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Data Structures – LECTURE 9 

Balanced trees
• Motivation

• Red-black trees 
– Definition, Height

– Rotations, Insert, Delete operations

• AVL trees – overview 

For an excellent explanations and animations, see

http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch11.html
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Motivation
• Binary search trees are useful for efficiently 

implementing dynamic set operations: 
Search, Successor, Predecessor, Minimum, 
Maximum, Insert, Delete

in O(h) time, where h is the height of the tree

• When the tree is balanced, that is, its height           
h = O(lg n), the operations are indeed efficient.

• However, the Insert and Delete alter the shape of 
the tree and can result in an unbalanced tree. In the 
worst case, h = O(n) 

�
no better than a linked list!
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Balanced trees
• We need to devise a method for keeping the tree 

balanced at all times.
• When an Insert or Delete operation causes an 

imbalance, we want to correct this in at most    
O(lg n) time 

�
no complexity overhead.

• To achieve this we need to augment the data 
structure with additional information and to devise 
tree-balancing operations.

• The most popular balanced tree data structures: 
– Red-Black trees: height of at most 2(lg n + 1)
– AVL trees: sub-tree height difference of at most 1.  
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Definition: Red-Black tree
A red-black tree (RB tree) is a binary search tree
where each node has an extra color bit (either red
or black) with the following properties 

1.  Every node is either red or black.

2.  The root is black. 

3.  Every leaf (null) is black.

4.  Both children of a red node are black.

5.  All paths from a node to its descendant leafs   
contain the  same number of black nodes.
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Example: Red-Black tree (1)
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Example: Red-Black tree (2)
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Example: Red-Black tree (3)
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The height of Red-Black Trees (1)
• Lemma: A red-black tree with n internal nodes has height at 

most 2 lg(n +1)

• Definition: Black-height, bh(x), is the number of black 
nodes on any path from x to a leaf (not counting x itself).

• Proof: We first prove a claim: The sub-tree rooted at any 
node x contains at least 2bh(x) –1 internal nodes.

• We prove the claim by induction on the HEIGHT of the 
node h (not the black height.) 

• For h = 0, the node is a leaf. In this case bh(x) = 0. Then the 
claim implies that the number of internal nodes in the sub-
tree rooted at the leaf is at least 20–1= 0, which is correct. 
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The height of Red-Black Trees (2)
• For the induction step, consider  x with h > 0, so x is an 

internal node and has two children, y and z. Then: 
– y is black 

�
bh(y) = bh(x)–1

– y is red    
�

bh(y) = bh(x)
– Hence, bh(y) � bh(x)–1 

• We can now use the induction assumption for y since its 
height (not black height!) is < than the height of x

• Hence, the sub-tree rooted at y contains at least 2bh(x)–1 –1
internal nodes. 

• Multiplying this number by 2, for two sub-trees, and adding 1 
for x, we get that the number of internal nodes in the sub-tree 
rooted by x is at least (2bh(x)–1 –1) + (2bh(x)–1 –1) + 1 = 2bh(x) –1 
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The height of Red-Black Trees (3)
• Let h be the height of the tree and x be the root. We 

just proved that n � 2bh(x) –1
• By property 4, at least half of the nodes on any path 

from the root to a leaf (not including the root) must 
be black (cannot have two successive red nodes!) 

• Consequently,  the black-height of the root is at 
least h/2 

• Thus, the number of internal nodes n in the tree is 
n � 2h/2 –1

• We get: n +1 � 2h/2 
�

lg (n +1) � 2 lg h/2
�

h � 2 lg (n+1) 
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Static operations in RB trees

• The operations Max, Min, Search, Successor, and 
Predecessor take O(lg n) time in RB trees.

• Proof: These operations can be applied exactly like 
in regular binary search trees, because they do not 
modify the tree, so the only difference is that the 
colors can be ignored. 
For binary search trees, we know that these 
operations take O(h) where h is the height of the 
tree, and by the lemma the height is O(lg n).
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Dynamic operations in RB trees

• The dynamic operations Insert and Delete change the 
shape of the tree.

• Depending on the order of the operations, the tree can 
become unbalanced and loose the RB properties.

• To maintain the RB structure, we must first change 
the colors some nodes in the tree and re-balance the 
tree by moving sub-trees around.

