
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 9

Balanced trees
• Motivation

• Red-black trees
– Definition, Height

– Rotations, Insert, Delete operations

• AVL trees – overview

For an excellent explanations and animations, see

http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch11.html
Data Structures, Spring 2004 © L. Joskowicz �

Motivation
• Binary search trees are useful for efficiently

implementing dynamic set operations:
Search, Successor, Predecessor, Minimum,
Maximum, Insert, Delete

in O(h) time, where h is the height of the tree

• When the tree is balanced, that is, its height
h = O(lg n), the operations are indeed efficient.

• However, the Insert and Delete alter the shape of
the tree and can result in an unbalanced tree. In the
worst case, h = O(n)

�
no better than a linked list!

Data Structures, Spring 2004 © L. Joskowicz �

Balanced trees
• We need to devise a method for keeping the tree

balanced at all times.
• When an Insert or Delete operation causes an

imbalance, we want to correct this in at most
O(lg n) time

�
no complexity overhead.

• To achieve this we need to augment the data
structure with additional information and to devise
tree-balancing operations.

• The most popular balanced tree data structures:
– Red-Black trees: height of at most 2(lg n + 1)
– AVL trees: sub-tree height difference of at most 1.

Data Structures, Spring 2004 © L. Joskowicz �

Definition: Red-Black tree
A red-black tree (RB tree) is a binary search tree
where each node has an extra color bit (either red
or black) with the following properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (null) is black.

4. Both children of a red node are black.

5. All paths from a node to its descendant leafs
contain the same number of black nodes.

Data Structures, Spring 2004 © L. Joskowicz �

Example: Red-Black tree (1)

28

35

26

17

14 21

38

1512

10

3

7

16 19

20

23

39

30

41

47

null null

null null null null null null

null null null null

null null

null null

null null

nullnull

null

1

3

3

2

2

1

1

2

1 1

1 1

1 1

2

2

1

1

1 1

black height next to nodes
Data Structures, Spring 2004 © L. Joskowicz �

Example: Red-Black tree (2)

28

35

26

17

14 21

38

1512

10

3

7

16 19

20

23

39

30

41

47

null[T]

Data Structures, Spring 2004 © L. Joskowicz �

Example: Red-Black tree (3)

28

35

26

17

14 21

38

1512

10

3

7

16 19

20

23

39

30

41

47

Data Structures, Spring 2004 © L. Joskowicz �

The height of Red-Black Trees (1)
• Lemma: A red-black tree with n internal nodes has height at

most 2 lg(n +1)

• Definition: Black-height, bh(x), is the number of black
nodes on any path from x to a leaf (not counting x itself).

• Proof: We first prove a claim: The sub-tree rooted at any
node x contains at least 2bh(x) –1 internal nodes.

• We prove the claim by induction on the HEIGHT of the
node h (not the black height.)

• For h = 0, the node is a leaf. In this case bh(x) = 0. Then the
claim implies that the number of internal nodes in the sub-
tree rooted at the leaf is at least 20–1= 0, which is correct.

Data Structures, Spring 2004 © L. Joskowicz �

The height of Red-Black Trees (2)
• For the induction step, consider x with h > 0, so x is an

internal node and has two children, y and z. Then:
– y is black

�
bh(y) = bh(x)–1

– y is red
�

bh(y) = bh(x)
– Hence, bh(y) � bh(x)–1

• We can now use the induction assumption for y since its
height (not black height!) is < than the height of x

• Hence, the sub-tree rooted at y contains at least 2bh(x)–1 –1
internal nodes.

• Multiplying this number by 2, for two sub-trees, and adding 1
for x, we get that the number of internal nodes in the sub-tree
rooted by x is at least (2bh(x)–1 –1) + (2bh(x)–1 –1) + 1 = 2bh(x) –1

Data Structures, Spring 2004 © L. Joskowicz
� �

The height of Red-Black Trees (3)
• Let h be the height of the tree and x be the root. We

just proved that n � 2bh(x) –1
• By property 4, at least half of the nodes on any path

from the root to a leaf (not including the root) must
be black (cannot have two successive red nodes!)

