Data Structures— LECTURE 8

Binary search trees

* Mativation
 Operations on binary search trees:
— Search
— Minimum, Maximum
— Predecessor, Successor
— Insert, Delete
» Randomly built binary search trees

Data Structures, Spring 2004 © L. Joskowicz 1

Motivation: binary search trees

¢ A dynamic ADT that efficiently supports the
following common operationson S
— Search for an element
— Minimum, Maximum
— Predecessor, Successor
— Insert, Delete

» Useabinary tree! All operations take ®(Ig n)

* The tree must always be balanced, for otherwise the
operations will not take time proportional to the
height of the tree!

Data Structures, Spring 2004 © L. Joskowicz 2

Binary search tree

* A binary search tree hasaroot, internal nodes with at
most two children each, and leaf nodes

« Each node x has left(x), right(x), parent(x), and
key(x) fields.

* Binary-search-tree property:
Let x be the root of a sub-tree, and y a node below it.
—left sub-tree: key(y) < key(x)
—right sub-tree: key(y) > key(X)

Data Structures, Spring 2004 © L. Joskowicz 3

Examples of binary trees

N

®

s te

In-order, pre-order, and post-order traversal

Data Structures, Spring 2004 © L. Joskowicz 4

Tree-Search routine
Tree-Search(x,k)
if x=null or k=key[X]
then return x
if k < key[X]
then return Tree-Search(left[X],K)
else return Tree-Search(right[x],k)

Iterative-Tree-Sear ch(x,k)
while x# null and k # key[X]
doif k< key[X]
then x € left[x]

else x € right[X] Complexity: O(h)
return x

Data Structures, Spring 2004 © L. Joskowicz 5

Example: search in abinary tree

Search for 13 in the tree

Data Structures, Spring 2004 © L. Joskowicz 6

Treetraversa

Inorder-Tree-Walk(x)
if x # null
then Inorder-Tree-Walk(left[x])

print key[X]
Inorder-Tree-Walk(right[X])

Recurrence equation:
T(0) =©(2)

T(N)=TK +T(h—-k-1) +®(1) Complexity: @(n)

Data Structures, Spring 2004 © L. Joskowicz 7

Max and Min-Search routines

Tree-Minimum(x)
while left[X] # null
do x < left[x]
return x

Tree-Maximum(x)
whileright[x] # null
do x < right[x]

return x Complexity: O(h)

Data Structures, Spring 2004 © L. Joskowicz

Example: Min and Max search

Data Structures, Spring 2004 © L. Joskowicz 9

Tree-Successor routine (1)

The successor of x isthe smallest element y with a
key greater than that of x

The successor of x can be found without
comparing the keys. It is either:
1. null if x isthe maximum node.

2. the minimum of the right child of t
when t hasaright child.

3. or else, the lowest ancestor of x whose | eft
child is also an ancestor of x.

Data Structures, Spring 2004 © L. Joskowicz

Tree-Successor: cases

AN A

Minimum of right
child of t

Lowest ancestor z of t
whose left child y isalso
an ancestor of t

Data Structures, Spring 2004 © L. Joskowicz 1

Tree-Successor routine (2)

Tree-Successor (X)

if right[x] # null [* Case 2
then return Tree-Minimum(right[x])
y € parent[x]

whiley # null and x = right[y]
dox<y

y € parent[y]

returny

[* Case 3

Data Structures, Spring 2004 © L. Joskowicz

Example: finding a successor

Find the successors of 15, 13

Data Structures, Spring 2004 © L. Joskowicz 13

Proof (1)

e Case 3: If x doesn’t have aright child, then its
successor is X' sfirst ancestor such that its left child
is also an ancestor of x. (Thisincludes the case that
there is no such ancestor, and then x is the maximum
and the successor is null.)

 Proof: To prove that anode z is the successor of X,
we need to show that key[Z] > key[X] and that x isthe
maximum of all elements smaller than z

o Start from x and climb up the tree aslong as you
move from aright child up. Let the node you stopped
at bey, and denote z = parent[y].

Data Structures, Spring 2004 © L. Joskowicz 14

Proof (2)

* Sub-claim: x isthe max of the sub-tree rooted at y.

* Proof of sub-claim: x isthe node you reach if you
goright al thetime fromy.