• The re-balancing is done with the Rotation operation 
followed by a Re-coloring depending on the result.  
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Rotation operations (1)
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Rotation operations (2)
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Left-Rotate
Left-Rotate(T,x)

y � right[x] /* Set y
right[x] � left[y]             /* Turn y left’s sub-tree into x’s
parent[left[y]] � x          /*   right sub-tree
parent[y] � parent[x]    /* Link x’ s parent to y
if parent[x] = null[T]

then root[T] � y
else if x = left[parent[x]]

then left[parent[x]] � y
else right[parent[x]] � y

left[y] � x                                    /*  Put x on y’s left 
parent[x] � y
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Example: Left-Rotate (1)
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Example: Left-Rotate (2)
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Example: Left-Rotate (3)
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Example: Left-Rotate (4)
7

4

3 6

2

18

11

y

x

20

19

229
14

12 17

Data Structures, Spring 2004 © L. Joskowicz � �

Rotation operations (2)

• Preserves the properties of the binary search tree. 

• Takes constant time O(1) since it involves a 
constant number of pointer operations.

• Left- and Right-Rotate are symmetric. 
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Red-Black Insert: principle (1)
• Use ordinary binary search tree insertion and color the 

new node red.
• If any of the red-black properties have been violated, 

fix the resulting tree using re-coloring and rotations.
• Which of the five properties can be violated?

1. Every node is either red or black � OK
2.  The root is black. � NO
3.  Every null leaf is black � OK
4.  Both children of a red node are black � NO
5.  All paths from a node to its descendant leafs contain 

the  same number of black nodes � OK
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Red-Black Insert: principle (2)
• Violations:

– 2. If the inserted x node is a root, paint it black         �
OK

– 4. What if the parent of the inserted node z is also 
red?

• Three cases to fix this situations for node x:
– Case 1: z’ suncle y is red
– Case 2: z’ suncle y is black and z is a right child 
– Case 3: z’ suncle y is black and z is a left child 
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Case 1: z’s uncle y is red
• If zhas both a red parent B and a red uncle D, re-

color the parent and the uncle in black, and the 
grandparent C in red:

z

C

A

B Dparent[z] uncle[z]

grandparent[z]
Recolor

• If C is the root, we can simply color it black.

• If grandparent C is in violation, apply Cases 2 and 3.

� ß

� � �
� ß

� � �
B D

A

C new z
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Case 2: z’s uncle y is black and 
z is a right child 

• If z is the right child of a red parent A and has a 
black uncle D, perform a left rotation A:

C

DA

Bz

parent[z] uncle[z]

Left-Rotate

• This produces a configuration handled by Case 3

�

ß
�

� �
� ß
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C

D
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B

new z
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Case 3: z’s uncle y is black and 
z is a left child 

• If z is the left child of a red parent B and has a 
black uncle D, perform a right rotation at z’ s
grandparent C and re-color:

D

B

A C

C

D

Az

parent[z] uncle[z]

grandparent[z]
Right-Rotate

Re-color

• After Case 3, there is no longer a violation!

B
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Data Structures, Spring 2004 © L. Joskowicz � �

RB-Insert 
• To insert a new node z into an RB-Tree, do: 

1. Insert the new node z in the binary tree 
disregarding the colors.

2. Color z red
3. Fix the resulting tree if necessary by applying 

on z Cases 1, 2, and 3 as required and 
following their consequences

• The complexity of the operation is O(lg n)
• See Chapter 13 in textbook for code and proofs!
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RB-Insert-Fixup (pseudo-code)

RB-Insert-Fixup(T,z)
while color[parent[z]] = “ red”

do y � z’ suncle
if color[y] = “ red” then do Case 1
else do

if z= right[parent[z]] then do Case 2
do Case 3

color[root[T]] � “black”
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RB-Insert-Fixup loop invariants
1. Node z is red

2. If parent[z] is the root, then parent[z] is black

3. If there is a violation of the red-black properties, 
there is at most one violation and it is either of 
property 2 or 4. 

– If property 2 is violated, it is because z is root and red

– If property 4 is violated, it is because both z and 
parent[z] are red. 
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Example: insertion and fixup (1)
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Example: insertion and fixup (2)
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Example: insertion and fixup (3)
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Violation: red node and red parent

Case 3: z’ suncle is black and z is a 
left child 

�
right rotate and re-color

uncle[z]parent[z]
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Example: insertion and fixup (4)
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The tree has now RB properties

No further fixing is necessary!
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Red-Black Delete: principle (1)
• Use ordinary binary search tree deletion.

• If any of the red-black properties have been violated, 
fix the resulting tree using re-coloring and rotations.

• Which of the five properties can be violated?
1. Every node is either red or black � OK

2.  The root is black. � NO

3.  Every null leaf is black � OK

4.  Both children of a red node are black � NO

5.  All paths from a node to its descendant leafs contain 
the  same number of black nodes � NO
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Red-Black Delete: principle (2)
• Violations:

–If the parent y of the spliced node x is red,                           
then properties 2, 4, 5 may be violated. 

