Data Structures - LECTURE 10

Huffman coding

- Motivation
- Uniquely decipherable codes
- Prefix codes
- Huffman code construction
- Extensions and applications

Chapter 16.3 pp 385-392 in textbook

Example

$\boldsymbol{\Sigma}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}
Frequency (\%)	45	13	12	16	9	5
Fixed-length	000	001	010	011	100	101
Variable-length	0	101	100	111	1101	1100

Message: abadef $\rightarrow 000001000011100101$ 0101011111011100
A file of 100,000 characters takes:

- $3 \times 100,000=300,000$ bits with fixed-length code
- $(.45 \times 1+.13 \times 3+.12 \times 3+.16 \times 3+.09 \times 4+.05 \times 4) \times 100,000=$ 224,000 bits on average with variable-length code (25% less)

Coding: problem definition

- Represent the characters from an input alphabet Σ using a variable-length code alphabet C, taking into account the occurrence frequency of the characters.
- Desired properties:
- The code must be uniquely decipherable: every message can be decoded in only one way.
- The code must be optimal with respect to the input probability distribution.
- The code must be efficiently decipherable \rightarrow prefix code: no string is a prefix of another.

Uniquely decipherable codes (1)

- Definition: The code alphabet $C=\left\{c_{1}, c_{2}, \ldots, c_{\mathrm{n}}\right\}$ over the original alphabet Σ is uniquely decipherable iff every message constructed from code-words of C can be broken down into code-words of C in only one way.
- Question: how can we test if C is uniquely decipherable?
- Lemma: a code C is uniquely decipherable iff no tail is a code-word.

Terminology

- Let w, p, and s be words over the alphabet C. For $w=p s, p$ is the prefix and s is the suffix of w.
- Let t be a non-empty word. t is called a tail iff there exist two messages $c_{1} c_{2} \ldots c_{\mathrm{m}}$ and $c^{\prime}{ }_{1} c^{\prime}{ }_{2} \ldots c^{\prime}{ }_{\mathrm{n}}$ such that:
$-c_{\mathrm{i}}$ and $c^{\prime}{ }_{\mathrm{j}}$ are code-words and $c_{1} \neq c^{\prime}{ }_{1}(1 \leq i \leq n, 1 \leq j \leq m)$ $-t$ is a suffix of $c^{\prime}{ }_{\mathrm{n}}$
$-c_{1} c_{2} \ldots c_{\mathrm{m}} t=c^{\prime}{ }_{1} c^{\prime}{ }_{2} \ldots c^{\prime}{ }_{\mathrm{n}}$
- The length of a word w is $l(w) . w$ is non-empty when $l(w)>0 . l$ is the maximum length of a code-word in C.

Uniquely decipherable codes (2)

Proof: a code C is uniquely decipherable (UD) iff no tail is a code-word.

- If a code-word c is a tail then by definition there exist two messages $c_{1} c_{2} \ldots c_{\mathrm{m}}$ and $c^{\prime}{ }_{1} c^{\prime}{ }_{2} \ldots c^{\prime}{ }_{\mathrm{n}}$ which satisfy $c_{1} c_{2} \ldots c_{\mathrm{m}} c=c^{\prime}{ }_{1} c^{\prime}{ }_{2} \ldots c^{\prime}{ }_{\mathrm{n}}$ while $c_{1} \neq c^{\prime}{ }_{1}$
Thus there are two ways to interpret the message.
- If C is not UD, there exist messages which can be interpreted in more than one way. Let μ be the shortest such an ambiguous message. Then $\mu=c_{1} c_{2} \ldots c_{k}=c^{\prime}{ }_{1} c^{\prime}{ }_{2} \ldots c^{\prime}$, that is, all c_{i} 's and c_{j} 's are code-words and $c_{1} \neq c_{1}$. Thus, without loss of generality, c_{k} is a suffix of $c^{\prime}{ }_{n} \rightarrow c_{k}$ is a tail.

