Data Structures - LECTURE 12

Graphs and basic search algorithms

- Motivation
- Definitions and properties
- Representation
- Breadth-First Search
- Depth-First Search

Chapter 22 in the textbook (pp 221-252).
Data Smucuruss. Spring $20040 . \operatorname{LJoskowic}$

Motivation

- Many situations can be described as a binary relation between objects:
- Web pages and their accessibility
- Roadmaps and plans
- Transition diagrams
- A graph is an abstract structure that describes a binary relation between elements. It is a generalization of a tree.
- Many problems can be reduced to solving graph problems: shortest path, connected components, minimum spanning tree, etc.
Data Structures. Spring 2004 © L. . .ostowic

Example: finding your way in the Metro

Graph (גרפים): definition

- A graph $G=(V, E)$ is a pair, where $V=\left\{v_{1}, . . v_{n}\right\}$ is the vertex set (nodes) and $E=\left\{e_{1}, . . e_{m}\right\}$ is the edge set. An edge $e_{k}=\left(v_{i}, v_{j}\right)$ connects (is incident to) two vertices v_{i} and v_{j} of V.
- Edges can be undirected or directed (unordered or odered): $\quad e_{i j}: v_{i}-v_{j}$ or $e_{i j}: v_{i} \longrightarrow v_{j}$
- The graph G is finite when $|V|$ and $|E|$ are finite.
- The size of graph G is $|G|=|V|+|E|$.

Data Stucturss. Spring 2004 © L. . Joskowicz

Graphs: examples

Let $V=\{1,2,3,4,5,6\}$

Directed graph

Undirected graph

Weighted graphs

- A weighted graph is graph in which edges have weights (costs) $c\left(v_{i}, v_{j}\right)>0$.
- A graph is a weighted graph in which all costs are 1. Two vertices with no edge (path) between them can be thought of having an edge (path) with weight ∞.

Directed graphs

- In a directed graph, we say that an edge $e=(u, v)$ leaves u and enters $v(v$ is adjacent, a neighbor of u).
- Self-loops are allowed: an edge can leave and enter u.
- The in-degree $d_{i n}(v)$ of a vertex v is the number of edges entering v. The out-degree $d_{\text {out }}(v)$ of a vertex v is the number of edges leaving $v . \Sigma d_{i n}\left(v_{i}\right)=\Sigma d_{\text {out }}\left(v_{i}\right)$
- A path from u to v in $G=(V, E)$ of length k is a sequence of vertices $\left\langle u=v_{0}, v_{1}, \ldots, v_{k}=v\right\rangle$ such that for every i in $[1, \ldots, k]$ the pair $\left(v_{i-1}, v_{i}\right)$ is in E.

Data Smactures. Spring 20040 L . Joskowic

Graphs terminology

- A cycle (circuit) is a path from a vertex to itself of length ≥ 1
- A connected graph is an undirected graph in which there is a path between any two vertices (every vertex is reachable from every other vertex).
- A strongly-connected graph is a directed graph in which for any two vertices u and v there is a directed path from u to v and from v to u.
- A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a sub-graph of $G=(V, E), G^{\prime} \subseteq G$ when $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
- The (strongly) connected components G_{1}, G_{2}, \ldots of a graph G are the largest (strongly) connected sub-graphs of G.

Dala Structures, Spring 2004 0 L. Joskowicz

Undirected graphs

- In an undirected graph, we say that an edge $e=(u, v)$ is incident on u and v.
- Undirected graphs have no self-loops.
- Incidency is a symmetric relation: if $e=(u, v)$ then u is a neighbor of v and v is a neighbor of u.
- The degree of a vertex $d(v)$ is the total number of edges incident on $v . \Sigma d\left(v_{i}\right)=2|E|$.
- Path: as for directed graphs.

Size of graphs

- There are at most $|E|=O\left(|V|^{2}\right)$ edges in a graph. Proof: each node can be in at most $|V|$ edges. A graph in which $|E|=|V|^{2}$ is called a clique.
- There are at least $|E| \geq|V|-1$ edges in a connected graph.
Proof: By induction on the size of V.
- A graph is planar if it can be drawn in the plane with no two edges crossing. In a planar graph, $|E|=O(|V|)$. The smallest non-planar graph has 5 vertices.

