Data Structures— LECTURE 11 Motivation
« Many tasks require table operations: maintain a symbol table
(dictionary) with access O(1) on average to the entries.
Hash tables The keys need not have an order relation.
« Examples:
* Motivation - gzgr:rsnmi ng language keywords for compiler (static)
: agttﬁiess tables — By-laws of a contract (dynamic)
« Open addressi ng — 1D numbers, customer repair orders
« Chaining ¢ Wewant an ADT that supports Search, Insert, and Deletein
« Hash functions O(1) on average with no order relation between elements.
* Perfect hashing « Search treesrequire an order relation and take O(lg n).
Chapter 11 in the textbook (pp 221—252). ¢ Hash tables allow general keys and take O(1) on average.
Hash tables: overview Examples

* Generalization of arrays A[0..n—1]. « Keywords of a programming language
* Instead of using the key k as an index to the array A, _[for, if, then, ...] > h(for) = 0; h(if) = 1 ...
compute the array index with a hash function h(k):
ATKl > Alh(K)]
* The size of the hash table is proportional to the
number of elements, and not to their range.

* The function h(k) need not be a one-to-one function.

— Size of array isfixed; keyword set is static = array
¢ Car license plates
— Order number is arbitrary, some numbers might not exist
— Allocate a hash table of fixed size.
— Hashing function: plate number modulo maximum size

 Need a mechanism to efficiently handle collisions. of hash table > h(55-080-32) = 5508032 mod 100,000
Two keys k; and k, collide when h(k,) = h(k,). User logins and passwords.
Formalization Hashing: illustration
* Let U be auniverse of keys of size |U|, K an actual set U = universe of keys T = hash table
of keysof sizen, T ahgsh table of size O(m), m<|U|. :O
* Let h(k) be a hash function: 451
h(k): U >[0..m-1] /]2
that maps key valuesfrom U to indicesin T. | /|3 9] caal
h(k) is computed in O([k]) = O(1). /14
« Elements T[i] in the hash table T = [0..m—1] are s
accessed in O(1) time. T[i] = null is an empty entry. | 1 6-(13/data
* For simplicity, we assumethat U ={0, ..., N-1}. L7
. K = actual keys | /|8

Hashing: key issues
* What are good hashing functions?
* How do we deal with collisions?
¢ What assumptions are necessary to guarantee
O(1) average time access?
How about worst-case access time?
Main approaches:
1. Direct-addresstables
2. Open-addressing
3. Chaining
Issues. good hashing function; perfect hashing.

Data Structures, Spring 2004 © L. Joskowicz

1. Direct-address tables

W PPN NIRDA
* The hashtableisan array of sizem, T [0..m-1].
» The number of actual keysisnisclosetom, or mis
reasonably small and there is sufficient storage.
* Thekey kistheindex into T, i.e, the hash function is
h(k) = k (generalization: any one-to-one function).
* No collisions, accesstimeis O(1) in the worst case.
» No need to store the key itself, only the data.
* Problems:
— Can be very wasteful in memory
— Impractical when misvery large

Data Structures, Spring 2004 © L. Joskowicz

Hash tables

» Use amany-to-one hash function h(k) to map
keysktoindices of T.

¢ The set of actual keys K can be much smaller than
the universe of keysU, i.e., m« |U].

* Resolvecadllisions, i.e., h(k,) = h(k,) with either
1. Open addressing
2. Chaining

Data Structures, Spring 2004© L. Joskowicz

Simple uniform hashing and load factor

Simple uniform hashing assumption: each element
isequally likely to hash into any of the m slots,
independently of the other elements.

Definition: the load factor a of a hash table T with
m slotsis defined as a = n/m, where nisthe
number of stored elements, and 0<a <1.

Data Structures, Spring 2004 © L. Joskowicz

2. Callision resolution by open addressing

* All keysk; that map into the same slot T[h(k;)] are
mapped to the next available slot in the table. Looking
for the next available spot is called probing.

