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Data Structures – LECTURE 12 

Graphs and basic search algorithms

• Motivation

• Definitions and properties

• Representation

• Breadth-First Search 

• Depth-First Search

Chapter 22 in the textbook (pp 221—252).
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Motivation
• Many situations can be described as a binary 

relation between objects:
– Web pages and their accessibility
– Roadmaps and plans
– Transition diagrams

• A graph is an abstract structure that describes a 
binary relation between elements. It is a 
generalization of a tree. 

• Many problems can be reduced to solving graph 
problems: shortest path, connected components, 
minimum spanning tree, etc. 
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Example: finding your way in the Metro

• Stations are 
vertices (nodes)

• Line segments 
are edges.

• Shortest path = 
shortest 
distance, time.

• Reachable 
stations.

start

finish
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Graph ( ): definition

• A graph G = (V,E) is a pair, where V = { v1, .. vn}  is 
the vertex set (nodes) and E = { e1, .. em}  is the edge 
set. An edge ek = (vi ,vj) connects (is incident to) two 
verticesvi and vj of V. 

• Edges can be undirected or directed (unordered or 
odered):          eij: vi — vj or eij: vi —> vj

• The graph G is finite when |V| and |E| are finite.         

• The size of graph G is |G| = |V| + |E|. 
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Graphs: examples
Let V = { 1,2,3,4,5,6}

1 2 3

4 5 6

Directed graph

1 2 3

4 5 6

Undirected graph
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Weighted graphs
• A weighted graph is graph in which edges               

have weights (costs) c(vi, vj) > 0.

• A graph is a weighted graph in which all costs are 1. 
Two vertices with no edge (path) between them can 
be thought of having an edge (path) with weight � . 
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Directed graphs
• In a directed graph, we say that an edge e = (u,v) 

leaves  u and enters v (v is adjacent, a neighbor of u). 

• Self-loops are allowed: an edge can leave and enter u. 

• The in-degree din(v) of a vertex v is the number of 
edges entering v. The out-degree dout(v) of a vertex v
is the number of edges leaving v. 

�
din(vi) = 

�
dout(vi) 

• A path from u to v in G = (V,E) of length k is a 
sequence of vertices <u = v0,v1,…, vk = v> such that 
for every i in [1,…,k] the pair (vi–1,vi) is in E.
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Undirected graphs

• In an undirected graph, we say that an edge         
e = (u,v) is incident on u and v.

• Undirected graphs have no self-loops. 

• Incidency is a symmetric relation: if e = (u,v) 
then u is a neighbor of v and v is a neighbor of u. 

• The degree of a vertex d(v) is the total number of 
edges incident on v. 

�
d(vi) = 2|E|. 

• Path: as for directed graphs. 
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Graphs terminology
• A cycle (circuit) is a path from a vertex to itself of length � 1

• A connected graph is an undirected graph in which there is a 
path between any two vertices (every vertex is reachable 
from every other vertex).

• A strongly-connected graph is a directed graph in which for 
any two vertices u and v there is a directed path from u to v
and from v to u.

• A graph G’= (V’ ,E’ ) is a sub-graph of G = (V,E), G’ � G

when  V’ � V and  E’ � E.

• The (strongly) connected components G1, G2, … of a graph G
are the largest (strongly) connected sub-graphs of G.  
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Size of graphs
• There are at most |E| = O(|V|2) edges in a graph.      

Proof: each node can be in at most |V| edges.       
A graph in which |E| = |V|2 is called a clique.

• There are at least |E| � |V|–1 edges in a connected 
graph. 
Proof: By induction on the size of V.

• A graph is planar if it can be drawn in the plane 
with no two edges crossing.  In a planar graph,  
|E| = O(|V|). The smallest non-planar graph has 5 
vertices.
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Trees and graphs
• A tree is a connected graph with no cycles.
• A tree has |E| =|V|–1  edges.  
• The following four conditions are equivalent:

1. G is a tree.
2. G has no cycles; adding a new edge forms a cycle.
3. G is connected; deleting any edge destroys its 

connectivity.
4. G has no self-loops and there is a path between 

any two vertices.
• Similar definitions for a directed tree. 
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Graphs representation
Two standard ways of representing graphs:

1. Adjacency list: for each vertex v there is a 
linked list Lv of its neighbors in the graph.    
Size of the representation: � (|V|+|E|).