Trees and graphs

- A tree is a connected graph with no cycles.
- A tree has $|E|=|V|-1$ edges.
- The following four conditions are equivalent:

1. G is a tree.
2. G has no cycles; adding a new edge forms a cycle.
3. G is connected; deleting any edge destroys its connectivity.
4. G has no self-loops and there is a path between any two vertices.

- Similar definitions for a directed tree.

Graphs representation

Two standard ways of representing graphs:

1. Adjacency list: for each vertex v there is a linked list L_{v} of its neighbors in the graph. Size of the representation: $\Theta(|V|+|E|)$.
2. Adjacency matrix: a $|V| \times|V|$ matrix in which an edge $e=(u, v)$ is represented by a non-zero (u, v) entry. Size of the representation: $\Theta\left(|V|^{2}\right)$.

Adjacency lists are better for sparse graphs.
Adjacency matrices are better for dense graphs.

Example: adjacency list representation
$V=\{1,2,3,4,5,6\}$
$E=\{(1,2),(1,5),(2,5),(3,6)\}$

Example: adjacency matrix representation
$V=\{1,2,3,4,5,6\}$
$E=\{(1,2),(1,5),(2,5),(3,6)\}$

For undirected graphs, $A=A^{T}$

Graph problems and algorithms

- Graph traversal algorithms
- Breath-First Search (BFS)
- Depth-First Search (DFS)
- Minimum spanning trees (MST)
- Shortest-path algorithms
- Single path
- Single source shortest path
- All-pairs shortest path
- Strongly connected components
- Other problems: planarity testing, graph isomorphism Dala Structures, Spring 2004 © L. Joskowicz

Shortest path problems

There are three main types of shortest path problems:

1. Single path: given two vertices, s and t, find the shortest path from s to t and its length (distance).
2. Single source: given a vertex s, find the shortest paths to all other vertices.
3. All pairs: find the shortest path from all pairs of vertices (s, t).

We will concentrate on the single source problem since 1 . ends up solving this problem anyway, and 3. can be solved by applying 2 . $|V|$ times.

Example: a graph search problem...

- The graph becomes in effect a shortest-path neighbor tree!

Intuition: how to search a graph

- Start at the vertex s and label its level at 0 .
- If t is a neighbor of s, stop. Otherwise, mark the neighbors of s as having level 1.
- If t is a neighbor of a vertex at level i, stop. Otherwise, mark the neighbors of vertices at level i as having level $i+1$.
- When t is found, trace the path back by going to vertices at level $i, i-1, i-2, \ldots 0$.

How is the tree searched?

The tree can be searched in two ways:

- Breadth: search all vertices at level i before moving to level $i+1 \rightarrow$ Breadth-First Search (BFS).
- Depth: follow the vertex adjacencies, searching a node at each level i and backing up for alternative neighbor choices \rightarrow Depth-First Search (DFS).

Depth-first search

The BFS algorithm: overview

- Search the graph by successive levels (expansion wave) starting at s.
- Distinguish between three types of vertices:
- visited: the vertex and all its neighbors have been visited.
- current: the vertex is at the frontier of the wave.
- not_visited: the vertex has not been reached yet.
- Keep three additional fields per vertex:
- the type of vertex label[u]: visited, current, not_visited
- the distance from the source s, $\operatorname{dist}[u]$
- the predecessor of u in the search tree, $\pi[u]$.
- The current vertices are stored in a queue Q.

The BFS algorithm

$\underline{\operatorname{BFS}(G, s)}$
label $[s] \leftarrow$ current; dist $[s]=0 ; \pi[s]=$ null
for all vertices u in $V-\{s\}$ do
label $[u] \leftarrow$ not_visited; dist $[u]=\infty ; \pi[u]=$ null
EnQueue (Q, s)
while Q is not empty do
$u \leftarrow \operatorname{DeQueue}(Q)$
for each v that is a neighbor of u do
if label $[v]=$ not_visited then label $[v] \leftarrow$ current
$\operatorname{dist}[v] \leftarrow \operatorname{dist}[u]+1 ; \pi[v] \leftarrow u$
EnQueue (Q, v)
label $[u] \leftarrow$ visited

Example: BFS algorithm

BFS characteristics

- Q contains only current vertices.
- Once a vertex becomes current or visited, it is never labeled again not_visited.
- Once all the neighbors of a current vertex have been considered, the vertex becomes visited.
- The algorithm can be easily modified to stop when a target t is found, or report that no path exists.
- The BSF algorithm builds a predecessor sub-graph, which is a breath-first tree: $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$
$V_{\pi}=\{v \in V: \pi[v] \neq n u l l\} \cup\{s\}$ and $E_{\pi}=\{(\pi[v], v), v \in V-\{s\}\}$
Datas Surcurues. Spring $20040 . .$. Jostowicz

