
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 8

Binary search trees
• Motivation

• Operations on binary search trees:
– Search

– Minimum, Maximum

– Predecessor, Successor

– Insert, Delete

• Randomly built binary search trees
Data Structures, Spring 2004 © L. Joskowicz �

Motivation: binary search trees
• A dynamic ADT that efficiently supports the

following common operations on S:
– Search for an element
– Minimum, Maximum
– Predecessor, Successor
– Insert, Delete

• Use a binary tree! All operations take
�

(lg n)
• The tree must always be balanced, for otherwise the

operations will not take time proportional to the
height of the tree!

Data Structures, Spring 2004 © L. Joskowicz �

Binary search tree

• A binary search tree has a root, internal nodes with at
most two children each, and leaf nodes

• Each node x has left(x), right(x), parent(x), and
key(x) fields.

• Binary-search-tree property:

Let x be the root of a sub-tree, and y a node below it.

– left sub-tree: key(y) � key(x)

– right sub-tree: key(y) > key(x)

Data Structures, Spring 2004 © L. Joskowicz �

Examples of binary trees
5

3

5

5

7

8

2

3

72

85

In-order, pre-order, and post-order traversal

Data Structures, Spring 2004 © L. Joskowicz �

Tree-Search(x,k)
if x = null or k = key[x]

then return x
if k < key[x]

then return Tree-Search(left[x],k)
else return Tree-Search(right[x],k)

Iterative-Tree-Search(x,k)
while x � null and k � key[x]

do if k < key[x]
then x ���� left[x]
else x ���� right[x]

return x

Tree-Search routine

Complexity: O(h)
Data Structures, Spring 2004 © L. Joskowicz �

Example: search in a binary tree

Search for 13 in the tree

Data Structures, Spring 2004 © L. Joskowicz �

Tree traversal
Inorder-Tree-Walk(x)

if x � null
then Inorder-Tree-Walk(left[x])

print key[x]
Inorder-Tree-Walk(right[x])

Complexity: � (n)

Recurrence equation:

T(0) =
�

(1)

T(n)=T(k) + T(n – k –1) +
�

(1)

Data Structures, Spring 2004 © L. Joskowicz �

Tree-Minimum(x)
while left[x] � null

do x � left[x]
return x

Tree-Maximum(x)
while right[x] � null

do x � right[x]
return x

Max and Min-Search routines

Complexity: O(h)

Data Structures, Spring 2004 © L. Joskowicz �

Example: Min and Max search

Data Structures, Spring 2004 © L. Joskowicz
� �

Tree-Successor routine (1)

• The successor of x is the smallest element y with a
key greater than that of x

• The successor of x can be found without
comparing the keys. It is either:

1. null if x is the maximum node.

2. the minimum of the right child of t
when t has a right child.

3. or else, the lowest ancestor of x whose left
child is also an ancestor of x.

Data Structures, Spring 2004 © L. Joskowicz
� �

Tree-Successor: cases

x

Minimum of right
child of t

y

z

x
Lowest ancestor z of t

whose left child y is also
an ancestor of t Data Structures, Spring 2004 © L. Joskowicz

� �

Tree-Successor routine (2)

Tree-Successor(x)
if right[x] � null /* Case 2

then return Tree-Minimum(right[x])
y � parent[x]

while y � null and x = right[y] /* Case 3
do x � y

y � parent[y]
return y

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: finding a successor

Find the successors of 15, 13

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof (1)
• Case 3: If x doesn’ t have a right child, then its

successor is x’ s first ancestor such that its left child
is also an ancestor of x. (This includes the case that
there is no such ancestor, and then x is the maximum
and the successor is null.)

• Proof: To prove that a node z is the successor of x,
we need to show that key[z] > key[x] and that x is the
maximum of all elements smaller than z.

• Start from x and climb up the tree as long as you
move from a right child up. Let the node you stopped
at be y, and denote z= parent[y].

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof (2)
• Sub-claim: x is the max of the sub-tree rooted at y.
• Proof of sub-claim: x is the node you reach if you

go right all the time from y.
• Now we claim z= parent(y) is the successor of x.