Example 1

- $C=\{00,10,11,100,110\}$

1. Tails: $10.0=100 \rightarrow t=0$
$11.0=110 \rightarrow t=0$
2. Tails $\quad 0.0=00 \quad \rightarrow t=0$
C is $U D$

Test for unique decipherability

1. For every two code-words, c_{i} and $c_{j}(i \neq j)$ do:

- If $c_{i}=c_{j}$ then halt: C is not UD.
- If for some word s either $c_{i} s=c_{j}$ or $c_{j} s=c_{i}$ then put s in the set of tails T

2. For every tail t in T and every code-word c_{i} in C do:

- If $t=c_{j}$ then halt: C is not UD.
- If for some word s either $t s=c_{j}$ or $c_{j} s=t$ then put s in the set of tails T.

3. Halt: C is UD.

Time complexity: $O\left(n^{2} l^{2}\right)$
Datas Stucturuss. Sping 2004 OL. Joskowizz

Example 1
• $C=\{00,10,11,100,110\}$
1. Tails: $10.0=100 \rightarrow t=0$
$11.0=110 \rightarrow t=0$
2. Tails $0.0=00 \rightarrow t=0 \quad C$ is $U D$

Prefix codes

- We consider only prefix codes: no code-word is a prefix of another code-word. Prefix codes are uniquely decipherable by definition.
- A binary prefix code can be represented as a binary tree:
- leaves are a code-words and their frequency (\%)
- internal nodes are binary decision points: " 0 " means go to the left, " 1 " means go to the right of a character. They include the sum of frequencies of their children.
- The path from the root to the code-word is the binary representation of the code-word.

Example: fixed-length prefix code (1)

Example: fixed-length prefix code (2)

Data Structurcs. Spring 20040... Joskowicz \qquad

Example: variable-length prefix code (2)

Frequency (\%)

Optimal coding (2)

- Example
- Fixed-length code:
$(.45 \times 3+.13 \times 3+.12 \times 3+.16 \times 3+.09 \times 3+.05 \times 3)=3$
- Variable-length code:
$(.45 \times 1+.13 \times 3+.12 \times 3+.16 \times 3+.09 \times 4+.05 \times 4)=2.24$
- Optimal code: the code with the lowest cost:

$$
B(T)=\min \sum_{c \in C} f(c) d_{T}(c)
$$

- Theorem: Optimal coding is achievable with a prefix code.

Optimal coding (1)

- An optimal code is represented as a full binary tree
- For a code alphabet $C=\left\{c_{1}, c_{2}, \ldots, c_{\mathrm{n}}\right\}$ with $|C|$ codewords, all with positive frequencies $f\left(c_{i}\right)>0$, the tree for an optimal prefix code has exactly $|C|$ leaves and $|C|-1$ internal nodes.
- Definition: The cost of a prefix tree is defined as number of bits $B(T)$ required to encode all code-words

$$
B(T)=\sum_{c \in C} f(c) d_{T}(c)
$$

where $d_{T}(c)$ is the depth in T (length) of code-word c.

Huffman code: decoding

- Huffman invented in 1952 a greedy algorithm for constructing an optimal prefix code, called a Huffman code.
- Decoding:

1. Start at the root of the coding tree T, read input bits.
2. After reading " 0 " go left
3. After reading " 1 " go right
4. If a leaf node has been reached, output the character stored in the leaf, and return to the root of the tree.
Complexity: $O(n)$, where n is the message length.

Huffman code: construction

- Idea: build the tree bottom-up, starting with the code-words as leafs of the tree and creating intermediate nodes by merging the two leastfrequent objects, up to the root.
- To efficiently find the two least-frequent objects, use a minimum priority queue.
- The result of the merger of two objects is a new object whose frequency is the sum of the frequencies of the merged objects.

Example: Huffman code construction (1)

| Start: | f: 5 | e: 9 | c: 12 | b: 13 | d: 16 | a: 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}\text { Step 1: c: } 12 & \text { b: } 13 & 14 & \text { d: } 16 & \text { a: } 45\end{array}$ e: 9 f: 5

Step 2:
d: 16

a: 45

Example: Huffman code construction (2)

Step 3:

Example: Huffman code construction (3)

$$
\text { a: } 45
$$

Example: Huffman code construction (3)
Step 5:

