Data Structures - LECTURE 12

Graphs and basic search algorithms

- Motivation
- Definitions and properties
- Representation
- Breadth-First Search
- Depth-First Search
- Chapter 22 in the textbook (pp 221-252).

Motivation

- Many situations can be described as a binary relation between objects:
 - Web pages and their accessibility
 - Roadmaps and plans
 - Transition diagrams
- A *graph* is an abstract structure that describes a binary relation between elements. It is a generalization of a *tree*.
- Many problems can be reduced to solving graph problems: shortest path, connected components, minimum spanning tree, etc.

Graph (גרפים): definition

- A graph G = (V,E) is a pair, where V = {v₁, ... v_n} is the vertex set (nodes) and E = {e₁, ... e_m} is the edge set. An edge e_k = (v_i, v_j) connects (is incident to) two vertices v_i and v_i of V.
- Edges can be undirected or directed (unordered or odered): e_{ij}: v_i v_j or e_{ij}: v_i -> v_j
- The graph G is finite when |V| and |E| are finite.
- The size of graph G is |G| = |V| + |E|.

Data Structures, Spring 2004 © L. Joskowi

Directed graphs

- In a directed graph, we say that an edge e = (u,v) leaves *u* and enters *v* (*v* is adjacent, a neighbor of *u*).
- Self-loops are allowed: an edge can leave and enter *u*.
- The *in-degree* d_{in}(v) of a vertex v is the number of edges entering v. The *out-degree* d_{out}(v) of a vertex v is the number of edges leaving v. Σd_{in}(v_i) = Σd_{out}(v_i)
- A *path* from *u* to *v* in *G* = (*V*,*E*) of length *k* is a sequence of vertices $\langle u = v_0, v_1, ..., v_k = v \rangle$ such that for every *i* in [1,...,k] the pair (v_{i-1},v_i) is in *E*.

Data Structures, Spring 2004 © L. Joskowic

Undirected graphs

- In an undirected graph, we say that an edge e = (u,v) is incident on *u* and *v*.
- Undirected graphs have no self-loops.
- Incidency is a symmetric relation: if e = (u,v)then *u* is a neighbor of *v* and *v* is a neighbor of *u*.
- The degree of a vertex d(v) is the total number of edges incident on v. Σd(v_i) = 2|E|.
- Path: as for directed graphs.

a Structures, Spring 2004 © L. Joskowicz

Graphs terminology

- A cycle (circuit) is a path from a vertex to itself of length ≥ 1
- A *connected graph* is an undirected graph in which there is a path between any two vertices (every vertex is *reachable* from every other vertex).
- A *strongly-connected graph* is a directed graph in which for any two vertices *u* and *v* there is a directed path from *u* to *v* and from *v* to *u*.
- A graph G' = (V', E') is a *sub-graph* of G = (V, E), G' ⊆ G when V' ⊆ V and E' ⊆ E.
- The (strongly) connected components G₁, G₂, ... of a graph G are the largest (strongly) connected sub-graphs of G.

Size of graphs

- There are at most |E| = O(|V|²) edges in a graph.
 <u>Proof</u>: each node can be in at most |V| edges.
 A graph in which |E| = |V|² is called a *clique*.
- There are at least $|E| \ge |V|-1$ edges in a connected graph.
- <u>Proof:</u> By induction on the size of V.
- A graph is *planar* if it can be drawn in the plane with no two edges crossing. In a planar graph, |E| = O(|V|). The smallest non-planar graph has 5 vertices.

Data Structures, Spring 2004 © L. Joskowic

Trees and graphs

- A tree is a connected graph with no cycles.
- A tree has |E| = |V| 1 edges.
- The following four conditions are equivalent:
 - 1. G is a tree.

Data Structures, Spring 2004 © L. Joskow

- 2. *G* has no cycles; adding a new edge forms a cycle.
- 3. *G* is connected; deleting any edge destroys its connectivity.
- 4. *G* has no self-loops and there is a path between any two vertices.
- Similar definitions for a directed tree.

