
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 7

Heapsort and priority queues

• Motivation

• Heaps

• Building and maintaining heaps

• Heap-Sort

• Priority queues

• Implementation using heaps

Data Structures, Spring 2004 © L. Joskowicz �

Priority queues and heaps
• We need an efficient ADT to keep a dynamic set S

of elements x to support the following operations:
– Insert(x,S) – insert element x into S
– Max(S) – returns the maximum element
– Extract-Max(S) – remove and return the max. element
– Increase-Key(x,k,S) – increase x’s value to k

• This is called a priority queue (max-priority or
min-priority queue)

• Priority queues are implemented using a heap,
which is a tree structure with special properties.

Data Structures, Spring 2004 © L. Joskowicz �

Heaps
• A heap is a nearly complete binary tree.
• The binary tree is filled on all levels except

possibly the last one, which is filled from the left
to the right up to the last element.

• The tree is implemented as an array A[i] of length
length[A]. The number of elements is heapsize[A]

• Nodes in the tree have the property that parent
node elements are greater or equal to children’s
node elements: A[parent(i)]

�
A[i]

• Therefore, the maximum is at the root of the tree

Data Structures, Spring 2004 © L. Joskowicz �

Example of a heap

16

14

8 7

142

10

9 3

0

1

2

3

parent(i) = floor(i/2)
left-child(i) = 2i
right-child(i) 2i +1

1

2 3

4 5 6 7

8 9 10

1423978101416

1 2 3 4 5 6 7 8 9 10

Data Structures, Spring 2004 © L. Joskowicz �

Maintaining the heap property
• With a max-heap, finding the maximum element

takes O(1). Removing and inserting an element will
take O(lg n), where n = heapsize(A)

• We need a procedure to maintain the heap property �
Max-Heapify

• The idea: when inserting a new element x in the
heap, find its place by “ floating it down” when its
value is smaller than the current node to the child
with the largest value. Apply this method recursively
until the right place is found.

• Since the tree has height d = lg n, it will take O(lg n).
Data Structures, Spring 2004 © L. Joskowicz �

Example of max-heapify

16

4

14 7

18

10

9 3

Fix the heap

4 < 14

2

Data Structures, Spring 2004 © L. Joskowicz �

Example of max-heapify

16

14

4 7

18

10

9 3
4 < 8

2

Data Structures, Spring 2004 © L. Joskowicz �

Example of max-heapify

16

14

8 7

14

10

9 3

2

Data Structures, Spring 2004 © L. Joskowicz �

Max-Heapify routine
Max-Heapify(A, i)
1. l

�
left(i)

2. r
�

right(i)

3. if l � heapsize[A] and A[l] > A[i]
4. then largest

�
l

5. else largest
�

r

6. if r � heapsize[A] and A[r] > A[largest]
7. then largest

�
r

8. if largest != i
9. then Exchange(A[i],A[largest])
10. Max-Heapify(A,largest)

Data Structures, Spring 2004 © L. Joskowicz
� �

Max-Heapify complexity
• The running time on a sub-tree of size n rooted at

node i is:
– � (1) to fix relations among elements A[i]
– Time to recursively call Max-Heapify on a sub-tree

rooted at one of the children of I. In the worst case, the
size of such sub-tree is 2n/3, which occurs when the last
row of the tree is exactly half full.

• Thus, the recurrence is
T(n/2) + � (1) � T(n) � T(2n/3) + � (1)

• By the master theorem, a = 1, b = 3/2, f(n) = � (1)
so logba = 0, so case 2 applies: T(n) = O(lg n).

Data Structures, Spring 2004 © L. Joskowicz
� �

Building a heap
• Use Max-Heapify to recursively convert the array

A[i] into a max-heap from bottom to top

• The elements in the sub-array
are all leaves of the tree, so each is a 1-element
heap to begin with. The Build-Max-Heap
procedure has to go through the remaining nodes
of the tree and run Max-Heapify on each one

� 	
])...12/[(nnA

Build-Max-Heap(A)
1. heapsize[A]

�
length(A)

2. for i � downto 1
3. do Max-Heapify(A,i)

�
2/][Alength

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (1)

7814109162314
1 2 3 4 5 6 7 8 9 10

4

1

2 16

7814

3

9 10

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (2)

4

1

2 16

7814

3

9 10

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (3)

4

1

2 16

7814

3

9 10

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (4)

4

1

14 16

782

3

9 10

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (5)

4

1

14 16

782

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (6)

4

16

14 7

182

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: building a heap (7)

16

14

8 7

142

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz
� �

Correctness of Build-Heap

• A useful technique for proving the correctness of
an algorithm is to use loop invariants, which are
properties that hold throughout the loop.

• It is very similar to induction, but it is stated in
terms of the loop. We show that the loop
invariant holds before the loop is executed,
during the loop, and after the loop terminates.

Data Structures, Spring 2004 © L. Joskowicz � �

Invariant of Build-Heap

The loop invariant is:

Before the execution of each for step each node
i + 1, i + 2, … , n is the root of a max-heap

Build-Max-Heap(A)
1. heapsize[A]

�
length(A)

2. for i � downto 1
3. do Max-Heapify(A,i)

�
2/][Alength

Data Structures, Spring 2004 © L. Joskowicz � �

Proof of loop invariant
• Initialization: before the first iteration, i = floor(n/2) and

each node is a leaf and is thus trivially a max-heap of size 1.