« Slots contain the element themselves, or null.
* The hash function is augmented with a probe number:
h(k,i): U x [0..m-1] =[0..m-1]
Probe sequence: h(k,0), h(k,1)...

Data Structures, Spring 2004 © L. Joskowicz

Open addressing: illustration
T = hash table

T2]
2107]
2

43+
>l]
5
e(13] |
7
8

U = universe of keys

K = actual keys

Data Structures, Spring 2004 © L. Joskowicz

Open addressing operations

* Insert: probe the hash table until an empty ot is
found. The sequence of probes depends on the
key. If there is no empty slot after m probes, the
tableisfull.

* Search: probe the same sequence of slots asinsert
and stops either when the key is found (success) or
when an empty slot is reached (fail).

» Delete: cannot just delete the key! Instead, mark
the dlot as “deleted” so that probing can go over it.

Complexity: length of the probing sequence.

Data Structures, Spring 2004 © L. Joskowicz

Probing strategies
Three probing techniques:
1. Linear probing
2. Quadratic probing
3. Double hashing

* None of them fulfils the uniform hashing
assumption: each key is equally likely to have
any of the m! permutations of (0..m-1) asits
probe sequence.

e However, they approximate it.

Data Structures, Spring 2004 © L. Joskowicz

Linear probing
The hash function is:
h(k, i) = (b’ (k) + i) mod m
where h' (k) is an auxiliary probe-independent hash
function.
Given akey k, the probing sequenceis:
TIh (K1, TTh(K)+1], ... Tim=1], T10], T[1] ... T[h'(k)-1]
Problem: primary clustering. Long runs of occupied
slots build up, because an empty dlot preceded by
i full dots getsfilled with probability (i+1)/m >
increases average search time. Generatesm
distinct probing sequences.

Data Structures, Spring 2004© L. Joskowicz

Quadratic probing
The hash functionis:
h(k, i) = (0" (k) + c,i + c,i%) mod m
where ¢, and ¢, are constants # 0 and h’ (k) isan
auxiliary hash function.

In contrast with linear probing, the probed positions
are offset by amounts that depend ina quadratic
manner on the probe number i.

Generates m probing sequences. Suffers from
secondary clustering: keysthat hash to the same
initial slot will probe the same alternative cells.

Data Structures, Spring 2004 © L. Joskowicz

Double hashing

The hash function is:
h(k, i) = (hy(k) + ih,(K)) mod m
where h; (k) and h,(k) are two hash functions.

Thefirst probeisto T[h,(K)]. Successive probes are offset
from the previous position by h,(k) mod m.

The value h,(k) must be prime to the hash table of sizem
so the entire table is searched.

Example of achoice of functions:

h,(k) = kmod m

hy(K) =1+ (k mod m') withm' <m
Generates ®(m?) probe sequences.

Data Structures, Spring 2004 © L. Joskowicz

Open addressing: anaysis

Theorem: Given an open-address hash table with
load factor o, = n/m < 1, the expected number of
praobes, assuming uniform hashingiis:

—at most 1/(1-a) in an unsuccessful search
—at most 1/a. In 1/(1—a) in a successful search

* When o is constant, the search timeis O(1) and we
have a gives a bound on the number of probes that
will happen.

Data Structures, Spring 2004 © L. Joskowicz

3. Coallision resolution by chaining
mhi 7l

* All keysk; that map into the same slot T[h(k;)] are
placed inalinked list L, , j = h(k).

* Slots contain pointersto the linked lists L

« Insert: new keys are inserted at the head of the list
L; > worst-case time O(1).

» Search/Delete: find/delete the element with key k
inlinked list L; - worst-case time proportional to
length of longest list.