11

Graphs representation Two standard ways of representing graphs: Adjacency list: for each vertex *v* there is a linked list L_v of its neighbors in the graph. Size of the representation: Θ(|*V*|+|*E*|). Adjacency matrix: a |*V*| ×|*V*| matrix in which an edge *e* = (*u*,*v*) is represented by a non-zero (*u*,*v*) entry. Size of the representation: Θ(|*V*|²). Adjacency lists are better for sparse graphs. Adjacency matrices are better for dense graphs.

Graph problems and algorithms

- Graph traversal algorithms
 - Breath-First Search (BFS)
 - Depth-First Search (DFS)
- Minimum spanning trees (MST)
- Shortest-path algorithms
 - Single path
 - Single source shortest path
 - All-pairs shortest path
 - Strongly connected components
- Other problems: planarity testing, graph isomorphism

There are three main types of shortest path problems:

- 1. <u>Single path</u>: given two vertices, *s* and *t*, find the shortest path from *s* to *t* and its length (distance).
- 2. <u>Single source</u>: given a vertex *s*, find the shortest paths to all other vertices.
- 3. <u>All pairs</u>: find the shortest path from all pairs of vertices (*s*, *t*).

We will concentrate on the single source problem since 1. ends up solving this problem anyway, and 3. can be solved by applying 2. |V| times.

Intuition: how to search a graph

- Start at the vertex *s* and label its level at 0.
- If *t* is a neighbor of *s*, stop. Otherwise, mark the neighbors of *s* as having level 1.
- If *t* is a neighbor of a vertex at level *i*, stop. Otherwise, mark the neighbors of vertices at level *i* as having level *i*+1.
- When *t* is found, trace the path back by going to vertices at level *i*, *i* –1, *i* –2, …0.

17

• The graph becomes in effect a shortest-path neighbor tree!

16

• The *current* vertices are stored in a queue Q.

BFS characteristics

- Q contains only current vertices.
- Once a vertex becomes *current* or *visited*, it is never labeled again *not_visited*.
- Once all the neighbors of a *current* vertex have been considered, the vertex becomes *visited*.
- The algorithm can be easily modified to stop when a target *t* is found, or report that no path exists.
- The BSF algorithm builds a *predecessor sub-graph*, which is a *breath-first tree:* $G_{\pi} = (V_{\pi}, E_{\pi})$
- $V_{\pi} = \{ v \in V: \pi[v] \neq null \} \cup \{s\} \text{ and } E_{\pi} = \{ (\pi[v], v), v \in V \{s\} \}$

Complexity of BFS

- The algorithm removes each vertex from the queue only once. There are thus |*V*| DeQueue operations.
- For each vertex, the algorithm goes over all its neighbors and performs a constant number of operations. The amount of work per vertex in the **if** part of the **while** loop is a constant times the number of outgoing edges.
- The total number of operations (**if** part) for all vertices is a constant times the total number of edges |*E*|.

27

29

Data Structures, Spring 2004 © L. Joskowicz

• <u>Overall</u>: O(|V|) + O(|E|) = O(|V| + |E|), at most $O(|V|^2)$

Data Structures, Spring 2004 © L. Josko

• Define $\delta(s,u)$ to be the *shortest distance* from *s* to *u* (the minimum number of edges).

 $\delta(u,u) = 0$ and $\delta(s,u) = \infty$ when there is no path.

• Let G = (V,E) be a graph (directed or undirected) and $s \in V$.

<u>Lemma 1</u>: For every edge $(u, v) \in E$,

 $\delta(s,v) \le \delta(s,u) + 1$

<u>Proof</u>: the shortest path from *s* to *v* cannot be longer than the shortest path from *s* to *u* plus edge (u,v). If *u* is not reachable from *s*, $\delta(s,u) = \infty$.