2. Adjacency matrix: a |V| ×|V| matrix in which an 
edge e = (u,v) is represented by a non-zero (u,v) 
entry. Size of the representation: � (|V|2).

Adjacency lists are better for sparse graphs. 

Adjacency matrices are better for dense graphs. 
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Example: adjacency list representation

1 2 3

4 5 6

V Li

1

2

3

4

5

6

null

6

3

5 2

1 5

2 1

V = {1,2,3,4,5,6}
E = { (1,2),(1,5),(2,5),(3,6)}
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Example: adjacency matrix representation

1 2 3

4 5 6

1
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1 2 3 4 5 6

1

1

1
1 1

1

1

1

A

For undirected graphs, A = AT

V = {1,2,3,4,5,6}
E = { (1,2),(1,5),(2,5),(3,6)}
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Graph problems and algorithms
• Graph traversal algorithms

– Breath-First Search (BFS) 

– Depth-First Search (DFS)

• Minimum spanning trees (MST)

• Shortest-path algorithms
– Single path

– Single source shortest path

– All-pairs shortest path

– Strongly connected components

• Other problems: planarity testing, graph isomorphism
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There are three main types of shortest path problems:

1. Single path: given two vertices, sand t, find the 
shortest path from s to t and its length (distance). 

2. Single source: given a vertex s, find the shortest 
paths to all other vertices. 

3. All pairs: find the shortest path from all pairs of 
vertices (s, t).

We will concentrate on the single source problem 
since 1. ends up solving this problem anyway, and 3. 
can be solved by applying 2. |V| times.  

Shortest path problems

Data Structures, Spring 2004 © L. Joskowicz
� �

Intuition: how to search a graph
• Start at the vertex sand label its level at 0.

• If t is a neighbor of s, stop. Otherwise, mark the 
neighbors of sas having level 1.

• If t is a neighbor of a vertex at level i, stop. 
Otherwise, mark the neighbors of vertices at level i
as having level i+1.

• When t is found, trace the path back by going to 
vertices at level i, i –1, i –2, …0. 

• The graph becomes in effect a shortest-path 
neighbor tree! 
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Example: a graph search problem...

s

a b c

d e f

t



Data Structures, Spring 2004 © L. Joskowicz
� �

… becomes a tree search problem
s
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How is the tree searched?
The tree can be searched in two ways:

• Breadth: search all vertices at level i before moving 
to level i+1 � Breadth-First Search (BFS).

• Depth: follow the vertex adjacencies, searching a 
node at each level i and backing up  for alternative 
neighbor choices � Depth-First Search (DFS).
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Breadth-first search
s
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Depth-first search
s
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The BFS algorithm: overview
• Search the graph by successive levels (expansion 

wave) starting at s.
• Distinguish between three types of vertices:

– visited: the vertex and all its neighbors have been visited.
– current: the vertex is at the frontier of the wave.
– not_visited: the vertex has not been reached yet.

• Keep three additional fields per vertex: 
– the type of vertex label[u]: visited, current, not_visited
– the distance from the source s, dist[u]
– the predecessor of u in the search tree, � [u]. 

• The current vertices are stored in a queue Q.  
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The BFS algorithm
BFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null
for all vertices u in V – { s}  do

label[u] � not_visited; dist[u] = � ; � [u] = null
EnQueue(Q,s)
while Q is not empty do

u � DeQueue(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
dist[v] � dist[u] + 1; � [v] � u
EnQueue(Q,v)

label[u] � visited
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Example: BFS algorithm

s

a b c

d e f

t

0

1 2 3

1 2 3

4

Breath-first tree

Data Structures, Spring 2004 © L. Joskowicz � �

BFS characteristics
• Q contains only current vertices.

• Once a vertex becomes current or visited, it is never 
labeled again not_visited.

• Once all the neighbors of a current vertex have been 
considered, the vertex becomes visited.