Data Structures, Spring 2004 © L. Joskowicz

Chaining: illustration
T = hash table
o[22]

U = universe of keys

[E]

0o ~N® U AW

K = actual keys

Data Structures, Spring 2004 © L. Joskowicz

Chaining: simple uniform hashing

Theorem: In a hash table with chaining, under the
assumption of simple uniform hashing, both
successful and unsuccessful searches take expected
time ®(1+a) onthe average, where o isthe hash
table load factor.

21
Data Structures, Spring 2004© L. Joskowicz

The simple uniform hashing assumption
« |sthe simple uniform hashing assumption reasonable?

« Suppose we pick afunction h. Then it cannot be that thish
distributes the keys k approximately uniformly over the table
for ALL possible sets of keysin the universe U., i.e, h cannot
be a good hash function for all possible key sets K!

¢ Thereasonisasfollows. We know that h maps the universe
U, which is huge, into m possible indices. Consider the set S
of elements k and the index i such that h(k) =i. There must
exist one such index i for which more than 1/m of the
possible keys go to. So thereis oneindex to which we direct
|UJ/m possible keys! Since |U| >> m, thisis alarger number!

* Suppose we are now given n keysfrom S They will al go to
the same slot, yielding the worst case behavior!

Data Structures, Spring 2004 © L. Joskowicz

22

Good hash functions

The performance of hashing critically depends on the
properties of the hash function and the actual key set
patterns.

A hash function that satisfies the simple uniform hashing
assumption is agood one!

However, it istypically not possible to check if the
assumption holds, since we usually do not know the
probability distribution according to which the keys are
drawn, and keys may not be drawn independently.

Two approaches:

— Look for functions that do well “most of thetime” - heuristics

— Choose hash function randomly for provably good performance
23

Data Structures, Spring 2004 © L. Joskowicz

Heuristic hashing functions

¢ The hash function should work well on most actual key
sets, not on ones that were maliciously prepared to make
the function perform badly.

¢ Theactual key set K is usually not random, and has simple
patterns, such as keys starting with the same few bits, or
keys that are multiples of some integer.

* Thegoal isto find a hash function which divides the key
universe U in away which looks random to such average
actual key sets K. The worst-case pattern for the selected
hash function should be arare one.

« Heuristic: a strategy or rule-of-thumb that works most of
thetime.

Data Structures, Spring 2004 © L. Joskowicz

Data Structures, Spring 2004 © L. Joskowicz

The divison method

Let U=N={0,1,2, ...}, the set of natural numbers.
» Map akey kinto one of m slots by taking the
reminder of k divided by m:

h(k) = k mod m
For thisto work properly, avoid choosing mwhich is
apower of 2 (m=2°) since thisislike selecting the
lowest p bits, which ignores useful discriminating
information.

* Heurigtic: pick mto be a prime number far from a
power of two.

25

Data Structures, Spring 2004 © L. Joskowicz

Example: the division method

* Suppose |U| =n= 2000 and we can tolerateup to 3

collisions per key.

» What should be the size m of the hash table?
» We have that floor(2000/3) = 666; a prime number

closeto it and not a power of twois 701.

* The hash function is thus:

h(k) = k mod 701

» ThekeysO0, 701, and 1402 will al map to 0.

The multiplication method

» Map akey kinto one of mdlots by first multiplying
it by aconstant ain therange 0 < a < 1, extracting
the fractional part of ka, and then taking the integer
part of the result multiplied by m:

h(k)=|m(ka-|ka])|, 0<a<1
» Thismethod isless sensitive to the values of m
because the “random” behavior comes from the fact
that most actual key sets have no correlation with a.

* Heuristic: pick mto be a power of 2 and a to be close
to the golden ratio: a=(15-1)/2=0.6180...

2
Data Structures, Spring 2004© L. Joskowicz 7

Data Structures, Spring 2004 © L. Joskowicz

Universal hashing

* ldea: choose the hash function randomly in away

that isindependent of the keys.

* Yieldsa provably good performance on average.
* |t guarantees that no single input will aways have

the worst-case behavior (as for QuickSort).