Huffman code construction algorithm
Huffman (C)
$n \leftarrow|C|$
$Q \leftarrow C$
for $i \leftarrow 1$ to $n-1$
do allocate a new node z left $[z] \leftarrow x \leftarrow \operatorname{Extract-Min}(Q)$ $\operatorname{right}[z] \leqslant y \leqslant \operatorname{Extract}-\operatorname{Min}(Q)$ $f(z) \leftarrow f(x)+f(y)$
$\operatorname{Insert}(Q, z)$
return Extract-Min $(Q) \quad$ Complexity: $O(n \lg n)$
Sata Structures, Spring 2004 © L. Ioskowicz

Optimality proof (1)

Lemma 1: Let C be a code alphabet and x, y two codewords in C with the lowest frequencies. Then there exists an optimal prefix code tree in which x and y are sibling leaves.

Proof: take a tree T of an arbitrary optimal prefix code where x and y are not siblings and modify it so that x and y become siblings of maximum depth and the tree remains optimal. This can be done with two transformations.

Optimality proof (3)

- Let a and b two code-words that are sibling leaves at maximum depth in T. Assume that $f(a) \leq f(b)$ and $f(x) \leq f(y)$. Since $f(x)$ and $f(y)$ are the two lowest frequencies, $f(x) \leq f(a)$ and $f(y) \leq f(b)$.
- First transformation: exchange the positions of a and x in T to produce a new tree T.
- Second transformation: exchange the positions of b and y in T to produce a new tree $T^{\prime \prime}$.
- Show that the cost of the trees remains the same.

Optimality proof (5)

Second transformation:

$$
\begin{array}{rlc}
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) & = & \sum_{c \in C} f(c) d_{T^{\prime}}(c)-\sum_{c \in c} f(c) d_{T^{\prime}}(c) \\
& =\left[f(y) d_{T^{\prime}}(y)+f(b) d_{T}(b)\right]-\left[f(y) d_{T^{\prime}}(y)+f(b) d_{T^{\prime}}(b)\right] \\
& =\left[f(y) d_{T}(y)+f(b) d_{T}(b)\right]-\left[f(y) d_{T}(b)+f(b) d_{T}(y)\right] \\
& = & (f(b)-f(y))\left(d_{T}(b)-d_{T^{\prime}}(y)\right) \\
& \geq & 0
\end{array}
$$

because $0 \leq f(b)-f(y)$ and $0 \leq\left(d_{T^{\prime}}(b)-d_{T^{\prime}}(y)\right)$
Since T^{\prime} is optimal, $B\left(T^{\prime}\right)=B\left(T^{\prime}\right)$

Optimality proof (4)

First transformation:

$$
\begin{array}{rlc}
B(T)-B\left(T^{\prime}\right) & = & \sum_{c \in C} f(c) d_{T}(c)-\sum_{c \in C} f(c) d_{T}(c) \\
& =\left[f(x) d_{T}(x)+f(a) d_{T}(a)\right]-\left[f(x) d_{T}(x)+f(a) d_{T}(a)\right] \\
& = & {\left[f(x) d_{T}(x)+f(a) d_{T}(a)\right]-\left[f(x) d_{T}(a)+f(a) d_{T}(x)\right]} \\
& = & (f(a)-f(x))\left(d_{T}(a)-d_{T}(x)\right) \\
& \geq & 0
\end{array}
$$

because $0 \leq f(a)-f(x)$ and $0 \leq\left(d_{T}(a)-d_{T}(x)\right)$
Since T is optimal, $B(T)=B\left(T^{\prime}\right)$

Conclusion from Lemma 1

- Building up an optimal tree by mergers can begin with the greedy choice of merging together the two code-words with the lowest frequencies.
- This is a greedy choice since the cost of a single merger is the sum of the lowest frequencies, which is the least expensive merge.

Optimality proof: lemma 2 (1)

Lemma 2: Let T be an optimal prefix code tree for code alphabet C. Consider any two sibling codewords x and y in C and let z be their parent in T. Then, considering z as a character with frequency $f(z)=f(x)+f(y)$, the tree $T=T-\{x, y\}$ represents an optimal prefix code for the code alphabet $C^{\prime}=C-\{x, y\} \cup\{z\}$.
Proof: we first express the cost $B(T)$ of tree T as a function of the cost $B\left(T^{\prime}\right)$ of tree T^{\prime}.

