
Data Structures, Spring 2004 © L. Joskowicz

�

Data Structures – LECTURE 11

Hash tables

• Motivation
• Direct-address tables
• Hash tables
• Open addressing
• Chaining
• Hash functions
• Perfect hashing
Chapter 11 in the textbook (pp 221—252).

Data Structures, Spring 2004 © L. Joskowicz

�

Motivation
• Many tasks require table operations: maintain a symbol table

(dictionary) with access O(1) on average to the entries.
The keys need not have an order relation.

• Examples:
– Programming language keywords for compiler (static)

– By-laws of a contract (dynamic)

– ID numbers, customer repair orders

• We want an ADT that supports Search, Insert, and Delete in
O(1) on average with no order relation between elements.

• Search trees require an order relation and take O(lg n).

• Hash tables allow general keys and take O(1) on average.

Data Structures, Spring 2004 © L. Joskowicz

�

Hash tables: overview
• Generalization of arrays A[0..n–1].

• Instead of using the key k as an index to the array A,
compute the array index with a hash function h(k):

A[k] � A[h(k)]

• The size of the hash table is proportional to the
number of elements, and not to their range.

• The function h(k) need not be a one-to-one function.

• Need a mechanism to efficiently handle collisions.
Two keys k1 and k2 collide when h(k1) = h(k2).

Data Structures, Spring 2004 © L. Joskowicz

�

Examples
• Keywords of a programming language

– [for, if, then, …] � h(for) = 0; h(if) = 1; …

– Size of array is fixed; keyword set is static � array

• Car license plates
– Order number is arbitrary, some numbers might not exist

– Allocate a hash table of fixed size.

– Hashing function: plate number modulo maximum size
of hash table � h(55-080-32) = 5508032 mod 100,000

• User logins and passwords.

Data Structures, Spring 2004 © L. Joskowicz

�

Formalization
• Let U be a universe of keys of size |U|, K an actual set

of keys of size n, T a hash table of size O(m), m
�

|U|.

• Let h(k) be a hash function:

h(k): U �[0..m–1]

that maps key values from U to indices in T.

h(k) is computed in O(|k|) = O(1).

• Elements T[i] in the hash table T = [0..m –1] are
accessed in O(1) time. T[i] = null is an empty entry.

• For simplicity, we assume that U = { 0, …, N –1} .

Data Structures, Spring 2004 © L. Joskowicz �

Hashing: illustration

0

1
222

55

10
21

13
9

/

/

/

/

/

/
30

2

U = universe of keys

K = actual keys

T = hash table

0
1
2
3
4
5
6
7
8

h(9)=1

h(21)=0

h(10)=1

h(13) = 6

data21

data10

data9

data13

Data Structures, Spring 2004 © L. Joskowicz �

Hashing: key issues
• What are good hashing functions?
• How do we deal with collisions?
• What assumptions are necessary to guarantee

O(1) average time access?
How about worst-case access time?

Main approaches:
1. Direct-address tables
2. Open-addressing
3. Chaining

Issues: good hashing function; perfect hashing.

Data Structures, Spring 2004 © L. Joskowicz

�

1. Direct-address tables

• The hash table is an array of size m, T [0..m–1].
• The number of actual keys is n is close to m, or m is

reasonably small and there is sufficient storage.
• The key k is the index into T, i.e, the hash function is

h(k) = k (generalization: any one-to-one function).
• No collisions, access time is O(1) in the worst case.
• No need to store the key itself, only the data.
• Problems:

– Can be very wasteful in memory
– Impractical when m is very large

Data Structures, Spring 2004 © L. Joskowicz

�

Hash tables
• Use a many-to-one hash function h(k) to map

keys k to indices of T.
• The set of actual keys K can be much smaller than

the universe of keysU, i.e., m « |U|.

• Resolve collisions, i.e., h(k1) = h(k2) with either
1. Open addressing
2. Chaining

Data Structures, Spring 2004 © L. Joskowicz

� �

Simple uniform hashing and load factor

Simple uniform hashing assumption: each element
is equally likely to hash into any of the m slots,
independently of the other elements.