* |ssue: what should be the set of hash functions from

which to choose? There are infinitely many
functions!

» Choose from afinite collection of universal hash

functions.

Universal hashing (1)

 Motivation: we want the simple uniform hashing
assumption to hold, so that on average, the keys will
be hashed uniformly.
* Properties of simple uniform hashing:
— For any two keys k; and k,, and any two slotsy; and y,,
the chance that h(k,) =y, and h(k,) =y, is exactly 1/n?.
— For two keys k; and k,, the chance that they collide, that
ish(ky) = h(k,) isexactly 1/m.
« We want afamily of hash functions H that has the
same chance of collision as simple uniform hashing.

2
Data Structures, Spring 2004 © L. Joskowicz 9

Data Structures, Spring 2004 © L. Joskowicz

Universal hashing (2)

Definition: Let H be afinite collection of hash

functions that map a given universe U of keysinto
therange{0,1,...,m-1}.

H issaid to be universal if for every pair of distinct
keysk, and k, in U, the number of hash functions h
in H, for which h(k,) = h(k,) isat most |[H|/m.

* In other words, the chance of collision between

distinct keys k; and k, is no more than the chance
Umof acoallisionif h(k,) and h(k,) were randomly
and independently chosen from the set {0,1,...,m-1}.

30

Expected list length in hash table

Theorem: Let h be a hash function chosen from a
universal collection of hash functions and used to
hash n keysinto atable T of sizem, using chaining
resolution. Let a = n/m be the load factor.

—if kisnot in the table, the expected length of the list that
kis hashed to is at most a..

—if kisin thetable, the expected length of thelist that k is
hashed toisat most 1+a.

Data Structures, Spring 2004 © L. Joskowicz

Proof outline

* kisnotin thetable: 1/m of the keys will be hashed to
that list, and so there will be on average a keysin the
list.

» kisinthetable: out of then—1 remaining keys, 1/m
on average will go to the same slot. So on average we
have at most (1 + (n-=1)/m) < (1 + n/m) = 1+a.

Data Structures, Spring 2004 © L. Joskowicz

Complexity of operation sequences

Corollary: using universal hashing and collision
resolution by chaining in atable with m slots,
it takes expected time ®(n) to handle any
sequence of ninsert, search, and delete
operations containing O(m) insert operations.

Proof: because the number of insertions n = O(m), the
load factor o, = O(1). So by the previous theorem,
each operation takes O(1) time on average and ®(n)
total.

Data Structures, Spring 2004© L. Joskowicz

Construction of universal classes (1)

» Choose a prime number p > mand larger than the
range of the actual keysK . Let Z,, denote the set
{0,...p—1}, and let a and b be two numbers from Z,,.

e Consider the function:
h,s(K) = (ak +b) mod p

e The coallection of al such hash functionsis:
Hom= {haplabeZ,anda#0 }

* To choose a random hash function, we pick a,b
randomly from Z,,.

Data Structures, Spring 2004 © L. Joskowicz

Construction of universal classes (2)

 Claim: Pick any two different keys, k; and k,. For any two
elementsx; and X, in Z,,, the chance that k; will be hashed to
x; and k, to x, is exactly 1/p2.
e Proof: we can write two equations with variables a and b:
ak, + b =x,mod p
ak, + b =x,mod p
These equations always have a unique solution when pis
prime! For any two X, and X,, there exists a hash function
with parameters a and b which maps k; to x; and k; to X,.
 Thus, the chance of picking that function is exactly the
chance of picking the correct a and b, which is exactly 1/p2.

Data Structures, Spring 2004 © L. Joskowicz 3

Construction of universal classes (3)

Since the range of keys can be very large, we
correct the hash function to reduce it to m keys by
taking an additional modulo m:

h,p(K) = ((@k +b) mod p) mod m
The family
Hom= {hyp =2, binZj}

isthen auniversal family of hash functions.