Optimality proof: lemma 2 (2)

- For all c in $C-\{x, y\}, d_{T}(c)=d_{T^{\prime}}(c)$ and thus

$$
f(c) d_{T}(c)=f(c) d_{T^{\prime}}(c)
$$

- Since $d_{T}(x)=d_{T}(y)=d_{T}(z)+1$, we get:
$f(x) d_{T}(x)+f(y) d_{T}(y)=[f(x)+f(y)]\left(d_{T},(z)+1\right)$

$$
=f(z) d_{T^{\prime}}(z)+[f(x)+f(y)]
$$

- Therefore, $B(T)=B\left(T^{\prime}\right)+[f(x)+f(y)]$

$$
B\left(T^{\prime}\right)=B(T)-[f(x)+f(y)]
$$

Optimality proof: lemma 2 (3)

We prove the lemma by contradiction:

- Suppose that T does not represent an optimal prefix code for C. Then there exist a tree T " whose cost is better than that of $T: B\left(T^{\prime \prime}\right)<B(T)$.
- By Lemma 1, $T^{\prime \prime}$ has two siblings, x and y. Let $T^{\prime \prime}$, be the tree with the common parent of x and y replaced by leaf z with frequency $f(z)=f(x)+f(y)$. Then:

$$
\begin{aligned}
B\left(T^{\prime \prime \prime}\right) & =B\left(T^{\prime \prime}\right)-[f(x)+f(y)] \\
& <B(T)-[f(x)+f(y)] \\
& =B\left(T^{\prime}\right)
\end{aligned}
$$

yielding a contradiction to T^{\prime} being an optimal code for C^{\prime}. cuurss. Spring 2004 © L. Joskowicz

Optimality proof: Huffman algorithm (1)
Theorem: Huffman's algorithm produces an optimal prefix code.

Proof: By induction on the size of the code alphabet C, using Lemmas 1 and 2.

- For $|C|=2$ it is trivial, since the tree has two leaves, assigned to " 0 " and " 1 ", both of length 1 .

The induction step (1)

- Suppose the Huffman algorithm generates an optimal code for a code of size n, let us prove this for C with $|C|=n+1$.
- Let T be the tree generated for C by the Huffman algorithm, Let x and y be two nodes with minimal frequencies that the Huffman algorithm picks first. Suppose in contradiction that S is a tree for $|C|=n+1$, which is strictly better than $T: B(S)<$ $B(T)$. By Lemma 1, we can assume that S has x, y as siblings.
- Define the node z^{\prime} to be their parent, S^{\prime} to be the sub-tree of S without x and y, T to be the sub-tree of T without x, y.
- T^{\prime} is the Huffman code generated for $C-\{x, y\} \cup\{z\}$ with $f(z)=f(x)+f(y) . S^{\prime}$ describes a prefix code for $C-\{x, y\} \mathrm{U}\left\{z^{\prime}\right\}$ with $f\left(z^{\prime}\right)=f(x)+f(y)$.

The induction step (2)
Compare now S^{\prime} and T^{\prime} :

$B\left(S^{\prime}\right)=B(S)-\left[f(x) d_{S}(x)+f(y) d_{S}(y)\right]+f\left(z^{\prime}\right) d_{S}\left(z^{\prime}\right)$
Since $d_{S}(x)=d_{S}(y)=d_{S}\left(z^{\prime}\right)+1$, we get:
$B\left(S^{\prime}\right)=B(S)-f(x)-f(y)$ and similarly,
$B\left(T^{\prime}\right)=B(T)-f(x)-f(y)$

The induction step (3)

But now if $B(S)<B(T)$ we have that $B\left(S^{\prime}\right)<B\left(T^{\prime}\right)$.

Since $\left|S^{\prime}\right|=\left|T^{\prime}\right|=n$, this contradicts the induction assumption that T^{\prime}, the Huffman code for
$C-\{x . y\} \cup\{z\}$ is optimal!

Extensions and applications

- $\underline{d \text {-ary codes: we merge the } d \text { objects with the least }}$ frequency at each step, creating a new object.
whose frequency is the sum of the frequencies
- Many more coding techniques!