Definition: the load factor � of a hash table T with
m slots is defined as � = n/m, where n is the
number of stored elements, and 0

� � �
1.

Data Structures, Spring 2004 © L. Joskowicz

� �

2. Collision resolution by open addressing

• All keys ki that map into the same slot T[h(ki)] are
mapped to the next available slot in the table. Looking
for the next available spot is called probing.

• Slots contain the element themselves, or null.

• The hash function is augmented with a probe number:

h(k,i): U × [0..m–1] �[0..m–1]

Probe sequence: h(k,0), h(k,1)…

Data Structures, Spring 2004 © L. Joskowicz

� �

Open addressing: illustration

0

1
222

55

10
21

13
9

/

/

/

/

/

/

30
2

U = universe of keys

K = actual keys

T = hash table

0
1
2
3
4
5
6
7
8

h(21)=0

h(10) = 1

h(9) = 1

h(13) = 6

10

21

9

13

Data Structures, Spring 2004 © L. Joskowicz

� �

Open addressing operations
• Insert: probe the hash table until an empty slot is

found. The sequence of probes depends on the
key. If there is no empty slot after m probes, the
table is full.

• Search: probe the same sequence of slots as insert
and stops either when the key is found (success) or
when an empty slot is reached (fail).

• Delete: cannot just delete the key! Instead, mark
the slot as “deleted” so that probing can go over it.

Complexity: length of the probing sequence.
Data Structures, Spring 2004 © L. Joskowicz

� �

Probing strategies
Three probing techniques:

1. Linear probing
2. Quadratic probing
3. Double hashing

• None of them fulfils the uniform hashing
assumption: each key is equally likely to have
any of the m! permutations of (0..m–1) as its
probe sequence.

• However, they approximate it.

Data Structures, Spring 2004 © L. Joskowicz

� �

Linear probing
The hash function is:

h(k, i) = (h’ (k) + i) mod m
where h’ (k) is an auxiliary probe-independent hash

function.
Given a key k, the probing sequence is:

T[h’ (k)], T[h’ (k)+1], … T[m–1], T[0], T[1] … T[h’ (k)–1]

Problem: primary clustering. Long runs of occupied
slots build up, because an empty slot preceded by
i full slots gets filled with probability (i+1)/m�

increases average search time. Generates m
distinct probing sequences.

Data Structures, Spring 2004 © L. Joskowicz

�
�

Quadratic probing
The hash function is:

h(k, i) = (h’ (k) + c1i + c2i
2) mod m

where c1 and c2 are constants
�

0 and h’ (k) is an
auxiliary hash function.
In contrast with linear probing, the probed positions

are offset by amounts that depend ina quadratic
manner on the probe number i.

Generates m probing sequences. Suffers from
secondary clustering: keys that hash to the same
initial slot will probe the same alternative cells.

Data Structures, Spring 2004 © L. Joskowicz

�
�

Double hashing
The hash function is:

h(k, i) = (h1(k) + ih2(k)) mod m
where h1(k) and h2(k) are two hash functions.
The first probe is to T[h1(k)]. Successive probes are offset

from the previous position by h2(k) mod m.

The value h2(k) must be prime to the hash table of size m
so the entire table is searched.

Example of a choice of functions:
h1(k) = k mod m

h2(k) = 1 + (k mod m’) with m’ < m
Generates � (m2) probe sequences.

Data Structures, Spring 2004 © L. Joskowicz

� �

Open addressing: analysis

Theorem: Given an open-address hash table with
load factor � = n/m < 1, the expected number of
probes, assuming uniform hashing is:
– at most 1/(1–�) in an unsuccessful search
– at most 1/ � ln 1/(1–�) in a successful search

• When � is constant, the search time is O(1) and we
have a gives a bound on the number of probes that
will happen.

Data Structures, Spring 2004 © L. Joskowicz

� �

3. Collision resolution by chaining

• All keys ki that map into the same slot T[h(ki)] are
placed in a linked list Lj , j = h(ki).

• Slots contain pointers to the linked lists Lj

• Insert: new keys are inserted at the head of the list
Lj � worst-case time O(1).