• The algorithm can be easily modified to stop when a 
target t is found, or report that no path exists. 

• The BSF algorithm builds a predecessor sub-graph, 
which is a breath-first tree: G� = (V� ,E� )
V� = { v	 V: � [v] 

�
null} 
 { s}  and E� = { (� [v],v), v	 V –{ s} }  
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Complexity of BFS
• The algorithm removes each vertex from the queue 

only once. There are thus |V| DeQueue operations.  

• For each vertex, the algorithm goes over all its 
neighbors and performs a constant number of 
operations. The amount of work per vertex in the if 
part of the while loop is a constant times the number 
of outgoing edges. 

• The total number of operations (if part) for all vertices 
is a constant times the total number of edges |E|. 

• Overall: O(|V|) + O(|E|) = O(|V|+|E|), at most O(|V|2)
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BFS correctness (1)
• Define � (s,u) to be the shortest distance from s to u

(the minimum number of edges).                       �
(u,u) = 0 and 

�
(s,u) = � when there is no path.

• Let G = (V,E) be a graph (directed or undirected) 
and s	 V.

Lemma 1: For every edge (u,v)	 E,             

� (s,v) ��� (s,u) + 1 

Proof: the shortest path from s to v cannot be longer 
than the shortest path from s to u plus edge (u,v).  
If u is not reachable from s, � (s,u) = � .
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BFS correctness (2)
Lemma 2: Upon termination of BFS:�

v	 V, dist[v] � � (s,v).    

Proof: By induction on the number of EnQueue operations. 
The hypothesis is that

�
v	 V dist[v] � � (s,v)

Basis: when s is first enqueued, dist[s] = 
�
(s,s) = 0 and 

dist[v] = � �
�
(s,v) 

�
v	 V–{ s} . 

Inductive step: let v be a not_visited vertex that is 
discovered during the search from u. By the inductive 
hypothesis, dist[u] � � (s,u). After the assignment,   

dist[v] =  dist[u] + 1
� � (s,u) + 1
� � (s,v)     (the value is never changed again)
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BFS correctness (3)
Lemma 3: Suppose that during the execution of BFS on the graph 

the queue Q contains vertices  <v1, .. vr> where v1 and vr are 
Q’s head and tail. Then:  

dist[vr] 	 dist[v1] + 1 and dist[vi] 	 dist[vi+1] for i=1,2,..,r–1 

Proof:  By induction on the number of queue operations. 

Basis: When Q = <s>, dist[s] 	 dist[s] + 1 and 	 dist[s].

Inductive step: lemma holds after enqueuing and dequeueing v.

Dequeuing: when v1 is removed, v2 becomes the new head.   
The inequalities  dist[v1] 	 dist[v2] 	 … 	 dist[vr] still hold. 
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BFS correctness (4)
Enqueuing: when v is enqueued, it becomes vr+1. At this 

time, vertex u whose adjacency list is currently been 
scanned has been removed from Q. By the induction 
hypothesis, the new head v1 has dist[v1] � dist[u]. Thus,  

dist[vr+1] = dist[v] = dist[u] + 1 	 dist[v1] + 1

From the inductive hypothesis, dist[vr] 	 dist[u], and so    

dist[vr] 	 dist[u] + 1 = dist[v] = dist[vr+1] 

and the other inequalities remain unaffected.

Corollary: If vertex vi was enqueued before vertex vj during 
BFS, then dist[vi] 	 dist[vj] when  vj is enqueued. 
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BFS correctness (4)
Theorem: During its execution, BFS discovers every 

vertex v	 V that is reachable from s.  Upon 
termination, dist[v] = � (s,v). For all reachable 
vertices v except for s, one of the shortest paths 
from s to v is a shortest path from s to � [v] followed 
by the edge (� [v],v).

Proof outline: 

by contradiction, assume that there is a vertex v that 
receives a distance value such that dist[v] > � (s,v).
– Clearly, v cannot be s. 
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BFS correctness (5)
– Vertex v must be reachable from s for otherwise �

(s,v) = � � dist[v] and thus dist[v] �
�
(s,v).