* Now we claim z = parent(y) is the successor of x.
First, key[Z] > key[X] becausey isthe left child of z
by the definition of y, soxisin Z sleft sub-tree.

* Now, x isthe maximum of all items that are smaller
than z, because by the sub-claim x is the maximum
of the sub-tree rooted at y, and all elements smaller
than z are in this sub-tree by the property of binary
search trees.

Data Structures, Spring 2004 © L. Joskowicz 15

I nsert

* Insert isvery similar to search:
we essentially find the place in the tree where we
want to insert the new node z.

* The new node z will gways be aleaf.
¢ Weassumethat initialy left(z) and right(z) are
both null.

Data Structures, Spring 2004 © L. Joskowicz 16

Example: insertion

52

Insert 13 inthetree Z

Data Structures, Spring 2004 © L. Joskowicz 17

Tree-insert routine

Tree-Insert(T,2)

y < null
X € root[T] y isthe parent of x
while x # null
doy € x
if key[Z] < key[X]
then x € left[x] /* When the tree is empty
else x € right[x] if y=null then root[T] < z
parent[Z €y elseif key[Z < keyly]

then leftly] € z
eserightly] € z

Data Structures, Spring 2004 © L. Joskowicz 18

Delete (1)

Delete is more complicated than insert. There are three

Delete case 1: no children!

cases to delete node z

1. zhasno children . a

2. zhasonechild e P 2 @

3. zhastwo children 633 \(1'2\3 & G - v B , 12 h \3@1
Case 1: delete z and update the child' s parent child e 13- @ ®» 0 @ i 3

to null. (&) 1 f‘éf
Case 2: delete zand connect its parent to its child. @) delete @
Case 3: more complex; we can’t just take the node out

and reconnect its parent with its children, because

the tree will no longer be a binary tree!

Delete case 2: one child Delete (2)

3 delete
@ 2 @ B @& @&
W CUS ® ®

P
15}

Data Structures, Spring 2004 © L. Joskowicz 21

For case 3, the solution is to replace the node by
its successor, and “ pull” the successor, which
necessarily has one child at most.

Claim: if anode hastwo children, its successor has
at most one child.

Proof: Thisisbecause if the node has two children,
its successor isthe minimum of its right sub-tree.
This minimum cannot have a left child because
then the child would be the minimum...

Invariant: in all cases the binary search tree property
is preserved after the deletion.

Data Structures, Spring 2004 © L. Joskowicz 2

Delete: case 3 proof
‘ Deletez ‘
AN/ NI/ NN
©
® ¥

Data Structures, Spring 2004 © L. Joskowicz 23

37 g ® - @ B .
@ ® @ = @ » @ D
v(6) ::7‘}
[®

successor Y

Data Structures, Spring 2004 © L. Joskowicz 2

Tree-Delete routine

Tree-Delete(T,2)
if 1eft[Z] = null or right[Z] = null /* Cases1or 2

then y &z /* find a node y to splice
else y € Tree-Successor(z) /* to splice out
if left[y] # null * set the child x
then x € Ieft]y]
else x < right[yl]
if x# null * splicing operation

then parent[x] & parent[y]

if parent[y] = null I* copy y's satellite

then root[T] € x if y(iatzalnto z
elseif y = left[parent[y]]
then Ieffparenify]] € x neh kA <A

else right[parent[y]] € x

Data Structures, Spring 2004 © L. Joskowic: 25

Complexity analysis

Delete: The two first cases take O(1) operations:
they involve switching the pointers of the parent
and the child (if it exists) of the node that is deleted.

The third case requires a call to Tree-Successor, and
thus can take O(h) time.

In conclusion: all dynamic operations on a binary
search tree take O(h), where h is the height of the
tree.

In the worst case, the height of the tree can be O(n)

Data Structures, Spring 2004 © L. Joskowicz 2%

Randomly-built Binary Search Trees

Definition: A randomly-built binary search tree
over n distinct keysisabinary search tree that results
from inserting the n keys in random order (each
permutation of the keysisequally likely) into an
initially empty tree.

Theorem: The average height of arandomly-built
binary search tree of n distinct keysis O(lg n)
Corollary: The dynamic operations Successor,
Predecessor, Search, Min, Max, Insert, and Delete all
have O(lg n) average complexity on randomly-built
binary search trees.

Data Structures, Spring 2004 © L. Joskowicz 27

