Data Structures - LECTURE 10

Huffman coding

- Motivation
- · Uniquely decipherable codes
- Prefix codes
- Huffman code construction
- Extensions and applications

Chapter 16.3 pp 385-392 in textbook

uta Structures, Spring 2004 © L. Joskowicz

Motivation

- Suppose we want to store and transmit very large files (messages) consisting of strings (words) constructed over an alphabet of characters (letters).
- Representing each character with a fixed-length code will not result in the shortest possible file!
- Example: 8-bit ASCII code for characters
 - some characters are much more frequent than others
 - using shorter codes for frequent characters and longer ones for infrequent ones will result in a shorter file

a Structures, Spring 2004 © L. Joskov

Example							
Σ	a	b	c	d	e	f	
Frequency (%)	45	13	12	16	9	5	
Fixed-length	000	001	010	011	100	101	
Variable-length	0	101	100	111	1101	1100	
Message: abadef		001000					
$\frac{1}{3}$ file of 100,000 cha $3 \times 100,000 = 300,000$	aracters	s takes:			ode		

(.45×1 + .13×3 + .12×3+ .16×3 + .09×4 + .05×4) ×100,000 = 224,000 bits on average with variable-length code (25% less)
 Data Structure, Spring 2004 L Jokawicz

Coding: problem definition

- Represent the characters from an input alphabet Σ using a variable-length code alphabet *C*, taking into account the occurrence frequency of the characters.
- Desired properties:
 - The code must be *uniquely decipherable*: every message can be decoded in only one way.
 - The code must be *optimal* with respect to the input probability distribution.
 - The code must be *efficiently decipherable* → <u>prefix code</u>: no string is a prefix of another.

ata Structures, Spring 2004 © L. Joskowic

Uniquely decipherable codes (1)

- <u>Definition</u>: The code alphabet $C = \{c_1, c_2, ..., c_n\}$ over the original alphabet Σ is *uniquely decipherable* iff every message constructed from code-words of *C* can be broken down into code-words of *C* in only one way.
- <u>Question:</u> how can we test if *C* is uniquely decipherable?
- <u>Lemma</u>: a code *C* is uniquely decipherable iff no *tail* is a code-word.

Terminology

- Let *w*, *p*, and *s* be words over the alphabet *C*. For *w* = *ps*, *p* is the <u>prefix</u> and *s* is the <u>suffix</u> of *w*.
- Let *t* be a non-empty word. *t* is called a <u>tail</u> iff there exist two messages $c_1c_2...c_m$ and $c'_1c'_2...c'_n$ such that:

 $-c_{\rm i}$ and $c'_{\rm j}$ are code-words and $c_1\!\neq\!c'_1\,(1\!\leq\!i\!\leq\!n,\,1\!\leq\!j\!\leq\!m)$

-t is a suffix of c'_n

Contro 2004 O L. Technolog

- $-c_1c_2\ldots c_mt = c'_1c'_2\ldots c'_n$
- The length of a word *w* is *l*(*w*). *w* is non-empty when *l*(*w*) > 0. *l* is the maximum length of a code-word in *C*.

6

Uniquely decipherable codes (2)

<u>Proof</u>: a code *C* is uniquely decipherable (UD) iff no tail is a code-word.

- If a code-word c is a tail then by definition there exist two messages c₁c₂...c_m and c'₁c'₂...c'_n which satisfy c₁c₂...c_mc = c'₁c'₂...c'_n while c₁ ≠ c'₁
 Thus there are two ways to interpret the message.
- If *C* is not UD, there exist messages which can be interpreted in more than one way. Let μ be the shortest such an ambiguous message. Then $\mu = c_1 c_2 \dots c_k = c'_1 c'_2 \dots c'_n$ that is, all c_i 's and c_j 's are code-words and $c_1 \neq c'_1$. Thus, without loss of generality, c_k is a suffix of $c'_n \rightarrow c_k$ is a tail.

