
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 12

Graphs and basic search algorithms

• Motivation

• Definitions and properties

• Representation

• Breadth-First Search

• Depth-First Search

Chapter 22 in the textbook (pp 221—252).
Data Structures, Spring 2004 © L. Joskowicz �

Motivation
• Many situations can be described as a binary

relation between objects:
– Web pages and their accessibility
– Roadmaps and plans
– Transition diagrams

• A graph is an abstract structure that describes a
binary relation between elements. It is a
generalization of a tree.

• Many problems can be reduced to solving graph
problems: shortest path, connected components,
minimum spanning tree, etc.

Data Structures, Spring 2004 © L. Joskowicz �

Example: finding your way in the Metro

• Stations are
vertices (nodes)

• Line segments
are edges.

• Shortest path =
shortest
distance, time.

• Reachable
stations.

start

finish

Data Structures, Spring 2004 © L. Joskowicz �

Graph (): definition

• A graph G = (V,E) is a pair, where V = { v1, .. vn} is
the vertex set (nodes) and E = { e1, .. em} is the edge
set. An edge ek = (vi ,vj) connects (is incident to) two
verticesvi and vj of V.

• Edges can be undirected or directed (unordered or
odered): eij: vi — vj or eij: vi —> vj

• The graph G is finite when |V| and |E| are finite.

• The size of graph G is |G| = |V| + |E|.

Data Structures, Spring 2004 © L. Joskowicz �

Graphs: examples
Let V = { 1,2,3,4,5,6}

1 2 3

4 5 6

Directed graph

1 2 3

4 5 6

Undirected graph

Data Structures, Spring 2004 © L. Joskowicz �

Weighted graphs
• A weighted graph is graph in which edges

have weights (costs) c(vi, vj) > 0.

• A graph is a weighted graph in which all costs are 1.
Two vertices with no edge (path) between them can
be thought of having an edge (path) with weight � .

�

1 2 3

4 5 6

4

2

�
	

The cost of a path is
the sum of the costs
of its edges:

� � � ��
�

��
k

i
ii vvcpc

1
1,

�

Data Structures, Spring 2004 © L. Joskowicz �

Directed graphs
• In a directed graph, we say that an edge e = (u,v)

leaves u and enters v (v is adjacent, a neighbor of u).

• Self-loops are allowed: an edge can leave and enter u.

• The in-degree din(v) of a vertex v is the number of
edges entering v. The out-degree dout(v) of a vertex v
is the number of edges leaving v.

�
din(vi) =

�
dout(vi)

• A path from u to v in G = (V,E) of length k is a
sequence of vertices <u = v0,v1,…, vk = v> such that
for every i in [1,…,k] the pair (vi–1,vi) is in E.

Data Structures, Spring 2004 © L. Joskowicz �

Undirected graphs

• In an undirected graph, we say that an edge
e = (u,v) is incident on u and v.

• Undirected graphs have no self-loops.

• Incidency is a symmetric relation: if e = (u,v)
then u is a neighbor of v and v is a neighbor of u.

• The degree of a vertex d(v) is the total number of
edges incident on v.

�
d(vi) = 2|E|.

• Path: as for directed graphs.

Data Structures, Spring 2004 © L. Joskowicz �

Graphs terminology
• A cycle (circuit) is a path from a vertex to itself of length � 1

• A connected graph is an undirected graph in which there is a
path between any two vertices (every vertex is reachable
from every other vertex).

• A strongly-connected graph is a directed graph in which for
any two vertices u and v there is a directed path from u to v
and from v to u.

• A graph G’= (V’ ,E’) is a sub-graph of G = (V,E), G’ � G

when V’ � V and E’ � E.

• The (strongly) connected components G1, G2, … of a graph G
are the largest (strongly) connected sub-graphs of G.

Data Structures, Spring 2004 © L. Joskowicz
� �

Size of graphs
• There are at most |E| = O(|V|2) edges in a graph.

Proof: each node can be in at most |V| edges.
A graph in which |E| = |V|2 is called a clique.

• There are at least |E| � |V|–1 edges in a connected
graph.
Proof: By induction on the size of V.

• A graph is planar if it can be drawn in the plane
with no two edges crossing. In a planar graph,
|E| = O(|V|). The smallest non-planar graph has 5
vertices.