• Search/Delete: find/delete the element with key k
in linked list Lj � worst-case time proportional to
length of longest list.

Data Structures, Spring 2004 © L. Joskowicz

� �

Chaining: illustration

0

1
222

55

10
21

13
9

/

/

/

/

/

/

30
2

U = universe of keys

K = actual keys

T = hash table

0
1
2
3
4
5
6
7
8

h(21)=0

h(10) = 1
h(9) = 1

h(13) = 6

9

21

/10

13

Data Structures, Spring 2004 © L. Joskowicz

� �

Chaining: simple uniform hashing

Theorem: In a hash table with chaining, under the
assumption of simple uniform hashing, both
successful and unsuccessful searches take expected
time � (1+�) on the average, where � is the hash
table load factor.

Data Structures, Spring 2004 © L. Joskowicz

� �

The simple uniform hashing assumption
• Is the simple uniform hashing assumption reasonable?
• Suppose we pick a function h. Then it cannot be that this h

distributes the keys k approximately uniformly over the table
for ALL possible sets of keys in the universe U., i.e, h cannot
be a good hash function for all possible key sets K!

• The reason is as follows. We know that h maps the universe
U, which is huge, into m possible indices. Consider the set S
of elements k and the index i such that h(k) = i. There must
exist one such index i for which more than 1/m of the
possible keys go to. So there is one index to which we direct
|U|/m possible keys! Since |U| >> m, this is a larger number!

• Suppose we are now given n keys from S. They will all go to
the same slot, yielding the worst case behavior!

Data Structures, Spring 2004 © L. Joskowicz

� �

Good hash functions
• The performance of hashing critically depends on the

properties of the hash function and the actual key set
patterns.

• A hash function that satisfies the simple uniform hashing
assumption is a good one!

• However, it is typically not possible to check if the
assumption holds, since we usually do not know the
probability distribution according to which the keys are
drawn, and keys may not be drawn independently.

• Two approaches:
– Look for functions that do well “most of the time” � heuristics
– Choose hash function randomly for provably good performance

Data Structures, Spring 2004 © L. Joskowicz

� �

Heuristic hashing functions
• The hash function should work well on most actual key

sets, not on ones that were maliciously prepared to make
the function perform badly.

• The actual key set K is usually not random, and has simple
patterns, such as keys starting with the same few bits, or
keys that are multiples of some integer.

• The goal is to find a hash function which divides the key
universe U in a way which looks random to such average
actual key sets K. The worst-case pattern for the selected
hash function should be a rare one.

• Heuristic: a strategy or rule-of-thumb that works most of
the time.

Data Structures, Spring 2004 © L. Joskowicz

� �

The division method
• Let U = N = { 0,1,2, …} , the set of natural numbers.

• Map a key k into one of m slots by taking the
reminder of k divided by m:

h(k) = k mod m

• For this to work properly, avoid choosing m which is
a power of 2 (m = 2p) since this is like selecting the
lowest p bits, which ignores useful discriminating
information.

• Heuristic: pick m to be a prime number far from a
power of two.

Data Structures, Spring 2004 © L. Joskowicz

�
�

Example: the division method
• Suppose |U| = n = 2000 and we can tolerate up to 3

collisions per key.

• What should be the size m of the hash table?

• We have that floor(2000/3) = 666; a prime number
close to it and not a power of two is 701.

• The hash function is thus:

h(k) = k mod 701

• The keys 0, 701, and 1402 will all map to 0.

Data Structures, Spring 2004 © L. Joskowicz

�
�

The multiplication method
• Map a key k into one of m slots by first multiplying

it by a constant a in the range 0 < a < 1, extracting
the fractional part of ka, and then taking the integer
part of the result multiplied by m:� � ���� �� �

10, ���� akaakmkh
• This method is less sensitive to the values of m

because the “ random” behavior comes from the fact
that most actual key sets have no correlation with a.