• Consequently, the black-height of the root is at
least h/2

• Thus, the number of internal nodes n in the tree is
n � 2h/2 –1

• We get: n +1 � 2h/2
�

lg (n +1) � 2 lg h/2
�

h � 2 lg (n+1)

Data Structures, Spring 2004 © L. Joskowicz
� �

Static operations in RB trees

• The operations Max, Min, Search, Successor, and
Predecessor take O(lg n) time in RB trees.

• Proof: These operations can be applied exactly like
in regular binary search trees, because they do not
modify the tree, so the only difference is that the
colors can be ignored.
For binary search trees, we know that these
operations take O(h) where h is the height of the
tree, and by the lemma the height is O(lg n).

Data Structures, Spring 2004 © L. Joskowicz
� �

Dynamic operations in RB trees

• The dynamic operations Insert and Delete change the
shape of the tree.

• Depending on the order of the operations, the tree can
become unbalanced and loose the RB properties.

• To maintain the RB structure, we must first change
the colors some nodes in the tree and re-balance the
tree by moving sub-trees around.

• The re-balancing is done with the Rotation operation
followed by a Re-coloring depending on the result.

Data Structures, Spring 2004 © L. Joskowicz
� �

Rotation operations (1)

y

x

� �

�
Left-Rotate

Right-Rotate

� � x � � and x � y �
� � � x � y and � � y �

�

x

y�

� �

Data Structures, Spring 2004 © L. Joskowicz
� �

Rotation operations (2)

y

x

� �

�

Right-Rotate

The rotation operation helps resolve the conflict!

x

y�

� �Conflict: two
Successive reds

Data Structures, Spring 2004 © L. Joskowicz
� �

Left-Rotate
Left-Rotate(T,x)

y � right[x] /* Set y
right[x] � left[y] /* Turn y left’s sub-tree into x’s
parent[left[y]] � x /* right sub-tree
parent[y] � parent[x] /* Link x’ s parent to y
if parent[x] = null[T]

then root[T] � y
else if x = left[parent[x]]

then left[parent[x]] � y
else right[parent[x]] � y

left[y] � x /* Put x on y’s left
parent[x] � y

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Left-Rotate (1)

14

20

7

4

3 6

192

22

9

11

18

12 17

x

y

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Left-Rotate (2)

14

20

7

4

3 6

192

22

9

11

18

12 17

x

y
�

�
�

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Left-Rotate (3)
7

4

3 6

2

18

11

y

x

20

19

22

�

�9
14

12 17�

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Left-Rotate (4)
7

4

3 6

2

18

11

y

x

20

19

229
14

12 17

Data Structures, Spring 2004 © L. Joskowicz � �

Rotation operations (2)

• Preserves the properties of the binary search tree.

• Takes constant time O(1) since it involves a
constant number of pointer operations.

• Left- and Right-Rotate are symmetric.

Data Structures, Spring 2004 © L. Joskowicz � �

Red-Black Insert: principle (1)
• Use ordinary binary search tree insertion and color the

new node red.
• If any of the red-black properties have been violated,

fix the resulting tree using re-coloring and rotations.
• Which of the five properties can be violated?

1. Every node is either red or black � OK
2. The root is black. � NO
3. Every null leaf is black � OK
4. Both children of a red node are black � NO
5. All paths from a node to its descendant leafs contain

the same number of black nodes � OK
Data Structures, Spring 2004 © L. Joskowicz � �

Red-Black Insert: principle (2)
• Violations:

– 2. If the inserted x node is a root, paint it black �
OK

– 4. What if the parent of the inserted node z is also
red?

• Three cases to fix this situations for node x:
– Case 1: z’ suncle y is red
– Case 2: z’ suncle y is black and z is a right child
– Case 3: z’ suncle y is black and z is a left child

Data Structures, Spring 2004 © L. Joskowicz � �

Case 1: z’s uncle y is red
• If zhas both a red parent B and a red uncle D, re-

color the parent and the uncle in black, and the
grandparent C in red:

z

C

A

B Dparent[z] uncle[z]

grandparent[z]
Recolor

• If C is the root, we can simply color it black.

• If grandparent C is in violation, apply Cases 2 and 3.