Data Structures, Spring 2004 © L. Joskowicz
� �

Trees and graphs
• A tree is a connected graph with no cycles.
• A tree has |E| =|V|–1 edges.
• The following four conditions are equivalent:

1. G is a tree.
2. G has no cycles; adding a new edge forms a cycle.
3. G is connected; deleting any edge destroys its

connectivity.
4. G has no self-loops and there is a path between

any two vertices.
• Similar definitions for a directed tree.

Data Structures, Spring 2004 © L. Joskowicz
� �

Graphs representation
Two standard ways of representing graphs:

1. Adjacency list: for each vertex v there is a
linked list Lv of its neighbors in the graph.
Size of the representation: � (|V|+|E|).

2. Adjacency matrix: a |V| ×|V| matrix in which an
edge e = (u,v) is represented by a non-zero (u,v)
entry. Size of the representation: � (|V|2).

Adjacency lists are better for sparse graphs.

Adjacency matrices are better for dense graphs.

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: adjacency list representation

1 2 3

4 5 6

V Li

1

2

3

4

5

6

null

6

3

5 2

1 5

2 1

V = {1,2,3,4,5,6}
E = { (1,2),(1,5),(2,5),(3,6)}

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: adjacency matrix representation

1 2 3

4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

1

1
1 1

1

1

1

A

For undirected graphs, A = AT

V = {1,2,3,4,5,6}
E = { (1,2),(1,5),(2,5),(3,6)}

Data Structures, Spring 2004 © L. Joskowicz
� �

Graph problems and algorithms
• Graph traversal algorithms

– Breath-First Search (BFS)

– Depth-First Search (DFS)

• Minimum spanning trees (MST)

• Shortest-path algorithms
– Single path

– Single source shortest path

– All-pairs shortest path

– Strongly connected components

• Other problems: planarity testing, graph isomorphism
Data Structures, Spring 2004 © L. Joskowicz

� �

There are three main types of shortest path problems:

1. Single path: given two vertices, sand t, find the
shortest path from s to t and its length (distance).

2. Single source: given a vertex s, find the shortest
paths to all other vertices.

3. All pairs: find the shortest path from all pairs of
vertices (s, t).

We will concentrate on the single source problem
since 1. ends up solving this problem anyway, and 3.
can be solved by applying 2. |V| times.

Shortest path problems

Data Structures, Spring 2004 © L. Joskowicz
� �

Intuition: how to search a graph
• Start at the vertex sand label its level at 0.

• If t is a neighbor of s, stop. Otherwise, mark the
neighbors of sas having level 1.

• If t is a neighbor of a vertex at level i, stop.
Otherwise, mark the neighbors of vertices at level i
as having level i+1.

• When t is found, trace the path back by going to
vertices at level i, i –1, i –2, …0.

• The graph becomes in effect a shortest-path
neighbor tree!

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: a graph search problem...

s

a b c

d e f

t

Data Structures, Spring 2004 © L. Joskowicz
� �

… becomes a tree search problem
s

a d

b d a e

c e e b b f

d f b f c e a c t

t c t f

t

0

1

2

3

4

5
6

level

s

a b c

d e f

t

Data Structures, Spring 2004 © L. Joskowicz � �

How is the tree searched?
The tree can be searched in two ways:

• Breadth: search all vertices at level i before moving
to level i+1 � Breadth-First Search (BFS).

• Depth: follow the vertex adjacencies, searching a
node at each level i and backing up for alternative
neighbor choices � Depth-First Search (DFS).

Data Structures, Spring 2004 © L. Joskowicz � �

Breadth-first search
s

a d

b e

c f

s

a b c

d e f

t

0

1

2

3

4

level

t

Data Structures, Spring 2004 © L. Joskowicz � �

Depth-first search
s

a

b

c e

f

t

s

a b c

d e f

t

Data Structures, Spring 2004 © L. Joskowicz � �

The BFS algorithm: overview
• Search the graph by successive levels (expansion

wave) starting at s.
• Distinguish between three types of vertices:

– visited: the vertex and all its neighbors have been visited.
– current: the vertex is at the frontier of the wave.
– not_visited: the vertex has not been reached yet.

• Keep three additional fields per vertex:
– the type of vertex label[u]: visited, current, not_visited
– the distance from the source s, dist[u]
– the predecessor of u in the search tree, � [u].