• Heuristic: pick m to be a power of 2 and a to be close
to the golden ratio: � 	 ...6180.02/15
�
a

Data Structures, Spring 2004 © L. Joskowicz

� �

Universal hashing
• Idea: choose the hash function randomly in a way

that is independent of the keys.
• Yields a provably good performance on average.
• It guarantees that no single input will always have

the worst-case behavior (as for QuickSort).
• Issue: what should be the set of hash functions from

which to choose? There are infinitely many
functions!

• Choose from a finite collection of universal hash
functions.

Data Structures, Spring 2004 © L. Joskowicz

� �

Universal hashing (1)
• Motivation: we want the simple uniform hashing

assumption to hold, so that on average, the keys will
be hashed uniformly.

• Properties of simple uniform hashing:
– For any two keys k1 and k2, and any two slots y1 and y2,

the chance that h(k1) = y1 and h(k2) = y2 is exactly 1/m2.

– For two keys k1 and k2, the chance that they collide, that
is h(k1) = h(k2) is exactly 1/m.

• We want a family of hash functions H that has the
same chance of collision as simple uniform hashing.

Data Structures, Spring 2004 © L. Joskowicz

� �

Universal hashing (2)
Definition: Let H be a finite collection of hash

functions that map a given universe U of keys into
the range { 0,1,…,m –1} .
H is said to be universal if for every pair of distinct
keys k1 and k2 in U, the number of hash functions h
in H, for which h(k1) = h(k2) is at most |H|/m.

• In other words, the chance of collision between
distinct keys k1 and k2 is no more than the chance
1/m of a collision if h(k1) and h(k2) were randomly
and independently chosen from the set { 0,1,...,m–1} .

Data Structures, Spring 2004 © L. Joskowicz

� �

Expected list length in hash table

Theorem: Let h be a hash function chosen from a
universal collection of hash functions and used to
hash n keys into a table T of size m, using chaining
resolution. Let � = n/m be the load factor.
– if k is not in the table, the expected length of the list that

k is hashed to is at most � .

– if k is in the table, the expected length of the list that k is
hashed to is at most 1+� .

Data Structures, Spring 2004 © L. Joskowicz

� �

Proof outline

• k is not in the table: 1/m of the keys will be hashed to
that list, and so there will be on average � keys in the
list.

• k is in the table: out of the n –1 remaining keys, 1/m
on average will go to the same slot. So on average we
have at most (1 + (n –1)/m) < (1 + n/m) = 1+� .

Data Structures, Spring 2004 © L. Joskowicz

� �

Corollary: using universal hashing and collision
resolution by chaining in a table with m slots,
it takes expected time (n) to handle any
sequence of n insert, search, and delete
operations containing O(m) insert operations.

Proof: because the number of insertions n = O(m), the
load factor � = O(1). So by the previous theorem,
each operation takes O(1) time on average and � (n)
total.

Complexity of operation sequences

Data Structures, Spring 2004 © L. Joskowicz

� �

Construction of universal classes (1)
• Choose a prime number p > m and larger than the

range of the actual keys K . Let Zp denote the set
{ 0,…p –1} , and let a and b be two numbers from Zp.

• Consider the function:
ha,b(k) = (ak +b) mod p

• The collection of all such hash functions is:
Hp,m= { ha,b | a,b � Zp and a � 0 }

• To choose a random hash function, we pick a,b
randomly from Zp.

Data Structures, Spring 2004 © L. Joskowicz

� �

• Claim: Pick any two different keys, k1 and k2. For any two
elements x1 and x2 in Zp, the chance that k1 will be hashed to
x1 and k2 to x2 is exactly 1/p2.

• Proof: we can write two equations with variables a and b:

ak1 + b = x1 mod p

ak2 + b = x2 mod p

These equations always have a unique solution when p is
prime! For any two x1 and x2, there exists a hash function
with parameters a and b which maps k1 to x1 and k2 to x2.

• Thus, the chance of picking that function is exactly the
chance of picking the correct a and b, which is exactly 1/p2.

Construction of universal classes (2)

Data Structures, Spring 2004 © L. Joskowicz

�
�

Since the range of keys can be very large, we
correct the hash function to reduce it to m keys by
taking an additional modulo m:

ha,b(k) = ((ak +b) mod p) mod m

The family

Hp,m= { ha,b: = a, b in Zp}

is then a universal family of hash functions.