–If x is red, re-coloring x black restores all of them! 
–So we are left with cases where  both x and y are black.       

We need to restore property 5.

• Four cases to fix this situation for node x:
–Case 1: x’s sibling w is red
–Case 2: x’s sibling w is black, as well as both children of w
–Case 3: x’s sibling w is black, w’s left is red and right is black
–Case 4: x’s sibling w is black, and w’s right child is red.

y

x
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• Case 1 is transformed into one of the Cases 2, 3, 
or 4 by switching the color of the nodes B and D
and performing a left rotation:

Case 1: x’s sibling w is red

B

C

A

E

D

Left-Rotat �

Re-color
x w

sibling[x]

D

E

A C

B

x w
sibling[x]

� ß
� � � � ß

�
�

�

� �
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• Case 2 allows x to move one level up the tree by 
re-coloring D to “ red” :

Case 2: x’s sibling w is black and 
both its children are black

D

C

A

E

Re-color

x w
sibling[x]

children[w]

B

C
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D

new xB

� ß
� � �

� ß
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Decreases black height of
nodes under D by one!
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Case 3: x’s sibling w is black and its 
children are red and black

DA

• Case 3 is transformed to Case 4 by exchanging 
the colors of nodes C and D and performing a 
right rotation:

B

C

Right-Rotate

Re-color

x C

E

A

B

D

x new ww
sibling[x]

E children[w]

No change in black height!
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Case 4: x’s sibling w is black and its 
right children is red

DA

• In this case, the violation is resolved by changing 
some colors and performing a left rotation 
without violating the red-black properties:

B

C

E
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Left-Rotate

Re-color
x w
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Increases black height of
nodes under A by one!
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RB-Delete 
• To delete a node x from an RB-Tree, do: 

1. Delete the node x from the binary tree 
disregarding the colors.

2. Fix the resulting tree if necessary by applying 
on x Cases 1, 2, 3, and 4 as required and 
following their consequences

• The complexity of the operation is O(lg n)

• See Chapter 13 in textbook for code and proofs!
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RB-Delete-Fixup (pseudocode)
RB-Delete-Fixup(T, x)

while x � root[T] and color[x] = “black”
do if x = left[parent[x]]

then w � x’ sbrother
if color[w] = “ red” then do Case 1 
// after this x stays, w changes to x’ s new brother, and we are in Case 2 

if color[w] = “black” and its two children are black
then do Case 2.  // after this x moves to parent[x]

else if color[w] = “black” and color[right[w]] = “black”
then do Case 3

// after this x stays, w changes to x’ s new brother, and we are in Case 4 

if color[w] = “black” and color[right[w]] = “ red”
then do Case 4    // after this x = root[T].

else same as everything above but for x = right[parent[x]]
color[x] � “black”
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RB-Delete: Complexity
• If Case 2 is entered from Case 1, then we do not 

enter the loop again since x’ sparent is red after 
Case 2.

• If Case 3 or Case 4 are entered, then the loop is 
not entered again. 

• The only way to enter the loop many times is to 
enter through Case 2 and remain in Case 2. 
Hence, we enter the loop at most O(h) times. 

• This yields a complexity of O(lg n).
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Summary of RB trees 
Important points to remember:
• Five simple coloring properties guarantee a tree 

height of no more than 2(lg n + 1) = O(lg n)
• Insertion and deletions are done as in uncolored 

binary search trees 
• Insertions and deletions can cause the properties of 

the RB tree to be violated. Fixing these properties 
is done by rotating and re-coloring parts of the tree

• Violation cases must be examined individually. 
There are 3 cases for insertion and 4 or deletion.

• In all cases, at most O(lg n) time is required. 
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AVL trees – definition 
Binary tree with a single balance property:

For any node in the tree, the height difference 
between its left and right sub-trees is at most one.

Sh-1
Sh-2 h-2h-1

h
Sh

x

Sh = Sh–1 + Sh–2
Data Structures, Spring 2004 © L. Joskowicz � �

AVL trees – properties

• The height of an AVL tree is at most log1.3(n +1) 
�

h = O(lg n)

• Keep an extra height field for every node

• Four imbalance cases after insertion and deletion 
(instead of seven for RB trees)

• See details in the Tirgul! 
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Summary
• Efficient dynamic operations on a binary tree 

require a balance tree whose height is O(lg n)
• There are various ways of guaranteeing a 

balanced height:
– Red-black properties
– Sub-tree height difference properties
– B-trees properties 

• Insertion and deletion operations might require 
re-balancing in O(lg n) to restore balanced tree 
properties 

• Re-balancing operations require examining 
various cases