� ß

� � �
� ß

� � �
B D

A

C new z

Data Structures, Spring 2004 © L. Joskowicz � �

Case 2: z’s uncle y is black and
z is a right child

• If z is the right child of a red parent A and has a
black uncle D, perform a left rotation A:

C

DA

Bz

parent[z] uncle[z]

Left-Rotate

• This produces a configuration handled by Case 3

�

ß
�

� �
� ß

� � �

C

D

A

B

new z

Data Structures, Spring 2004 © L. Joskowicz � �

Case 3: z’s uncle y is black and
z is a left child

• If z is the left child of a red parent B and has a
black uncle D, perform a right rotation at z’ s
grandparent C and re-color:

D

B

A C

C

D

Az

parent[z] uncle[z]

grandparent[z]
Right-Rotate

Re-color

• After Case 3, there is no longer a violation!

B

� ß

� � � � ß
�

� �

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Insert
• To insert a new node z into an RB-Tree, do:

1. Insert the new node z in the binary tree
disregarding the colors.

2. Color z red
3. Fix the resulting tree if necessary by applying

on z Cases 1, 2, and 3 as required and
following their consequences

• The complexity of the operation is O(lg n)
• See Chapter 13 in textbook for code and proofs!

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Insert-Fixup (pseudo-code)

RB-Insert-Fixup(T,z)
while color[parent[z]] = “ red”

do y � z’ suncle
if color[y] = “ red” then do Case 1
else do

if z= right[parent[z]] then do Case 2
do Case 3

color[root[T]] � “black”

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Insert-Fixup loop invariants
1. Node z is red

2. If parent[z] is the root, then parent[z] is black

3. If there is a violation of the red-black properties,
there is at most one violation and it is either of
property 2 or 4.

– If property 2 is violated, it is because z is root and red

– If property 4 is violated, it is because both z and
parent[z] are red.

Data Structures, Spring 2004 © L. Joskowicz � �

Example: insertion and fixup (1)

11

2

1 7

5 8

15

14

4

inserted z
Violation: red node and red parent

Case 1: z’ suncle is red
�

re-color

uncle[z]parent[z]

Data Structures, Spring 2004 © L. Joskowicz � �

Example: insertion and fixup (2)

11

2

1

8

7

4

15

14

5

z

Violation: red node and red parent

Case 2: z’ suncle is black and z is a
right child

�
left rotate

uncle[z]parent[z]

Data Structures, Spring 2004 © L. Joskowicz � �

Example: insertion and fixup (3)

11

7

1

82

4

15

14

5

z

Violation: red node and red parent

Case 3: z’ suncle is black and z is a
left child

�
right rotate and re-color

uncle[z]parent[z]

Data Structures, Spring 2004 © L. Joskowicz � �

Example: insertion and fixup (4)

7

2

1 5

154

11

148

The tree has now RB properties

No further fixing is necessary!

Data Structures, Spring 2004 © L. Joskowicz � �

Red-Black Delete: principle (1)
• Use ordinary binary search tree deletion.

• If any of the red-black properties have been violated,
fix the resulting tree using re-coloring and rotations.

• Which of the five properties can be violated?
1. Every node is either red or black � OK

2. The root is black. � NO

3. Every null leaf is black � OK

4. Both children of a red node are black � NO

5. All paths from a node to its descendant leafs contain
the same number of black nodes � NO

Data Structures, Spring 2004 © L. Joskowicz � �

Red-Black Delete: principle (2)
• Violations:

–If the parent y of the spliced node x is red,
then properties 2, 4, 5 may be violated.

–If x is red, re-coloring x black restores all of them!
–So we are left with cases where both x and y are black.

We need to restore property 5.

• Four cases to fix this situation for node x:
–Case 1: x’s sibling w is red
–Case 2: x’s sibling w is black, as well as both children of w
–Case 3: x’s sibling w is black, w’s left is red and right is black
–Case 4: x’s sibling w is black, and w’s right child is red.

y

x

Data Structures, Spring 2004 © L. Joskowicz � �

• Case 1 is transformed into one of the Cases 2, 3,
or 4 by switching the color of the nodes B and D
and performing a left rotation:

Case 1: x’s sibling w is red

B

C

A

E

D

Left-Rotat �

Re-color
x w

sibling[x]

D

E

A C

B

x w
sibling[x]

� ß
� � � � ß

�
�

�

� �

No change in black height! Data Structures, Spring 2004 © L. Joskowicz � �

• Case 2 allows x to move one level up the tree by
re-coloring D to “ red” :

Case 2: x’s sibling w is black and
both its children are black

D

C

A

E

Re-color

x w
sibling[x]

children[w]

B

C

A

E

D

new xB

� ß
� � �

� ß
� � �� �

Decreases black height of
nodes under D by one!