Complexity of BFS

- The algorithm removes each vertex from the queue only once. There are thus $|V|$ DeQueue operations.
- For each vertex, the algorithm goes over all its neighbors and performs a constant number of operations. The amount of work per vertex in the if part of the while loop is a constant times the number of outgoing edges.
- The total number of operations (if part) for all vertices is a constant times the total number of edges $|E|$.
- Overall: $O(|V|)+O(|E|)=O(|V|+|E|)$, at most $O\left(|V|^{2}\right)$ Data Structures, Spinig 2004 0 L. I Joskowicz

BFS correctness (1)

- Define $\delta(s, u)$ to be the shortest distance from s to u (the minimum number of edges).
$\delta(u, u)=0$ and $\delta(s, u)=\infty$ when there is no path.
- Let $G=(V, E)$ be a graph (directed or undirected) and $s \in V$.
Lemma 1: For every edge $(u, v) \in E$,

$$
\delta(s, v) \leq \delta(s, u)+1
$$

Proof: the shortest path from s to v cannot be longer
than the shortest path from s to u plus edge (u, v).
If u is not reachable from $s, \delta(s, u)=\infty$.
Datas Stucuturss. Spring 20040 L. Jostowicz

BFS correctness (2)

Lemma 2: Upon termination of BFS:
$\forall v \in V, \operatorname{dist}[v] \geq \delta(s, v)$.
Proof: By induction on the number of EnQueue operations.
The hypothesis is that $\forall v \in V \operatorname{dist}[v] \geq \delta(s, v)$
Basis: when s is first enqueued, $\operatorname{dist}[s]=\delta(s, s)=0$ and $\operatorname{dist}[v]=\infty \geq \delta(s, v) \forall v \in V-\{s\}$.
Inductive step: let v be a not_visited vertex that is discovered during the search from u. By the inductive hypothesis, $\operatorname{dist}[u] \geq \delta(s, u)$. After the assignment,

$$
\operatorname{dist}[v]=\operatorname{dist}[u]+1
$$

$$
\geq \delta(s, u)+1
$$

$\geq \delta(s, v) \quad$ (the value is never changed again)

BFS correctness (3)

Lemma 3: Suppose that during the execution of BFS on the graph the queue Q contains vertices $\left\langle v_{1}, . . v_{r}\right\rangle$ where v_{1} and v_{r} are Q 's head and tail. Then:
$\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}\left[v_{1}\right]+1$ and $\operatorname{dist}\left[v_{i}\right] \leq \operatorname{dist}\left[v_{i+1}\right]$ for $i=1,2, . ., r-1$
Proof: By induction on the number of queue operations.
Basis: When $Q=\langle s\rangle$, $\operatorname{dist}[s] \leq \operatorname{dist}[s]+1$ and $\leq \operatorname{dist}[s]$.
Inductive step: lemma holds after enqueuing and dequeueing v.
Dequeuing: when v_{1} is removed, v_{2} becomes the new head.
The inequalities $\operatorname{dist}\left[v_{1}\right] \leq \operatorname{dist}\left[v_{2}\right] \leq \ldots \leq \operatorname{dist}\left[v_{r}\right]$ still hold.

BFS correctness (4)

Enqueuing: when v is enqueued, it becomes v_{r+1}. At this time, vertex u whose adjacency list is currently been scanned has been removed from Q. By the induction hypothesis, the new head v_{1} has $\operatorname{dist}\left[v_{1}\right] \geq \operatorname{dist}[u]$. Thus, $\operatorname{dist}\left[v_{r+1}\right]=\operatorname{dist}[v]=\operatorname{dist}[u]+1 \leq \operatorname{dist}\left[v_{1}\right]+1$
From the inductive hypothesis, $\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}[u]$, and so $\operatorname{dist}\left[v_{r}\right] \leq \operatorname{dist}[u]+1=\operatorname{dist}[v]=\operatorname{dist}\left[v_{r+1}\right]$ and the other inequalities remain unaffected.
Corollary: If vertex v_{i} was enqueued before vertex v_{j} during BFS , then $\operatorname{dist}\left[v_{i}\right] \leq \operatorname{dist}\left[v_{j}\right]$ when v_{j} is enqueued.