• The current vertices are stored in a queue Q.
Data Structures, Spring 2004 © L. Joskowicz � �

The BFS algorithm
BFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null
for all vertices u in V – { s} do

label[u] � not_visited; dist[u] = � ; � [u] = null
EnQueue(Q,s)
while Q is not empty do

u � DeQueue(Q)
for each v that is a neighbor of u do

if label[v] = not_visited then label[v] � current
dist[v] � dist[u] + 1; � [v] � u
EnQueue(Q,v)

label[u] � visited

Data Structures, Spring 2004 © L. Joskowicz � �

Example: BFS algorithm

s

a b c

d e f

t

0

1 2 3

1 2 3

4

Breath-first tree

Data Structures, Spring 2004 © L. Joskowicz � �

BFS characteristics
• Q contains only current vertices.

• Once a vertex becomes current or visited, it is never
labeled again not_visited.

• Once all the neighbors of a current vertex have been
considered, the vertex becomes visited.

• The algorithm can be easily modified to stop when a
target t is found, or report that no path exists.

• The BSF algorithm builds a predecessor sub-graph,
which is a breath-first tree: G� = (V� ,E�)
V� = { v	 V: � [v]

�
null}
 { s} and E� = { (� [v],v), v	 V –{ s} }

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity of BFS
• The algorithm removes each vertex from the queue

only once. There are thus |V| DeQueue operations.

• For each vertex, the algorithm goes over all its
neighbors and performs a constant number of
operations. The amount of work per vertex in the if
part of the while loop is a constant times the number
of outgoing edges.

• The total number of operations (if part) for all vertices
is a constant times the total number of edges |E|.

• Overall: O(|V|) + O(|E|) = O(|V|+|E|), at most O(|V|2)
Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (1)
• Define � (s,u) to be the shortest distance from s to u

(the minimum number of edges). �
(u,u) = 0 and

�
(s,u) = � when there is no path.

• Let G = (V,E) be a graph (directed or undirected)
and s	 V.

Lemma 1: For every edge (u,v)	 E,

� (s,v) ��� (s,u) + 1

Proof: the shortest path from s to v cannot be longer
than the shortest path from s to u plus edge (u,v).
If u is not reachable from s, � (s,u) = � .

Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (2)
Lemma 2: Upon termination of BFS:�

v	 V, dist[v] � � (s,v).

Proof: By induction on the number of EnQueue operations.
The hypothesis is that

�
v	 V dist[v] � � (s,v)

Basis: when s is first enqueued, dist[s] =
�
(s,s) = 0 and

dist[v] = � �
�
(s,v)

�
v	 V–{ s} .

Inductive step: let v be a not_visited vertex that is
discovered during the search from u. By the inductive
hypothesis, dist[u] � � (s,u). After the assignment,

dist[v] = dist[u] + 1
� � (s,u) + 1
� � (s,v) (the value is never changed again)

Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (3)
Lemma 3: Suppose that during the execution of BFS on the graph

the queue Q contains vertices <v1, .. vr> where v1 and vr are
Q’s head and tail. Then:

dist[vr] 	 dist[v1] + 1 and dist[vi] 	 dist[vi+1] for i=1,2,..,r–1

Proof: By induction on the number of queue operations.

Basis: When Q = <s>, dist[s] 	 dist[s] + 1 and 	 dist[s].

Inductive step: lemma holds after enqueuing and dequeueing v.

Dequeuing: when v1 is removed, v2 becomes the new head.
The inequalities dist[v1] 	 dist[v2] 	 … 	 dist[vr] still hold.

Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (4)
Enqueuing: when v is enqueued, it becomes vr+1. At this

time, vertex u whose adjacency list is currently been
scanned has been removed from Q. By the induction
hypothesis, the new head v1 has dist[v1] � dist[u]. Thus,

dist[vr+1] = dist[v] = dist[u] + 1 	 dist[v1] + 1

From the inductive hypothesis, dist[vr] 	 dist[u], and so

dist[vr] 	 dist[u] + 1 = dist[v] = dist[vr+1]

and the other inequalities remain unaffected.

Corollary: If vertex vi was enqueued before vertex vj during
BFS, then dist[vi] 	 dist[vj] when vj is enqueued.

Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (4)
Theorem: During its execution, BFS discovers every

vertex v	 V that is reachable from s. Upon
termination, dist[v] = � (s,v). For all reachable
vertices v except for s, one of the shortest paths
from s to v is a shortest path from s to � [v] followed
by the edge (� [v],v).

Proof outline:

by contradiction, assume that there is a vertex v that
receives a distance value such that dist[v] > � (s,v).
– Clearly, v cannot be s.