– Let u be the vertex immediately preceding v on a shortest 
path from s to v so that 

�
(s,v) = 

�
(s,u) + 1. Because     �

(s,u) < 
�
(s,v), dist[u] = 

�
(s,u). Therefore:

dist[v] > 
�
(s,v) = 

�
(s,u) + 1 = dist[u] + 1

– Consider now the time when u is dequeued. Vertex v is 
either not_visited, current, or visited. 

– Each case leads to a contradiction! Thus, dist[v] = 
�
(s,v) 

– In addition, if � [v] = u, then dist[v] = dist[u] + 1. Thus, we 
obtain the shortest path from s to v by taking a shortest 
path from s to � [v] and then traversing the edge ( � [v],v). 
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The DFS algorithm: overview (1)
• Search the graph starting at sand proceed as deep as 

possible  (expansion path) until no unexplored vertices 
remain. Then go back to the previous vertex and 
choose the next unvisited neighbor (backtracking). If 
any undiscovered vertices remain, select one of them 
as the source and repeat the process.

• Note that the result is a forest of depth-first trees:

G� = (V,E� )   E� = { (� [v],v), v	 V and � [v]
�

null}
where � [v] is the predecessor of v in the search tree

• As for BFS, there are three three types of vertices: visited, 
current, and not_visited.

Data Structures, Spring 2004 © L. Joskowicz � �

The DFS algorithm: overview (2)
• Two additional fields holding timestamps.

– d[u]: timestamp when u is first discovered (u
becomes current).

– f [u]: timestamp when the neighbors of u have all 
been explored (u becomes visited).

• Timestamps are integers between 1 and 2|V|, and for 
every vertex u, d[u] < f [u].

• Backtracking is implemented with recursion.
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The DFS algorithm
DFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null; time � 0.
for each vertex u in do 

if label[u] = not_visited then DFS-Visit(u)

DFS-Visit(u)
label[u] = current; time � time +1; d[u] � time

for each v that is a neighbor of u do
if label[v] = not_visited then

� [v] � u; DFS-Visit(v)
label[u] � visited
f [u] � time � time + 1
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Example: DFS algorithm

s

a b c

d e f

t

1/16

2/15 3/14 4/5

11/12 6/13 7/10

8/9 Time:
discovery/finish

Depth-first tree
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DFS characteristics
• The depth-first forest that results from DFS 

depends on the order in which the neighbors of a 
vertex are selected to deepen the search. 

• The DFS program be easily modified to search 
only from start vertex s, and to find the shortest 
path from s to t.

• Instead of recursion, a LIFO queue can be used 
(instead of FIFO for BFS).

• The history of discovery and finish times, d[v] 
and f [v], has a parenthesis structure.

Data Structures, Spring 2004 © L. Joskowicz � �

DFS: parenthesis structure (1)

s

a b c

d e f

t

(s (a (b (c c) (e (f (t  t)  f) (d   d) e)   b)  a)   s)
1  2  3  4  5 6  7  8  9 10 11 12 13 14 15 16

Discovery: open ( push
Finish: close ) pop

1/16

2/15 3/14 4/5

11/12 6/13 7/10

8/9
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DFS: parenthesis structure (2)

(s (a (b (c c) (e (f (t  t)  f) (d   d) e)   b)  a)   s)
1  2  3  4  5 6  7  8  9 10 11 12 13 14 15 16

(s s)
1 (a a) 16

2 (b b) 15
3 (c c) (e e) 14

4 5 6 (f f)  (d   d) 13
7 (t  t) 10 11 12

8  9

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity of DFS
• The algorithm visits every node v	 V � � (|V|) 

• For each vertex, the algorithm goes over all its neighbors and 
performs a constant number of operations. 

• Overall, DFS-Visit is called only once for each v in V, since 
the first thing that the procedure does it label v as current.