BFS correctness (4)

Theorem: During its execution, BFS discovers every vertex $v \in V$ that is reachable from s. Upon termination, $\operatorname{dist}[v]=\delta(s, v)$. For all reachable vertices v except for s, one of the shortest paths from s to v is a shortest path from s to $\pi[v]$ followed by the edge ($\pi[v], v$).
Proof outline:
by contradiction, assume that there is a vertex v that receives a distance value such that $\operatorname{dist}[v]>\delta(s, v)$.

- Clearly, v cannot be s.

BFS correctness (5)

- Vertex v must be reachable from s for otherwise $\delta(s, v)=\infty \geq \operatorname{dist}[v]$ and thus $\operatorname{dist}[v] \geq \delta(s, v)$.
- Let u be the vertex immediately preceding v on a shortest path from s to v so that $\delta(s, v)=\delta(s, u)+1$. Because $\delta(s, u)<\delta(s, v), \operatorname{dist}[u]=\delta(s, u)$. Therefore:

$$
\operatorname{dist}[v]>\delta(s, v)=\delta(s, u)+1=\operatorname{dist}[u]+1
$$

- Consider now the time when u is dequeued. Vertex v is either not_visited, current, or visited.
- Each case leads to a contradiction! Thus, $\operatorname{dist}[v]=\delta(s, v)$
- In addition, if $\pi[v]=u$, then $\operatorname{dist}[v]=\operatorname{dist}[u]+1$. Thus, we obtain the shortest path from s to v by taking a shortest path from s to $\pi[v]$ and then traversing the edge $(\pi[v], v)$.
Data Structures, Spings 2004 © L. I Joskowicz

The DFS algorithm: overview (1)

- Search the graph starting at s and proceed as deep as possible (expansion path) until no unexplored vertices remain. Then go back to the previous vertex and choose the next unvisited neighbor (backtracking). If any undiscovered vertices remain, select one of them as the source and repeat the process.
- Note that the result is a forest of depth-first trees: $G_{\pi}=\left(V, E_{\pi}\right) \quad E_{\pi}=\{(\pi[v], v), v \in V$ and $\pi[v] \neq \boldsymbol{n u l l}\}$ where $\pi[v]$ is the predecessor of v in the search tree
- As for BFS, there are three three types of vertices: visited, currrent $_{\text {prinu }}$ and not $t_{\text {wiz }}$ visited.

The DFS algorithm: overview (2)

- Two additional fields holding timestamps.
$-d[u]$: timestamp when u is first discovered (u becomes current).
$-f[u]$: timestamp when the neighbors of u have all been explored (u becomes visited).
- Timestamps are integers between 1 and $2|V|$, and for every vertex $u, d[u]<f[u]$.
- Backtracking is implemented with recursion.

The DFS algorithm

$\underline{\operatorname{DFS}(G, s)}$
label $[s] \leftarrow$ current; dist $[s]=0 ; \pi[s]=$ null; time $\leftarrow 0$.
for each vertex u in do
if label $[u]=$ not_visited then DFS-Visit (u)
DFS-Visit (u)
label $[u]=$ current; time \leftarrow time $+1 ; d[u] \leftarrow$ time
for each v that is a neighbor of u do
if label $[v]=$ not_visited then
$\pi[v] \leftarrow u$; DFS-Visit (v)
label $[u] \leftarrow$ visited
$f[u] \leftarrow$ time \leftarrow time +1

Example: DFS algorithm

DFS characteristics

- The depth-first forest that results from DFS depends on the order in which the neighbors of a vertex are selected to deepen the search.
- The DFS program be easily modified to search only from start vertex s, and to find the shortest path from s to t.
- Instead of recursion, a LIFO queue can be used (instead of FIFO for BFS).
- The history of discovery and finish times, $d[v]$ and $f[v]$, has a parenthesis structure.

Complexity of DFS

- The algorithm visits every node $v \in V \rightarrow \Theta(|V|)$
- For each vertex, the algorithm goes over all its neighbors and performs a constant number of operations.
- Overall, DFS-Visit is called only once for each v in V, since the first thing that the procedure does it label v as current.
- In DFS-Visit, the recursive call is made for at most the number of edges incident to v :

$$
\Sigma_{v \in V} \mid \text { neighbors }[v] \mid=\Theta(|E|)
$$

- Overall: $\Theta(|V|)+\Theta(|E|)=\Theta(|V|+|E|)$, at most $\Theta\left(|V|^{2}\right)$
- Same complexity as BFS!