ta Structures, Spring 2004 © L. Joskowicz

Test for unique decipherability

- 1. For every two code-words, c_i and c_j $(i \neq j)$ do:
 - If $c_i = c_i$ then halt: *C* is not UD.
 - If for some word *s* either $c_i s = c_j$ or $c_j s = c_i$ then put *s* in the set of tails *T*
- 2. For every tail t in T and every code-word c_i in C do:
 - If $t = c_i$ then halt: C is not UD.
 - If for some word *s* either $ts = c_j$ or $c_js = t$ then put *s* in the set of tails *T*.
- 3. Halt: *C* is UD.

Time complexity: $O(n^2l^2)$

Example 2				
• $C = \{1,00,101,010\}$				
1. Tails: $1.01 = 101 \rightarrow t = 01$				
2. Tails $01.0 = 010 \rightarrow t = 0$				
$0.10 = 010 \rightarrow t = 10$				
$10.1 = 101 \rightarrow t = 1$				
1 is a code-word! C is not UD				
Counter-example: 10100101 has two meanings:				
1.010.010.1				
101.00.101 Data Structures, Spring 2004 O L. Joskowicz	10			

Optimal coding (1)

- An optimal code is represented as a <u>full binary tree</u>
- For a code alphabet C = {c₁, c₂, ..., c_n} with |C| codewords, all with positive frequencies f (c_i) > 0, the tree for an optimal prefix code has exactly |C| leaves and |C| −1 internal nodes.
- <u>Definition</u>: The <u>cost</u> of a prefix tree is defined as number of bits *B*(*T*) required to encode all code-words

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

ctures, Spring 2004 © L. Joskowic:

where $d_T(c)$ is the depth in T (length) of code-word c.

16

Optimality proof (1)

<u>Lemma 1</u>: Let *C* be a code alphabet and *x*, *y* two codewords in *C* with the lowest frequencies. Then there exists an optimal prefix code tree in which *x* and *y* are sibling leaves.

<u>Proof</u>: take a tree *T* of an arbitrary optimal prefix code where *x* and *y* are not siblings and modify it so that *x* and *y* become siblings of maximum depth and the tree remains optimal. This can be done with two transformations.

Optimality proof (3)

- Let *a* and *b* two code-words that are sibling leaves at maximum depth in *T*. Assume that $f(a) \le f(b)$ and $f(x) \le f(y)$. Since f(x) and f(y) are the two lowest frequencies, $f(x) \le f(a)$ and $f(y) \le f(b)$.
- <u>First transformation</u>: exchange the positions of *a* and *x* in *T* to produce a new tree *T*^{*}.
- <u>Second transformation</u>: exchange the positions of *b* and *y* in *T* to produce a new tree *T*".
- Show that the cost of the trees remains the same.

27

Data Structures, Spring 2004 © L. Joskowic

Optimality proof (4)
First transformation:

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_T(c)$$

$$= [f(x)d_T(x) + f(a)d_T(a)] - [f(x)d_T(x) + f(a)d_T(a)]$$

$$= [f(x)d_T(x) + f(a)d_T(a)] - [f(x)d_T(a) + f(a)d_T(x)]$$

$$= (f(a) - f(x))(d_T(a) - d_T(x))$$

$$\geq 0$$
because $0 \le f(a) - f(x)$ and $0 \le (d_T(a) - d_T(x))$
Since *T* is optimal, $B(T) = B(T')$

Optimality proof (5)
Second transformation:

$$B(T')-B(T'') = \sum_{\substack{c \in C \\ c \in C}} f(c)d_T(c) - \sum_{c \in C} f(c)d_T(c)$$

$$= [f(y)d_T(y) + f(b)d_T(b)] - [f(y)d_T(y) + f(b)d_T(b)]$$

$$= [f(y)d_T(y) + f(b)d_T(b)] - [f(y)d_T(b) + f(b)d_T(y)]$$

$$= (f(b) - f(y))(d_T(b) - d_T(y))$$

$$\geq 0$$
because $0 \le f(b) - f(y)$ and $0 \le (d_T(b) - d_T(y))$
Since T' is optimal, $B(T') = B(T')$