Construction of universal classes (3)

Data Structures, Spring 2004 © L. Joskowicz

� �

Universal hashing: summary
• Universal Hashing gives O(1) performance on

average for any set of actual keys � even if there
are “crazy” patterns in the key set, we will manage
to hash them nicely on average.

• The chance that the performance is really bad, (say a
factor of 100 times the average) is really small (say,
a chance of 1/100).

• However, if the set is dynamic, we do not know in
advance whether the function will be good or not….

Data Structures, Spring 2004 © L. Joskowicz

� �

Perfect hashing

• Universal hashing guarantees O(1) average
performance for any key set.

• Can we do better? Yes, in some cases!

• Perfect hashing guaranteesO(1) worst-case
performance for a static key set, in which once the
keys are stored, they never change.

• Examples of static key sets: reserved words in a
programming language, file names on a CD-ROM.

Data Structures, Spring 2004 © L. Joskowicz

� �

Perfect hashing

Idea: Use a two-level hashing scheme with universal
hashing at each level.

Level 1: Hashing with chaining. The n keys of K are
hashed to the m slots of T using hash function h(k)
chosen from a universal class.

Level 2: Instead of making a list of keys hashing into
slot j, use a secondary hash table Sj with associated
hash function hj(k). Choose hj(k) to ensure that no
collisions occur, and the size of Sj as the square of
the number nj of keys hashing to slot j: |Sj| = nj

2.

Data Structures, Spring 2004 © L. Joskowicz

� �

Example: perfect hashing

10001

/

/

/

/

/
0

1

2

3

4

5

6

7

8

//
�������������

70001

K =
{ 10,22,37,
40,60,70,
75}

/ 22// 37 / //
������	�
�

0 1 2 3 4 5 6 7 8

Primary hash function: h(k) = ((3k + 42) mod 101) mod 9
Secondary has function: hi(k) = ((aik +bi) mod p) mod mi

mi a i bi Si

Data Structures, Spring 2004 © L. Joskowicz

� �

Perfect hashing: analysis
Theorem: If we store n keys in a (primary) hash table

of size m = n2 using a hash function h(k) randomly
chosen from a universal class of hash functions,
then the probability of a collision is < ½.

Proof: There are n(n–1)/2 pairs of keys that may
collide, and each pair collides with probability 1/m
when h is chosen from a universal class of hash
functions. When m = n2 we have:

Therefore, it is more likely NOT to have a collision!

2
1

22
1

2
)1(

2

2

2

2 �
� ��

n
n

n
nn

m
nn

Data Structures, Spring 2004 © L. Joskowicz

� �

Perfect hashing: analysis
• When n is large, a hash table of size m = n2 is

excessive.
• To reduce the overall storage needs we adopt the

following scheme:
– Level 1: T is of size m = n
– Level 2: Sj is of sizemj= nj

2

• Since we ensure that there are no collisions in the
secondary hash tables by picking the hash functions
appropriately, the worst-case access time is constant.

• What is the expected combined size of all hash tables?

Data Structures, Spring 2004 © L. Joskowicz

� �

Perfect hashing: analysis space
• The size of the primary hash table is O(n).
• The expected size of all the secondary hash tables is:

• The term in the sum is exactly the total number of collisions!
• On average it is 1/m times the number of pairs. Since m = n,

it is at most n/2.
• Therefore, the expected total space for the secondary hash

tables is less than 2n.

)(2

)2(

2

)1(

1

2

)1(

11

2

�
�

�
��

�

��

��

���

jj

jj

nn
m

j

nn
m

j
j

m

j
j

n

nn

Data Structures, Spring 2004 © L. Joskowicz

�
�

Summary
• Hashing generalizes the array ADT.
• It achieves constant time access and linear storage

for dynamic key sets.
• Hashing collisions are resolved by open addressing

or chaining.
• Universal hashing functions guarantee expected

average access time.
• Perfect hashing achieves worst case constant access

time for static key sets.
• Hashing is NOT good for order queries (maximum,

successor) since it has no key order relation.