Data Structures, Spring 2004 © L. Joskowicz � �

Case 3: x’s sibling w is black and its
children are red and black

DA

• Case 3 is transformed to Case 4 by exchanging
the colors of nodes C and D and performing a
right rotation:

B

C

Right-Rotate

Re-color

x C

E

A

B

D

x new ww
sibling[x]

E children[w]

No change in black height!

� ß
� � �

�
ß �

�
�

�

�
Data Structures, Spring 2004 © L. Joskowicz � �

Case 4: x’s sibling w is black and its
right children is red

DA

• In this case, the violation is resolved by changing
some colors and performing a left rotation
without violating the red-black properties:

B

C

E

A

B

D

CE

Left-Rotate

Re-color
x w

sibling[x]

children[w]
� ß

� � � � ß
� �

�
�

�

Increases black height of
nodes under A by one!

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Delete
• To delete a node x from an RB-Tree, do:

1. Delete the node x from the binary tree
disregarding the colors.

2. Fix the resulting tree if necessary by applying
on x Cases 1, 2, 3, and 4 as required and
following their consequences

• The complexity of the operation is O(lg n)

• See Chapter 13 in textbook for code and proofs!

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Delete-Fixup (pseudocode)
RB-Delete-Fixup(T, x)

while x � root[T] and color[x] = “black”
do if x = left[parent[x]]

then w � x’ sbrother
if color[w] = “ red” then do Case 1
// after this x stays, w changes to x’ s new brother, and we are in Case 2

if color[w] = “black” and its two children are black
then do Case 2. // after this x moves to parent[x]

else if color[w] = “black” and color[right[w]] = “black”
then do Case 3

// after this x stays, w changes to x’ s new brother, and we are in Case 4

if color[w] = “black” and color[right[w]] = “ red”
then do Case 4 // after this x = root[T].

else same as everything above but for x = right[parent[x]]
color[x] � “black”

Data Structures, Spring 2004 © L. Joskowicz � �

RB-Delete: Complexity
• If Case 2 is entered from Case 1, then we do not

enter the loop again since x’ sparent is red after
Case 2.

• If Case 3 or Case 4 are entered, then the loop is
not entered again.

• The only way to enter the loop many times is to
enter through Case 2 and remain in Case 2.
Hence, we enter the loop at most O(h) times.

• This yields a complexity of O(lg n).

Data Structures, Spring 2004 © L. Joskowicz � �

Summary of RB trees
Important points to remember:
• Five simple coloring properties guarantee a tree

height of no more than 2(lg n + 1) = O(lg n)
• Insertion and deletions are done as in uncolored

binary search trees
• Insertions and deletions can cause the properties of

the RB tree to be violated. Fixing these properties
is done by rotating and re-coloring parts of the tree

• Violation cases must be examined individually.
There are 3 cases for insertion and 4 or deletion.

• In all cases, at most O(lg n) time is required.

Data Structures, Spring 2004 © L. Joskowicz � �

AVL trees – definition
Binary tree with a single balance property:

For any node in the tree, the height difference
between its left and right sub-trees is at most one.

Sh-1
Sh-2 h-2h-1

h
Sh

x

Sh = Sh–1 + Sh–2
Data Structures, Spring 2004 © L. Joskowicz � �

AVL trees – properties

• The height of an AVL tree is at most log1.3(n +1)
�

h = O(lg n)

• Keep an extra height field for every node

• Four imbalance cases after insertion and deletion
(instead of seven for RB trees)

• See details in the Tirgul!

Data Structures, Spring 2004 © L. Joskowicz � �

Summary
• Efficient dynamic operations on a binary tree

require a balance tree whose height is O(lg n)
• There are various ways of guaranteeing a

balanced height:
– Red-black properties
– Sub-tree height difference properties
– B-trees properties

• Insertion and deletion operations might require
re-balancing in O(lg n) to restore balanced tree
properties

• Re-balancing operations require examining
various cases

