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Data Structures – LECTURE 15 

Shortest paths algorithms

• Properties of shortest paths

• Bellman-Ford algorithm

• Dijsktra’salgorithm

Chapter 24 in the textbook (pp 580–599).
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Weighted graphs -- reminder
• A weighted graph is graph in which edges               

have weights (costs) w(vi, vj) > 0.

• A graph is a weighted graph in which all costs are 1. 
Two vertices with no edge (path) between them can 
be thought of having an edge (path) with weight � . 
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The cost of a path is 
the sum of the costs 
of its edges:
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Example: weighted graph
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Two basic properties of shortest paths
Triangle inequality

Let G=(V,E) be a weighted directed graph, w: E � R
a weight function and s� V be a source vertex. Then, 
for all edges e=(u,v) � E: 

�
(s,v) �

�
(s,u) + w(u,v) 

Optimal substructure of a shortest path

Let p = <v1, .. vk> be the shortest path between v1 and 
vk.  The sub-path between vi and vj, where  1 � i,j � k,
pij = <vi, .. vj> is a shortest path.
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Negative-weight edges
• Shortest paths are well-defined as long as there 

are no negative-weight cycles. In such cycles, the 
longer the path, the lower the value � the 
shortest path has an infinite number of edges!

• Allow negative-weight edges, but disallow (or 
detect) negative-weight cycles!
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Shortest paths and cycles
• The shortest path between any two vertices has no 

positive-weight cycles.

• The representation for shortest paths between a 
vertex and all other vertices is the same as the one 
used in the unweigthed BFS: breath-first tree:      
G� = (V� ,E� ) such that V� = { v � V: � [v] � null} � { s}     

and E� = { ( � [v],v), v � V –{ s} }

• We will prove that a breath-first tree is a shortest-path tree
for its root s in which vertices reachable from s are in it 
and  the unique simple path from s to v is shortest.
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Example: shortest-path tree 
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Example: shortest-path tree 
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Estimated distance from source
• As for BFS on unweighted graphs, we keep a label 

which is the current best estimate of the shortest 
distance between sand v. 

• Initially, dist[s] = 0 and dist[v] = � for all v
�

s, 
and � [v] = null.

• At all times during the algorithm, dist[v] �
�
(s,v). 

• At the end, dist[v] = 
�
(s,v) and (� [v],v) � E�
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Edge relaxation
• The process of relaxing an edge (u,v) consists of 

testing whether it can improve the shortest path 
from s to v so far by going through u.

Relax(u,v)

if dist[v] > dist[u] + w(u,v)

then dist[v] � dist[u] + w(u,v)

� [v] � u
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Properties of shortest paths and relaxation
Triangle inequality

�
e = (u,v) � E:  

�
(s,v) �

�
(s,u) + w(u,v) 

Upper-boundary property
�

v � V:  dist[v] �
�
(s,v) at all times, and it keeps 

decreasing.

No-path property

if there is no path from s to v, then                
dist[v]=

�
(s,v) = �
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Properties of shortest paths and relaxation
Convergence property

if s � u� v is a shortest path in G for someu and v, and
dist[u]= 	 (s,u) at any time prior to relaxing edge (u,v), then 
dist[v]= 	 (s,v) at all times afterwards.

Path-relaxation property

Let  p = <v0, .. vk> be the shortest path between v0 and vk. When 
the edges are relaxed in the order (v0, v1), (v1, v2), … (vk-1, vk), 
then dist[vk]= 	 (s,vk). 

Predecessor sub-graph property

once dist[v]= 	 (s,v) 
 v � V, the predecessor subgraph is a 
shortest-paths tree rooted at s. 
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Two shortest-path algorithms

1. Bellmann-Ford algorithm

2. Dijkstra’salgorithm – Generalization of BFS
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Bellman-Ford’s algorithm: overview
• Allows negative weights. If there is a negative cycle, 

returns “a negative cycle exists” . 

• The idea:

– There is a shortest path from s to any other vertex 
that does not contain a non-negative cycle (can be 
eliminated to produce a shorter path). 

– The maximal number of edges in such a path with 
no cycles is |V|–1, because it can have at most |V| 
nodes on the path if there is no cycle.  