• In DFS-Visit, the recursive call is made for at most the 
number of edges incident to v:

�
v	 V |neighbors[v]| = � (|E|) 

• Overall: � (|V|) + � (|E|) = � (|V|+|E|), at most � (|V|2)

• Same complexity as BFS!
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DFS correctness (1)
Theorem 1 (parenthesis theorem):

In any DFS of a graph G = (V,E) for any two vertices 
u and v, exactly one of the next conditions hold:

1. The intervals [d[u], f [u]] and [d[v], f [v]] are entirely disjoint 
and neither u nor v is a descendant of each other.

2. The interval [d[u], f [u]] is contained entirely within the 
interval [d[v], f [v]] and u is a descendant of v.

3. The interval [d[v], f [v]] is contained entirely within the 
interval [d[u], f [u]] and v is a descendant of u. 
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DFS correctness (2)
Proof: Assume first that d[u] < d[v]. Then either 

1. d[v] < f [u] � v was discovered while u was still current.    
Therefore, v is a descendant of u. Also, since v was 
discovered more recently than u, all of its (outgoing) edges 
are explored and v is labeled visited before the search returns 
and finishes u � [d[v], f [v]] is included in [d[u], f [u]].

2. f [u] 	 d[v]. Since d[u] < d[v] by definition, intervals     
[d[v], f [v]] and [d[u], f [u]] are entirely disjoint. Also, 
neither vertex was discovered while the other was current, 
so neither is a descendant of the other. 

The proof for d[v] < d[u] is symmetrical.

Corollary: v is a descendant of u iff d[u]< d[v]< f [v]< f [u].
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DFS correctness (3)
Theorem 2 (visited path theorem): 

In a depth-first forest of graph G = (V,E) vertex v is a 
descendant of u iff at the time d[u] when the search 
discovers u, node v can be reached from u along a 
path consisting entirely of not_visited nodes.

Proof:

� assume v is a descendant of u. Let w be a node on the 
path  between u and v in the depth-first tree so that w 
is a descendant of u. By the previous corollary,   
d[u]< d[w] and so w is not_visited at time d[u].
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DFS correctness (4)
� Suppose v is reachable from u along a path with 

visited vertices at time d[u], but v does not become 
a descendant of u. Without loss of generality, 
assume that every other vertex along the path 
becomes a descendant of u. Let w be a predecesor
of v and a descendant of u. Then f [w] � f [v]. Note 
that v must be discovered after u is discovered, but before 
w is finished. Therefore, d[u]< d[v]< f [w] 	 f [u].

This implies that [d[v], f [v]] is included in [d[u], f [u]].

Therefore, v must be a descendant of u.
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Classification of edges
Edges in the depth-first forest  

G� = (V,E� ) and  E� = { (� [v],v), v	 V and � [v] � null}

can be classified into four categories: 
1. Tree edges: depth-first forest edges in E�
2. Back edges: edges (u,v) connecting a vertex u to an 

ancestor v in a depth-first tree (includes self-loops)
3. Forward edges: non-tree edges (u,v) connecting a 

vertex u to a descendant v in a depth-first tree.  
4. Cross edges: all other edges. Go between vertices in the 

same depth-first tree without an ancestor relation 
between them. 
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Example: DFS edge classification

Tree edges

Cross edges

Back edges
Forward edges
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DFS: classification of edges 
Theorem 3: In a depth-first search of an undirected graph 

G=(V,E), every edge in E is either a tree edge or a back 
edge.

Proof:   Let (u,v) be an an edge in E, and suppose that 
d[u] < d[v]. Then v must be discovered and finished 
before u is finished (current) since v is on u’s adjacency 
list. If the edge (u,v) is explored in the direction u � v, 
then u is not_visited until that time. If the edge is 
explored in the other direction, u � v, then it is a back 
edge since u is still current at the time the edge is first 
explored. 
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Summary: Graphs, BFS, and DFS
• A graph is a useful representation for binary relations 

between elements. Many problems can be modeled as 
graphs, and solved with graph algorithms.  

• Two ways of finding a path between a starting vertex 
sand all other vertices of a graph:
– Breath-First Search (BFS): search all vertices at level i

before moving to level i+1. 

– Depth-First search (DFS): follow vertex adjacencies, one 
vertex at each level i and backtracking for alternative 
neighbor choices. 

• Complexity: linear in the size of the graph: � (|V|+|E|)