First, key[z] > key[x] because y is the left child of z
by the definition of y, so x is in z’ s left sub-tree.

• Now, x is the maximum of all items that are smaller
than z, because by the sub-claim x is the maximum
of the sub-tree rooted at y, and all elements smaller
than zare in this sub-tree by the property of binary
search trees.

Data Structures, Spring 2004 © L. Joskowicz
� �

Insert
• Insert is very similar to search:

we essentially find the place in the tree where we
want to insert the new node z.

• The new node z will always be a leaf.

• We assume that initially left(z) and right(z) are
both null.

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: insertion

12

5

9

18

1915

17

2

13Insert 13 in the tree z

Data Structures, Spring 2004 © L. Joskowicz
� �

Tree-insert routine

Tree-Insert(T,z)
y � null
x � root[T]

while x � null
do y� x

if key[z] < key[x]
then x� left[x]
else x� right[x]

parent[z] � y

/* When the tree is empty
if y = null then root[T] � z
else if key[z] < key[y]

then left[y] � z
else right[y] � z

y is the parent of x

Data Structures, Spring 2004 © L. Joskowicz
� �

Delete (1)
Delete is more complicated than insert. There are three

cases to delete node z:
1. zhas no children
2. zhas one child
3. z has two children

Case 1: delete zand update the child’s parent child
to null.

Case 2: delete zand connect its parent to its child.
Case 3: more complex; we can’ t just take the node out

and reconnect its parent with its children, because
the tree will no longer be a binary tree!

Data Structures, Spring 2004 © L. Joskowicz � �

delete

Delete case 1: no children!

delete

Data Structures, Spring 2004 © L. Joskowicz � �

Delete case 2: one child

delete

Data Structures, Spring 2004 © L. Joskowicz � �

Delete (2)
For case 3, the solution is to replace the node by
its successor, and “ pull” the successor, which
necessarily has one child at most.

Claim: if a node has two children, its successor has
at most one child.

Proof: This is because if the node has two children,
its successor is the minimum of its right sub-tree.
This minimum cannot have a left child because
then the child would be the minimum…

Invariant: in all cases the binary search tree property
is preserved after the deletion.

Data Structures, Spring 2004 © L. Joskowicz � �

Delete: case 3 proof

z

� �

�

Delete z

y

w

y

� �

�

w

Data Structures, Spring 2004 © L. Joskowicz � �

Delete: case 3
delete

successor

Data Structures, Spring 2004 © L. Joskowicz � �

Tree-Delete routine
Tree-Delete(T,z)
if left[z] = null or right[z] = null /* Cases 1 or 2

then y � z /* find a node y to splice
else y� Tree-Successor(z) /* to splice out

if left[y] � null /* set the child x
then x � left[y]
else x� right[y]

if x � null /* splicing operation
then parent[x]� parent[y]

if parent[y] = null
then root[T] � x
else if y = left[parent[y]]

then left[parent[y]] � x
else right[parent[y]] � x

if y � z
then key[z] � key[y]

return y

/* copy y’s satellite
data into z

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity analysis
• Delete: The two first cases take O(1) operations:

they involve switching the pointers of the parent
and the child (if it exists) of the node that is deleted.

• The third case requires a call to Tree-Successor, and
thus can take O(h) time.

• In conclusion: all dynamic operations on a binary
search tree take O(h), where h is the height of the
tree.

• In the worst case, the height of the tree can be O(n)

Data Structures, Spring 2004 © L. Joskowicz � �

Randomly-built Binary Search Trees
• Definition: A randomly-built binary search tree

over n distinct keys is a binary search tree that results
from inserting the n keys in random order (each
permutation of the keys is equally likely) into an
initially empty tree.

• Theorem: The average height of a randomly-built
binary search tree of n distinct keys is O(lg n)

• Corollary: The dynamic operations Successor,
Predecessor, Search, Min, Max, Insert, and Delete all
have O(lg n) average complexity on randomly-built
binary search trees.