BFS correctness (2)

30

BFS correctness (4)

Enqueuing: when v is enqueued, it becomes v_{r+1} . At this time, vertex u whose adjacency list is currently been scanned has been removed from Q. By the induction hypothesis, the new head v_1 has $dist[v_1] \ge dist[u]$. Thus, $dist[v_{r+1}] = dist[v] = dist[u] + 1 \le dist[v_1] + 1$ From the inductive hypothesis, $dist[v_r] \le dist[u]$, and so

 $dist[v_r] \le dist[u] + 1 = dist[v] = dist[v_{r+1}]$

and the other inequalities remain unaffected.

<u>Corollary</u>: If vertex v_i was enqueued before vertex v_j during BFS, then $dist[v_i] \le dist[v_j]$ when v_j is enqueued.

Data Structures, Spring 2004 © L. Joskowicz

BFS correctness (4)

<u>Theorem</u>: During its execution, BFS discovers every vertex $v \in V$ that is reachable from *s*. Upon termination, $dist[v] = \delta(s,v)$. For all reachable vertices *v* except for *s*, one of the shortest paths from *s* to *v* is a shortest path from *s* to $\pi[v]$ followed by the edge ($\pi[v], v$).

Proof outline:

31

by contradiction, assume that there is a vertex *v* that receives a distance value such that $dist[v] > \delta(s,v)$.

– Clearly, v cannot be s.

BFS correctness (5)

- Vertex *v* must be reachable from *s* for otherwise $\delta(s,v) = \infty \ge dist[v]$ and thus $dist[v] \ge \delta(s,v)$.

- Let *u* be the vertex immediately preceding *v* on a shortest path from *s* to *v* so that $\delta(s,v) = \delta(s,u) + 1$. Because $\delta(s,u) < \delta(s,v)$, $dist[u] = \delta(s,u)$. Therefore:

 $dist[v] > \delta(s,v) = \delta(s,u) + 1 = dist[u] + 1$

- Consider now the time when u is dequeued. Vertex v is either not_visited, current, or visited.
- Each case leads to a contradiction! Thus, $dist[v] = \delta(s,v)$
- In addition, if $\pi[v] = u$, then dist[v] = dist[u] + 1. Thus, we obtain the shortest path from *s* to *v* by taking a shortest path from *s* to $\pi[v]$ and then traversing the edge ($\pi[v], v$).

The DFS algorithm: overview (1)

- Search the graph starting at *s* and proceed as deep as possible (*expansion path*) until no unexplored vertices remain. Then go back to the previous vertex and choose the next unvisited neighbor (*backtracking*). If any undiscovered vertices remain, select one of them as the source and repeat the process.
- Note that the result is a forest of *depth-first trees*:

 $G_{\pi} = (V, E_{\pi})$ $E_{\pi} = \{(\pi[v], v), v \in V \text{ and } \pi[v] \neq \textbf{null}\}$ where $\pi[v]$ is the predecessor of v in the search tree

• As for BFS, there are three three types of vertices: *visited*, *current*_s, and *not*_w*visited*.

The DFS algorithm: overview (2)

- Two additional fields holding *timestamps*.
 - -d[u]: timestamp when u is first discovered (u becomes *current*).
 - -f[u]: timestamp when the neighbors of *u* have all been explored (*u* becomes visited).
- Timestamps are integers between 1 and 2|V|, and for every vertex *u*, *d*[*u*] < *f* [*u*].
- · Backtracking is implemented with recursion.

Data Structures, Spring 2004 © L. Joskowic

The DFS algorithm

DFS(G, s)

 $label[s] \leftarrow current; dist[s] = 0; \pi[s] = null; time \leftarrow 0.$ for each vertex u in do if label[u] = not_visited then DFS-Visit(u)

$\underline{\text{DFS-Visit}}(u)$

35

 $label[u] = current; time \leftarrow time +1; \ d[u] \leftarrow time$ for each v that is a neighbor of u do if label[v] = not_visited then $\pi[v] \leftarrow u$; DFS-Visit(v) label[u] \leftarrow visited $f[u] \leftarrow time \leftarrow time + 1$

Complexity of DFS The algorithm visits every node v∈V → Θ(|V|) For each vertex, the algorithm goes over all its neighbors and performs a constant number of operations. Overall, DFS-Visit is called only once for each v in V, since the first thing that the procedure does it label v as *current*. In DFS-Visit, the recursive call is made for at most the number of edges incident to v: Σ_{v∈V} |neighbors[v]| = Θ(|E|) Overall: Θ(|V|) + Θ(|E|) = Θ(|V|+|E|), at most Θ(|V|²) Same complexity as BFS!