– � it is enough to check paths of up to |V|–1 edges.
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Bellman-Ford’s algorithm
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Example: Bellman-Ford’s algorithm (1)
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Example: Bellman-Ford’s algorithm (2)
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Example: Bellman-Ford’s algorithm (3)
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Example: Bellman-Ford’s algorithm (4)
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Example: Bellman-Ford’s algorithm (5)
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Bellman-Ford’s algorithm: properties
• The first pass over the edges – only neighbors of s

are affected (1-edge paths). All shortest paths with 
one edge are found. 

• The second pass – shortest paths with edges are 
found.

• After |V|-1 passes, all possible paths are checked.

• Claim:  we need to update any vertex in the last 
pass if and only if there is a negative cycle 
reachable from s in G. 
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Bellman Ford algorithm: proof (1)
• One direction we already know: if we need to update an 

edge in the last iteration then there is a negative cycle, 
because we proved before that if there are no negative 
cycles, and the shortest paths are well defined, we find them 
in the |V|–1 iteration. 

• We claim that if there is a negative cycle, we will discover a 
problem in the last iteration. Because, suppose there is a 
negative cycle

• But  the algorithm does not find any problem in the last 
iteration, which means that for all edges, we have that

for all edges in the cycle.

),([u][v] vuwdist dist �
�

010 ,,.... vvvv kk ��
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• Proof by contradiction: for all edges in the cycle

• After summing up over all edges in the cycle, we discover 
that the term on the left is equal to the first term on the right 
(just a different order of summation). We can subtract them, 
and we get that the cycle is actually positive, which is a 
contradiction. 
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Bellman-Ford’s algorithm: complexity
• Visits |V|–1 vertices � O(|V|)

• Performs vertex relaxation on all edges � O(|E|)

• Overall, O(|V|.|E|) time and O(|V|+|E|) space.



Data Structures, Spring 2004 © L. Joskowicz � �

Bellman-Ford on DAGs
For Directed Acyclic Graphs (DAG), O(|V|+|E|)
relaxations are sufficient when the vertices are visited in 
topologically sorted order:

DAG-Shortest-Path(G)
1. Topologically sort the vertices in G
2. Initialize G (dist[v] and � (v)) with s as source. 
3. for each vertex u in topologically sorted order do
4. for each vertex v incident to u do
5. Relax(u,v)
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Example: Bellman-Ford on a DAG (1)
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Example: Bellman-Ford on a DAG (2)
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Example: Bellman-Ford on a DAG (3)
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Example: Bellman-Ford on a DAG (4)
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Example: Bellman-Ford on a DAG (5)
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Example: Bellman-Ford on a DAG (6)
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Example: Bellman-Ford on a DAG (7)
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Bellman-Ford on DAGs: correctness

Path-relaxation property

Let  p = <v0, .. vk> be the shortest path between v0

and vk. When the edges are relaxed in the order 
(v0, v1), (v1, v2), … (vk-1, vk), then dist[vk]=

�
(s,vk).

In a DAG, we have the correct ordering!

Therefore, the complexity is O(|V|+|E|).
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Dijkstra’s algorithm: overview

Idea: Do the same as BFS for unweighted graphs, 
with two differences:

– use the cost as the distance function 

– use a minimum priority queue instead of a simple 
queue.
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The BFS algorithm
BFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null
for all vertices u in V – { s}  do

label[u] � not_visited; dist[u] = � ; � [u] = null
EnQueue(Q,s)
while Q is not empty do

u � DeQueue(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
dist[v] � dist[u] + 1; � [v] � u
EnQueue(Q,v)

label[u] � visited
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Example: BFS algorithm
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Example: Dijkstra’s algorithm
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Dijkstra’s algorithm
Dijkstra(G, s)
label[s] � current; dist[s] = 0; � [u] = null
for all vertices u in V – { s}  do

label[u] � not_visited; dist[u] = � ; � [u] = null
Q � s
while Q is not empty do

u � Extract-Min(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
if d[v] > d[u]  + w(u,v) 

then d[v] � d[u] + w(u,v); � [v] = u
Insert-Queue(Q,v)

label[u] = visited
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Example: Dijkstra’s algorithm (1)
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Example: Dijkstra’s algorithm (2)
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Example: Dijkstra’s algorithm (3)
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Example: Dijkstra’s algorithm (4)
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Example: Dijkstra’s algorithm (5)
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Example: Dijkstra’s algorithm (6)
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Dijkstra’s algorithm: correctness (1)
Theorem: Upon termination of the Dijkstra’s algorithm, 

for each dist[v] = 
�
(s,v) for each vertex v � V,

Definition: a path from s to v is said to be a special path if 
it is the shortest path from s to v in which all vertices 
(except maybe for v) are inside S. 

