAG (4)

Example: Bellman-Ford on a DAG (3)

Example: Bellman-Ford on a DAG (5)

Example: Bellman-Ford on a DAG (6)

Bellman-Ford on DAGs: correctness

Path-relaxation property

Let $p=\left\langle v_{0}, . . v_{k}\right\rangle$ be the shortest path between v_{0} and v_{k}. When the edges are relaxed in the order $\left(v_{0}, v_{1}\right),\left(v_{l}, v_{2}\right), \ldots\left(v_{k-1}, v_{k}\right)$, then $\operatorname{dist}\left[v_{k}\right]=\delta\left(s, v_{k}\right)$.

In a DAG, we have the correct ordering!
Therefore, the complexity is $O(|V|+|E|)$.

Dijkstra's algorithm: overview

Idea: Do the same as BFS for unweighted graphs, with two differences:

- use the cost as the distance function
- use a minimum priority queue instead of a simple queue.

The BFS algorithm

$\underline{\operatorname{BFS}(G, s)}$
label $[s] \leftarrow$ current; dist $[s]=0 ; \pi[s]=$ null
for all vertices u in $V-\{s\}$ do
label $[u] \leftarrow$ not_visited; $\operatorname{dist}[u]=\infty ; \pi[u]=$ null
EnQueue (Q, s)
while Q is not empty do
$u \leftarrow \operatorname{DeQueue}(Q)$
for each v that is a neighbor of u do if label $[v]=$ not_visited then label $[v] \leftarrow$ current $\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+1 ; \pi[v] \leftarrow u$ EnQueue (Q, v)
label $[u] \leftarrow$ visited

Example: BFS algorithm

Example: Dijkstra's algorithm

Example: Dijkstra's algorithm (1)

Example: Dijkstra's algorithm (2)

Example: Dijkstra's algorithm (3)

Example: Dijkstra's algorithm (4)

Example: Dijkstra's algorithm (5)

Example: Dijkstra's algorithm (6)

Dijkstra's algorithm: correctness (1)

Theorem: Upon termination of the Dijkstra's algorithm, for each $\operatorname{dist}[v]=\delta(s, v)$ for each vertex $v \in V$,
Definition: a path from s to v is said to be a special path if it is the shortest path from s to v in which all vertices (except maybe for v) are inside S.
Lemma: At the end of each iteration of the while loop, the following two properties hold:

1. For each $w \in S, \operatorname{dist}[w]$ is the length of the shortest path from s to w which stays inside S.
2. For each $w \in V-S, \operatorname{dist}(w)$ is the length of the shortest special path from s to w.
The theorem follows when $S=V$.

Dijkstra's algorithm: correctness (3)

Property 2: Let $x \in S$. Consider the shortest new special path to w If it doesn't include $v, \operatorname{dist}[x]$ is the length of that path by the induction assumption from the last iteration since $\operatorname{dist}[x]$ did not change in the final iteration.
If it does include v, then v can either be a node in the middle or the last node before x. Note that v cannot be a node in the middle since then the path would pass from s to v to y in S, but by property 1 , the shortest path to y would have been but by property 1 , the shortest path to y would have been
inside $S \rightarrow v$ need not be included.
If v is the last node before x on the path, then $\operatorname{dist}[x]$ contains the distance of that path, by the substitution dist $[x]=\operatorname{dist}[v]+w(v, x)$ in the algorithm.

Dijkstra's algorithm: correctness (2)

Proof: by induction on the size of S.

- For $|S|=1$, it is clearly true: $\operatorname{dist}[v]=\infty$ except for the neighbors of s, which contain the length of the shortest special path.
- Induction step: suppose that in the last iteration node v was added added to S. By the induction assumption, $\operatorname{dist}[v]$ is the length of the shortest special path to v. It is also the length of the general shortest path to v, since if there is a shorter path to v passing through nodes of S, and x is the first node of S in that path, then x would have been selected and not v. So the first property still holds.

Datas Stucturuss. Spring 20040 L. Joskowič

Dijkstra's algorithm: complexity

- The algorithm performs $|V|$ Extract-Min operations and $|E|$ Insert-Queue operations.
- When the priority queue is implemented as a heap, insert takes $O(\lg |V|)$ and Extract-Min takes $O(\lg (|V|)$. The total time is $O(|V| \lg |V|)+O(|E| \lg |V|)=O(|E| \lg |V|)$
- When $|E|=O\left(|V|^{2}\right)$, this is not optimal. In this case, there are many more insert than extract operations.
- Solution: Implement the priority queue as an array! Insert will take $O(1)$ and Extract-Min $O(|V|) \rightarrow$

$$
O\left(|V|^{2}\right)+O(|E|)=O\left(|V|^{2}\right)
$$

which is better than the heap as long as $|E|$ is $O\left(|V|^{2} / \lg (|V|)\right)$.

Application: difference constraints

- Given a system of m difference constraints over n variables, find a solution if one exists.

$$
x_{i}-x_{j} \leq b_{k}
$$

for $1 \leq i, j \leq n$ and $1 \leq k \leq m$

- Constraint graph G : each variable x_{i} is a vertex, each constraint $x_{i}-x_{j} \leq b_{k}$ is a directed edge from x_{i} to x_{j} with weight b_{k}.
- When G does not have negative cycles, the minimum path distances of the vertices are the solution to the system of constraint differences.

Example: difference constraints (2)

Solution:
$\boldsymbol{x}=(-5,-3,0,-1,-4)$

Example: difference constraints (1)
$x_{1}-x_{2} \leq 0$
$x_{1}-x_{5} \leq-1$
$x_{2}-x_{5} \leq 1$
$x_{3}-x_{1} \leq 5$
$x_{4}-x_{1} \leq 4$
$x_{4}-x_{3} \leq-1$
$x_{5}-x_{3} \leq-3$
$x_{5}-x_{4} \leq-3$
Solution:
$x=(-5,-3,0,-1,-4)$

Why does this work?

Theorem: Let $A \mathrm{x} \leq b$ be a set of m difference constraints over n variables, and $G=(V, E)$ its corresponding constraint graph. If G has no negative weight cycles, then

$$
\boldsymbol{x}=\left(\delta\left(v_{0}, v_{1}\right), \delta\left(v_{0}, v_{2}\right), \ldots, \delta\left(v_{0}, v_{n}\right)\right)
$$

is a feasible solution for the system. If G has a negative cycle, then there is no feasible solution.
Proof outline: For all edges $\left(v_{i}, v_{j}\right)$ in E :

$$
\begin{gathered}
\delta\left(v_{0}, v_{j}\right) \leq \delta\left(v_{0}, v_{i}\right)+w\left(v_{i}, v_{j}\right) \\
\delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{i}\right) \leq w\left(v_{i}, v_{j}\right) \\
x_{j}-x_{j} \leq w\left(v_{i}, v_{j}\right)
\end{gathered}
$$

Summary

- Solving the shortest-path problem on weighted graphs is performed by relaxation, based on the path triangle inequality: for all edges $e=(u, v) \in E$:

$$
\delta(s, v) \leq \delta(s, u)+w(u, v)
$$

- Two algorithms for solving the problem:
- Bellman Ford: for each vertex, relaxation on all edges. Takes $O(|E| .|V|)$ time. Works on graphs with nonnegative cycles.
- Dijkstra: BFS-like, takes $O(|E| \lg |V|)$ time.