Data Structures, Spring 2004 © L. Joskowicz � �

BFS correctness (5)
– Vertex v must be reachable from s for otherwise �

(s,v) = � � dist[v] and thus dist[v] �
�
(s,v).

– Let u be the vertex immediately preceding v on a shortest
path from s to v so that

�
(s,v) =

�
(s,u) + 1. Because �

(s,u) <
�
(s,v), dist[u] =

�
(s,u). Therefore:

dist[v] >
�
(s,v) =

�
(s,u) + 1 = dist[u] + 1

– Consider now the time when u is dequeued. Vertex v is
either not_visited, current, or visited.

– Each case leads to a contradiction! Thus, dist[v] =
�
(s,v)

– In addition, if � [v] = u, then dist[v] = dist[u] + 1. Thus, we
obtain the shortest path from s to v by taking a shortest
path from s to � [v] and then traversing the edge (� [v],v).

Data Structures, Spring 2004 © L. Joskowicz � �

The DFS algorithm: overview (1)
• Search the graph starting at sand proceed as deep as

possible (expansion path) until no unexplored vertices
remain. Then go back to the previous vertex and
choose the next unvisited neighbor (backtracking). If
any undiscovered vertices remain, select one of them
as the source and repeat the process.

• Note that the result is a forest of depth-first trees:

G� = (V,E�) E� = { (� [v],v), v	 V and � [v]
�

null}
where � [v] is the predecessor of v in the search tree

• As for BFS, there are three three types of vertices: visited,
current, and not_visited.

Data Structures, Spring 2004 © L. Joskowicz � �

The DFS algorithm: overview (2)
• Two additional fields holding timestamps.

– d[u]: timestamp when u is first discovered (u
becomes current).

– f [u]: timestamp when the neighbors of u have all
been explored (u becomes visited).

• Timestamps are integers between 1 and 2|V|, and for
every vertex u, d[u] < f [u].

• Backtracking is implemented with recursion.

Data Structures, Spring 2004 © L. Joskowicz � �

The DFS algorithm
DFS(G, s)
label[s] � current; dist[s] = 0; � [s] = null; time � 0.
for each vertex u in do

if label[u] = not_visited then DFS-Visit(u)

DFS-Visit(u)
label[u] = current; time � time +1; d[u] � time

for each v that is a neighbor of u do
if label[v] = not_visited then

� [v] � u; DFS-Visit(v)
label[u] � visited
f [u] � time � time + 1

Data Structures, Spring 2004 © L. Joskowicz � �

Example: DFS algorithm

s

a b c

d e f

t

1/16

2/15 3/14 4/5

11/12 6/13 7/10

8/9 Time:
discovery/finish

Depth-first tree

Data Structures, Spring 2004 © L. Joskowicz � �

DFS characteristics
• The depth-first forest that results from DFS

depends on the order in which the neighbors of a
vertex are selected to deepen the search.

• The DFS program be easily modified to search
only from start vertex s, and to find the shortest
path from s to t.

• Instead of recursion, a LIFO queue can be used
(instead of FIFO for BFS).

• The history of discovery and finish times, d[v]
and f [v], has a parenthesis structure.

Data Structures, Spring 2004 © L. Joskowicz � �

DFS: parenthesis structure (1)

s

a b c

d e f

t

(s (a (b (c c) (e (f (t t) f) (d d) e) b) a) s)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Discovery: open (push
Finish: close) pop

1/16

2/15 3/14 4/5

11/12 6/13 7/10

8/9

Data Structures, Spring 2004 © L. Joskowicz � �

DFS: parenthesis structure (2)

(s (a (b (c c) (e (f (t t) f) (d d) e) b) a) s)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(s s)
1 (a a) 16

2 (b b) 15
3 (c c) (e e) 14

4 5 6 (f f) (d d) 13
7 (t t) 10 11 12

8 9

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity of DFS
• The algorithm visits every node v	 V � � (|V|)

• For each vertex, the algorithm goes over all its neighbors and
performs a constant number of operations.

• Overall, DFS-Visit is called only once for each v in V, since
the first thing that the procedure does it label v as current.

• In DFS-Visit, the recursive call is made for at most the
number of edges incident to v:

�
v	 V |neighbors[v]| = � (|E|)

• Overall: � (|V|) + � (|E|) = � (|V|+|E|), at most � (|V|2)

• Same complexity as BFS!