Data Structures, Spring 2004 © L. Joskowicz

Universal hashing: summary

* Universal Hashing gives O(1) performance on
average for any set of actual keys 2> evenif there
are“crazy” patternsin the key set, we will manage
to hash them nicely on average.

» The chance that the performance is really bad, (say a
factor of 100 times the average) isreally small (say,
a chance of 1/100).

« However, if the set is dynamic, we do not know in
advance whether the function will be good or not....

Data Structures, Spring 2004 © L. Joskowicz

Perfect hashing (1)

 Universal hashing guarantees O(1) average
performance for any key set.

» Can we do better? Y es, in some cases!

« Perfect hashing guarantees O(1) worst-case
performance for a static key set, in which once the
keys are stored, they never change.

» Examples of static key sets: reserved wordsin a
programming language, file names on a CD-ROM.

Data Structures, Spring 2004 © L. Joskowicz

Perfect hashing (2)

Idea: Use atwo-level hashing scheme with universal
hashing at each level.

Level 1: Hashing with chaining. The n keys of K are
hashed to the m slots of T using hash function h(k)
chosen from a universal class.

Level 2: Instead of making alist of keys hashing into
dot j, use asecondary hash table § with associated
hash function h(k). Choose hy(k) to ensure that no
collisions occur, and the size of § as the square of
the number n; of keys hashingto dlot j: |§| = n?2

41
Data Structures, Spring 2004© L. Joskowicz

Example: perfect hashing
Primary hash function: h(k) = ((3k + 42) mod 101) mod 9
Secondary has function: h(k) = ((a;k +b;) mod p) mod m

- —Jo-{1[o[o[x0]
1

/]

{10,22,37, -
a06070, 12" 4] 10\18!60\75\ 111]
75} | /|3 ma;b S
/|4

|5 [iold]7
/|6

| #fol23 ss[a0 [/ T/ Ta7[1 1]/]/] 22]
8 "0 123 456 78,

Data Structures, Spring 2004 © L. Joskowicz

Perfect hashing: analysis

Theorem: If we store n keysin a (primary) hash table
of size m=n? using a hash function h(k) randomly
chosen from a universal class of hash functions,
then the probability of acollisionis< %%

Proof: There are n(n—1)/2 pairs of keys that may
collide, and each pair collides with probability 1/m
when h is chosen from a universal class of hash
functions. When m = n2we have:

n(n-1) 1 _ n%_n n® _ 1
2 m T op2 < 2n2 2

2

Therefore, it ismore likely NOT to have a collision!

4
Data Structures, Spring 2004 © L. Joskowicz 3

Perfect hashing: analysis

* When nislarge, ahash table of sizem=n?is

excessive.

To reduce the overall storage needs we adopt the

following scheme:

—Level 1: Tisof szem=n
—Level 2: §isof szem= n?

* Since we ensure that there are no collisionsin the
secondary hash tables by picking the hash functions
appropriately, the worst-case access time is constant.

» What isthe expected combined size of al hash tables?

44
DetaStructures, Spring 20046 L. Joskowicz

Perfect hashing: analysis space
The size of the primary hash tableis O(n).
The expected size of al the secondary hash tablesis:

m
n;(n;-1)
> ni=>(n+285") =
-1 i-1

m
= n+22(nj(nz] 1))
Theterm in the sum isJél(actIy the total number of collisions!
On averageit is 1/m times the number of pairs. Sincem=n,
itisat most n/2.
Therefore, the expected total space for the secondary hash
tablesislessthan 2n.

45

Data Structures, Spring 2004 © L. Joskowicz

Summary
Hashing generalizes the array ADT.
It achieves constant time access and linear storage
for dynamic key sets.
Hashing collisions are resolved by open addressing
or chaining.
Universal hashing functions guarantee expected
average access time.
Perfect hashing achieves worst case constant access
time for static key sets.
Hashing isNOT good for order queries (maximum,
successor) since it has no key order relation.

Data Structures, Spring 2004 © L. Joskowicz