Optimality proof: lemma 2 (1)

<u>Lemma 2</u>: Let *T* be an optimal prefix code tree for code alphabet *C*. Consider any two sibling codewords *x* and *y* in *C* and let *z* be their parent in *T*. Then, considering *z* as a character with frequency f(z) = f(x) + f(y), the tree $T^{2} = T - \{x,y\}$ represents an optimal prefix code for the code alphabet $C^{2} = C - \{x,y\} \cup \{z\}$.

<u>Proof</u>: we first express the cost B(T) of tree *T* as a function of the cost B(T') of tree *T*'.

31

ta Structures, Spring 2004 © L. Joskowicz

Optimality proof: lemma 2 (2)

- For all *c* in $C \{x, y\}$, $d_T(c) = d_T(c)$ and thus $f(c) d_T(c) = f(c) d_T(c)$.
- Since $d_T(x) = d_T(y) = d_T(z) + 1$, we get: $f(x) d_T(x) + f(y) d_T(y) = [f(x) + f(y)](d_T(z) + 1)$ $= f(z) d_T(z) + [f(x) + f(y)]$

32

34

• Therefore, B(T) = B(T') + [f(x) + f(y)]B(T') = B(T) - [f(x) + f(y)]

Optimality proof: lemma 2 (3)

We prove the lemma by contradiction:

- Suppose that *T* does not represent an optimal prefix code for *C*. Then there exist a tree $T^{"}$ whose cost is better than that of *T*: $B(T^{"}) < B(T)$.
- By Lemma 1, T" has two siblings, x and y. Let T" be the tree with the common parent of x and y replaced by leaf z with frequency f(z) = f(x) + f(y). Then:
 B(T") = B(T") [f(x) + f(y)]

$$P(T) = B(T'') - [f(x) + f(y)] < B(T) - [f(x) + f(y)] = B(T')$$

yielding a contradiction to T' being an optimal code for C'.

Optimality proof: Huffman algorithm (1) <u>Theorem</u>: Huffman's algorithm produces an optimal prefix code. <u>Proof</u>: By induction on the size of the code alphabet *C*, using Lemmas 1 and 2. For |C| = 2 it is trivial, since the tree has two

leaves, assigned to "0" and "1", both of length 1.

tures, Spring 2004 © L. Joskowic

The induction step (1)

- Suppose the Huffman algorithm generates an optimal code for a code of size *n*, let us prove this for *C* with |C| = n + 1.
- Let *T* be the tree generated for *C* by the Huffman algorithm, Let *x* and *y* be two nodes with minimal frequencies that the Huffman algorithm picks first. Suppose in contradiction that *S* is a tree for |*C*|=*n*+1, which is strictly better than *T*: *B*(*S*)< *B*(*T*). By Lemma 1, we can assume that *S* has *x*, *y* as siblings.
- Define the node z' to be their parent, S' to be the sub-tree of S without x and y, T' to be the sub-tree of T without x, y.
- *T*' is the Huffman code generated for $C \{x, y\} \cup \{z\}$ with f(z) = f(x) + f(y). *S*' describes a prefix code for $C \{x, y\} \cup \{z'\}$ with f(z') = f(x) + f(y).

The induction step (3)

But now if B(S) < B(T) we have that B(S') < B(T').

Since |S'| = |T'| = n, this contradicts the induction assumption that *T*, the Huffman code for $C - \{x.y\} \cup \{z\}$ is optimal!

ta Structures, Spring 2004 © L. Joskowicz

37

Extensions and applications

• <u>*d*-ary codes</u>: we merge the *d* objects with the least frequency at each step, creating a new object. whose frequency is the sum of the frequencies

38

• Many more coding techniques!

Spring 2004 © L. Jos