Data Structures, Spring 2004 © L. Joskowicz � �

DFS correctness (1)
Theorem 1 (parenthesis theorem):

In any DFS of a graph G = (V,E) for any two vertices
u and v, exactly one of the next conditions hold:

1. The intervals [d[u], f [u]] and [d[v], f [v]] are entirely disjoint
and neither u nor v is a descendant of each other.

2. The interval [d[u], f [u]] is contained entirely within the
interval [d[v], f [v]] and u is a descendant of v.

3. The interval [d[v], f [v]] is contained entirely within the
interval [d[u], f [u]] and v is a descendant of u.

Data Structures, Spring 2004 © L. Joskowicz � �

DFS correctness (2)
Proof: Assume first that d[u] < d[v]. Then either

1. d[v] < f [u] � v was discovered while u was still current.
Therefore, v is a descendant of u. Also, since v was
discovered more recently than u, all of its (outgoing) edges
are explored and v is labeled visited before the search returns
and finishes u � [d[v], f [v]] is included in [d[u], f [u]].

2. f [u] 	 d[v]. Since d[u] < d[v] by definition, intervals
[d[v], f [v]] and [d[u], f [u]] are entirely disjoint. Also,
neither vertex was discovered while the other was current,
so neither is a descendant of the other.

The proof for d[v] < d[u] is symmetrical.

Corollary: v is a descendant of u iff d[u]< d[v]< f [v]< f [u].
Data Structures, Spring 2004 © L. Joskowicz � �

DFS correctness (3)
Theorem 2 (visited path theorem):

In a depth-first forest of graph G = (V,E) vertex v is a
descendant of u iff at the time d[u] when the search
discovers u, node v can be reached from u along a
path consisting entirely of not_visited nodes.

Proof:

� assume v is a descendant of u. Let w be a node on the
path between u and v in the depth-first tree so that w
is a descendant of u. By the previous corollary,
d[u]< d[w] and so w is not_visited at time d[u].

Data Structures, Spring 2004 © L. Joskowicz � �

DFS correctness (4)
� Suppose v is reachable from u along a path with

visited vertices at time d[u], but v does not become
a descendant of u. Without loss of generality,
assume that every other vertex along the path
becomes a descendant of u. Let w be a predecesor
of v and a descendant of u. Then f [w] � f [v]. Note
that v must be discovered after u is discovered, but before
w is finished. Therefore, d[u]< d[v]< f [w] 	 f [u].

This implies that [d[v], f [v]] is included in [d[u], f [u]].

Therefore, v must be a descendant of u.
Data Structures, Spring 2004 © L. Joskowicz � �

Classification of edges
Edges in the depth-first forest

G� = (V,E�) and E� = { (� [v],v), v	 V and � [v] � null}

can be classified into four categories:
1. Tree edges: depth-first forest edges in E�
2. Back edges: edges (u,v) connecting a vertex u to an

ancestor v in a depth-first tree (includes self-loops)
3. Forward edges: non-tree edges (u,v) connecting a

vertex u to a descendant v in a depth-first tree.
4. Cross edges: all other edges. Go between vertices in the

same depth-first tree without an ancestor relation
between them.

Data Structures, Spring 2004 © L. Joskowicz � �

d

b

f

e

a

s

g

Example: DFS edge classification

Tree edges

Cross edges

Back edges
Forward edges

Data Structures, Spring 2004 © L. Joskowicz � �

DFS: classification of edges
Theorem 3: In a depth-first search of an undirected graph

G=(V,E), every edge in E is either a tree edge or a back
edge.

Proof: Let (u,v) be an an edge in E, and suppose that
d[u] < d[v]. Then v must be discovered and finished
before u is finished (current) since v is on u’s adjacency
list. If the edge (u,v) is explored in the direction u � v,
then u is not_visited until that time. If the edge is
explored in the other direction, u � v, then it is a back
edge since u is still current at the time the edge is first
explored.

Data Structures, Spring 2004 © L. Joskowicz � �

Summary: Graphs, BFS, and DFS
• A graph is a useful representation for binary relations

between elements. Many problems can be modeled as
graphs, and solved with graph algorithms.

• Two ways of finding a path between a starting vertex
sand all other vertices of a graph:
– Breath-First Search (BFS): search all vertices at level i

before moving to level i+1.

– Depth-First search (DFS): follow vertex adjacencies, one
vertex at each level i and backtracking for alternative
neighbor choices.

• Complexity: linear in the size of the graph: � (|V|+|E|)