Lemma: At the end of each iteration of the while loop, the 
following two properties hold:

1. For each w � S, dist[w] is the length of the shortest 
path from s to w which stays inside S. 

2. For each w � V–S , dist(w) is the length of the shortest 
special path from s to w. 

The theorem follows when S= V. Data Structures, Spring 2004 © L. Joskowicz � �

Dijkstra’s algorithm: correctness (2)
Proof: by induction on the size of S.

• For |S|=1, it is clearly true: dist[v] = � except for the  
neighbors of s, which contain the length of the shortest 
special path. 

• Induction step: suppose that in the last iteration node v
was added added to S. By the induction assumption, 
dist[v] is the length of the shortest special path to v. It is 
also the length of the general shortest path to v, since if 
there is a shorter path to v passing through nodes of S, 
and x is the first node of S in that path, then x would have 
been selected and not v. So the first property still holds.
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Property 2: Let x � S. Consider the shortest new special path to w

If it doesn’ t include v, dist[x] is the length of that path by the 
induction assumption from the last iteration since dist[x] did 
not change in the final iteration. 

If it does include v, then v can either be a node in the middle or 
the last node before x. Note that v cannot be a node in the 
middle since then the path would pass from s to v to y in S, 
but by property 1, the shortest path to y would have been 
inside S� v need not be included. 

If v is the last node before x on the path, then dist[x] contains 
the distance of that path, by the substitution                  
dist[x] = dist[v] + w(v,x) in the algorithm. 

Dijkstra’s algorithm: correctness (3)
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Dijkstra’s algorithm: complexity
• The algorithm performs |V| Extract-Min operations and |E| 

Insert-Queue operations. 

• When the priority queue is implemented as a heap, insert 
takes O(lg|V|) and Extract-Min takes O(lg(|V|).  The total 
time is O(|V|lg|V |) + O(|E|lg|V|) = O(|E|lg|V|) 

• When |E| = O(|V|2), this is not optimal. In this case, there are 
many more insert than extract operations. 

• Solution: Implement the priority queue as an array!  Insert 
will take O(1) and Extract-Min O(|V|) �

O(|V|2) + O(|E|) = O(|V|2) 

which is better than the heap as long as |E| is O(|V|2/lg (|V|)).
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Application: difference constraints
• Given a system of m difference constraints over n

variables, find a solution if one exists. 
xi – xj � bk

for 1 � i, j � n and 1 � k � m
• Constraint graph G: each variable xi is a vertex, 

each constraint xi – xj � bk is a directed edge from 
xi to xj with weight bk .

• When G does not have negative cycles, the 
minimum path distances of the vertices are the 
solution to the system of constraint differences.
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Example: difference constraints (1)
x1 – x2 � 0
x1 – x5 � -1
x2 – x5 � 1
x3 – x1 � 5
x4 – x1 � 4
x4 – x3 � -1
x5 – x3 � -3
x5 – x4 � -3

Solution: 
x = (-5,-3,0,-1,-4)
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Example: difference constraints

Solution: 
x = (-5,-3,0,-1,-4)
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Why does this work?
Theorem: Let Ax � b be a set of m difference 

constraints over n variables, and G=(V,E) its 
corresponding constraint graph. If G has no 
negative weight cycles, then

x = (
�
(v0,v1),

�
(v0,v2), … ,

�
(v0,vn))

is a feasible solution for the system. If G has a 
negative cycle, then there is no feasible solution. 

Proof outline: For all edges (vi,vj) in E:
�
(v0,vj) �

�
(v0,vi) + w(vi,vj)

�
(v0,vj) –

�
(v0,vi) � w(vi,vj)

xj – xj � w(vi,vj)
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Summary
• Solving the shortest-path problem on weighted 

graphs is performed by relaxation, based on the 
path triangle inequality: for all edges e=(u,v) � E: 

�
(s,v) �

�
(s,u) + w(u,v) 

• Two algorithms for solving the problem: 
– Bellman Ford: for each vertex, relaxation on all edges. 

Takes O(|E|.|V|) time. Works on graphs with non-
negative cycles. 

– Dijkstra: BFS-like, takes O(|E|lg|V|) time. 