• Maintenance: show that if the invariant holds before the
iteration, it will also hold after the iteration. Note that all the
the nodes larger than i are roots of a max-heap, from
previous iterations. Therefore, the sub-tree rooted at i is also
a heap, but not a max-heap. After the execution of the
Max-Heapify routine, it becomes a max-heap.

• Termination: i = 0, so A[1] is the root of a max-heap

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity analysis of Build-Heap (1)

• For each height 0 < h � lg n , the number of
nodes in the tree is at most n/2h+1

• For each node, the amount of work is
proportional to its height h, O(h)

�
n/2h+1 .O(h)

• Summing over all heights, we obtain: ��� ��� �������� 		
���		
��� �� � �� � n

h
h

n

h
h

h
nOhO

n
nT

lg

0
1

lg

0
1 2

)(.
2

)(

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity analysis of Build-Heap (2)

• We use the fact that

• Therefore:

• Building a heap takes only linear time and space!

2
)2/11(

2/1

2 2
0 �����

������� �h h

h

���
)(

22
)(

0

lg

0
1

nO
h

nO
h

nOnT
h

h

n

h
h ��� !""#$ %%&''(��� !""#$ %%&''(�)) * ++ ,

1||
)1(2

0 -./021 3
xfor

x

x
kx

k

k

Data Structures, Spring 2004 © L. Joskowicz � �

Sorting with heaps: Heap-Sort
• We can use the heap structure to sort an array A[i] of n

elements in place:

• Since the maximum element of the array is its first element,
A[1], it can be put in its correct final position at the end of the
array, in A[n].

• We can now recursively fix the heap of the sub-tree rooted at
node 1 and containing n – 1 elements with Max-Heapify until
two elements are left.

• Each call to Max-Heapify takes O(lg n), and it is called once
for each element in the array, so the running time is O(n lg n)
always (best, average, and worst case) with O(n) space.

Data Structures, Spring 2004 © L. Joskowicz � �

Heap-Sort

Heap-Sor t(A)
1. Build-Max-Heap(A)
2. heapsize[A] � length(A)
3. for i � length[A] downto 2
4. do Exchange(A[1],A[i])
5. heapsize[A] � length(A) –1
6. Max-Heapify(A,1)

put maximum
at the root

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort

16

14

8 7

142

10

9 3

1

2 3

4 5 6 7

8 9 10

1423978101416

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (2)

14

8

4 7

1612

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (3)

10

8

4 7

16142

9

1 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (4)

9

8

4 7

161410

3

1 2

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (5)

7

4

1 2

161410

3

8 9

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (6)

4

2

1 7

161410

3

8 9

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (7)

1

2

4 7

161410

3

8 9

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Heap-Sort (8)

1

2

4 7

161410

3

8 9

1

2 3

4 5 6 7

8 9 10

1614109874321
Data Structures, Spring 2004 © L. Joskowicz � �

Priority queues

We can implement the priority queue ADT with a
heap. The operations are:

• Max(S) – returns the maximum element

• Extract-Max(S) – remove and return the
maximum element

• Insert(x,S) – insert element x into S

• Increase-Key(S,x,k) – increase x’ s value to k

Data Structures, Spring 2004 © L. Joskowicz � �

Priority queues: Extract-Max
Heap-Maximum(A) return A[1]

Heap-Extract-Max(A)
1. if heapsize[A] < 1
2. then er ror “heap underflow”
3. max �� �� A[1]
4. A[1] �� �� A[heapsize[A]]
5. heapsize[A] � heapsize[A] –1
6. Max-Heapify(A,1)
7. return max

Make last
element the root

Data Structures, Spring 2004 © L. Joskowicz � �

Priority queues: Increase-Key

Heap-Increase-key(A, i, key)
1. if key < A[i]
2. then er ror “new key smaller than existing one”

3. A[i] �� �� key
4. while i > 1 and A[parent(i)] < A[i]
5. do Exchange(A[i], parent(A[i]))
6. i � parent(i)

Data Structures, Spring 2004 © L. Joskowicz � �

Priority queues: Insert-Max

Heap-Inser t-Max(A, key)
1. heapsize[A] � heapsize[A] + 1

2. A[heapsize[A]] � –
3. Heap-Increase-Key(A, heapsize[A], key)

Data Structures, Spring 2004 © L. Joskowicz � �

Example: increase key (1)

16

14

8 7

142

10

9 3

1

2 3

4 5 6 7

8 9 10

increase 4 to 15

Data Structures, Spring 2004 © L. Joskowicz � �

Example: increase key (2)

16

14

8 7

1152

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: increase key (3)

16

14

15 7

182

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Example: increase key (4)

16

15

14 7

182

10

9 3

1

2 3

4 5 6 7

8 9 10

Data Structures, Spring 2004 © L. Joskowicz � �

Summary
• All dynamic operations on a heap take O(lg n)

• All operations preserve the structure of the heap
as an almost complete binary tree

• Tree rearrangement is in place

• Heapsort takes time � (n lg n) and space � (n)