Data Structures, Spring 2004 © L. Joskowic

DFS correctness (1)

<u>Theorem 1</u> (parenthesis theorem):

ares, Spring 2004 © L. Joskowic

41

- In any DFS of a graph G = (V,E) for any two vertices u and v, exactly one of the next conditions hold:
- 1. The intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint and neither *u* nor *v* is a descendant of each other.
- 2. The interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]] and *u* is a descendant of *v*.
- 3. The interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]] and v is a descendant of u.

42

DFS correctness (2)

<u>Proof</u>: Assume first that d[u] < d[v]. Then either

- 1. $d[v] < f[u] \rightarrow v$ was discovered while *u* was still *current*. Therefore, *v* is a descendant of *u*. Also, since *v* was discovered more recently than *u*, all of its (outgoing) edges are explored and *v* is labeled *visited* before the search returns and finishes $u \rightarrow [d[v], f[v]]$ is included in [d[u], f[u]].
- 2. $f[u] \le d[v]$. Since d[u] < d[v] by definition, intervals [d[v], f[v]] and [d[u], f[u]] are entirely disjoint. Also, neither vertex was discovered while the other was *current*, so neither is a descendant of the other.

The proof for d[v] < d[u] is symmetrical.

<u>Corollary</u>: v is a descendant of u iff d[u] < d[v] < f[v] < f[u].

DFS correctness (3)

Theorem 2 (visited path theorem):

In a depth-first forest of graph G = (V,E) vertex v is a descendant of u iff at the time d[u] when the search discovers u, node v can be reached from u along a path consisting entirely of *not_visited* nodes.

Proof:

→ assume v is a descendant of u. Let w be a node on the path between u and v in the depth-first tree so that w is a descendant of u. By the previous corollary, d[u] < d[w] and so w is not_visited at time d[u].

DFS correctness (4)

← Suppose v is reachable from u along a path with visited vertices at time d[u], but v does not become a descendant of u. Without loss of generality, assume that every other vertex along the path becomes a descendant of u. Let w be a predecesor of v and a descendant of u. Then $f[w] \le f[v]$. Note that v must be discovered after u is discovered, but before w is finished. Therefore, $d[u] < d[v] < f[w] \le f[u]$.

This implies that [d[v], f[v]] is included in [d[u], f[u]].

Therefore, v must be a descendant of u.

Data Structures, Spring 2004 © L. Joskowicz

Classification of edges

Edges in the depth-first forest

 $G_{\pi} = (V, E_{\pi})$ and $E_{\pi} = \{(\pi[v], v), v \in V \text{ and } \pi[v] \neq null\}$ can be classified into four categories:

- 1. Tree edges: depth-first forest edges in E_{π}
- 2. *Back edges*: edges (*u*,*v*) connecting a vertex *u* to an ancestor *v* in a depth-first tree (includes self-loops)
- 3. *Forward edges*: non-tree edges (*u*,*v*) connecting a vertex *u* to a descendant *v* in a depth-first tree.
- Cross edges: all other edges. Go between vertices in the same depth-first tree without an ancestor relation between them.

Summary: Graphs, BFS, and DFS

- A graph is a useful representation for binary relations between elements. Many problems can be modeled as graphs, and solved with graph algorithms.
- Two ways of finding a path between a starting vertex *s* and all other vertices of a graph:
 - <u>Breath-First Search (BFS)</u>: search all vertices at level *i* before moving to level *i*+1.
 - <u>Depth-First search (DFS)</u>: follow vertex adjacencies, one vertex at each level *i* and backtracking for alternative neighbor choices.
- Complexity: linear in the size of the graph: $\Theta(|V|+|E|)_{_{49}}$