DFS correctness (1)

Theorem 1 (parenthesis theorem):
In any DFS of a graph $G=(V, E)$ for any two vertices u and v, exactly one of the next conditions hold:

1. The intervals $[d[u], f[u]]$ and $[d[v], f[v]]$ are entirely disjoint and neither u nor v is a descendant of each other.
2. The interval $[d[u], f[u]]$ is contained entirely within the interval $[d[v], f[v]]$ and u is a descendant of v.
3. The interval $[d[v], f[v]]$ is contained entirely within the interval $[d[u], f[u]]$ and v is a descendant of u.

DFS correctness (2)

Proof: Assume first that $d[u]<d[v]$. Then either

1. $d[v]<f[u] \rightarrow v$ was discovered while u was still current. Therefore, v is a descendant of u. Also, since v was discovered more recently than u, all of its (outgoing) edges are explored and v is labeled visited before the search returns and finishes $u \rightarrow[d[v], f[v]]$ is included in $[d[u], f[u]]$.
2. $f[u] \leq d[v]$. Since $d[u]<d[v]$ by definition, intervals $[d[v], f[v]]$ and $[d[u], f[u]]$ are entirely disjoint. Also, neither vertex was discovered while the other was current, so neither is a descendant of the other.

The proof for $d[v]<d[u]$ is symmetrical.
Corollary: v is a descendant of u iff $d[u]<d[v]<f[v]<f[u]$.

DFS correctness (3)

Theorem 2 (visited path theorem):

In a depth-first forest of graph $G=(V, E)$ vertex v is a descendant of u iff at the time $d[u]$ when the search discovers u, node v can be reached from u along a path consisting entirely of not_visited nodes.

Proof:

\rightarrow assume v is a descendant of u. Let w be a node on the path between u and v in the depth-first tree so that w is a descendant of u. By the previous corollary, $d[u]<d[w]$ and so w is not_visited at time $d[u]$.

DFS correctness (4)

\leftarrow Suppose v is reachable from u along a path with visited vertices at time $d[u]$, but v does not become a descendant of u. Without loss of generality, assume that every other vertex along the path becomes a descendant of u. Let w be a predecesor of v and a descendant of u. Then $f[w] \leq f[v]$. Note that v must be discovered after u is discovered, but before w is finished. Therefore, $d[u]<d[v]<f[w] \leq f[u]$.
This implies that $[d[v], f[v]]$ is included in $[d[u], f[u]]$.
Therefore, v must be a descendant of u.

Classification of edges

Edges in the depth-first forest

$$
G_{\pi}=\left(V, E_{\pi}\right) \text { and } E_{\pi}=\{(\pi[v], v), v \in V \text { and } \pi[v] \neq \boldsymbol{n u l l}\}
$$

can be classified into four categories:

1. Tree edges: depth-first forest edges in E_{π}
2. Back edges: edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree (includes self-loops)
3. Forward edges: non-tree edges (u, v) connecting a vertex u to a descendant v in a depth-first tree.
4. Cross edges: all other edges. Go between vertices in the same depth-first tree without an ancestor relation between them.

Example: DFS edge classification

DFS: classification of edges

Theorem 3: In a depth-first search of an undirected graph $G=(V, E)$, every edge in E is either a tree edge or a back edge.
Proof: Let (u, v) be an an edge in E, and suppose that $d[u]<d[v]$. Then v must be discovered and finished before u is finished (current) since v is on u 's adjacency list. If the edge (u, v) is explored in the direction $u \rightarrow v$, then u is not_visited until that time. If the edge is explored in the other direction, $u \leftarrow v$, then it is a back edge since u is still current at the time the edge is first explored.

Summary: Graphs, BFS, and DFS

- A graph is a useful representation for binary relations between elements. Many problems can be modeled as graphs, and solved with graph algorithms.
- Two ways of finding a path between a starting vertex s and all other vertices of a graph:
- Breath-First Search (BFS): search all vertices at level i before moving to level $i+1$.
- Depth-First search (DFS): follow vertex adjacencies, one vertex at each level i and backtracking for alternative neighbor choices.
- Complexity: linear in the size of the graph: $\Theta\left(|V|+|E|{ }_{4}\right.$

