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Data Structures – LECTURE 7 

Heapsort and priority queues

• Motivation

• Heaps

• Building and maintaining heaps

• Heap-Sort

• Priority queues 

• Implementation using heaps
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Priority queues and heaps
• We need an efficient ADT to keep a dynamic set S

of elements x to support the following operations:
– Insert(x,S) – insert element x into S
– Max(S) – returns  the maximum element
– Extract-Max(S) – remove and return the max. element
– Increase-Key(x,k,S) – increase x’s value to k

• This is called a priority queue (max-priority or 
min-priority queue)

• Priority queues are implemented using a heap, 
which is a tree structure with special properties. 
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Heaps
• A heap is a nearly complete binary tree.
• The binary tree is filled on all levels except 

possibly the last one, which is filled from the left 
to the right up to the last element.

• The tree is implemented as an array A[i] of length 
length[A]. The number of elements is heapsize[A]

• Nodes in the tree have the property that parent 
node elements are greater or equal to children’s 
node elements: A[parent(i)] 

�
A[i]

• Therefore, the maximum is at the root of the tree
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Example of a heap
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Maintaining the heap property
• With a max-heap, finding the maximum element 

takes O(1). Removing and inserting an element will 
take O(lg n), where n = heapsize(A)

• We need a procedure to maintain the heap property �
Max-Heapify

• The idea: when inserting a new element x in the 
heap, find its place by “ floating it down” when its 
value is smaller than the current node  to the child 
with the largest value. Apply this method recursively 
until the right place is found.

• Since the tree has height d = lg n, it will take O(lg n).  
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Example of max-heapify
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Example of max-heapify
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Example of max-heapify
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Max-Heapify routine
Max-Heapify(A, i)
1. l

�
left(i)

2. r
�

right(i)

3. if  l  � heapsize[A] and A[l] > A[i] 
4. then largest

�
l

5. else largest
�

r

6. if  r � heapsize[A] and A[r] > A[largest] 
7. then largest

�
r

8. if  largest != i
9. then Exchange(A[i],A[largest])
10. Max-Heapify(A,largest)
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Max-Heapify complexity
• The running time on a sub-tree of size n rooted at 

node i is:
– � (1) to fix relations among elements A[i] 
– Time to recursively call Max-Heapify on a sub-tree 

rooted at one of the children of I. In the worst case, the 
size of such sub-tree is 2n/3, which occurs when the last 
row of the tree is exactly half full.

• Thus, the recurrence is 
T(n/2) + � (1) � T(n) � T(2n/3) + � (1)

• By the master theorem, a = 1, b = 3/2, f(n) = � (1) 
so logba = 0, so case 2 applies: T(n) = O(lg n).
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Building a heap
• Use Max-Heapify to recursively convert the array 

A[i] into a max-heap from bottom to top

• The elements in the sub-array                                 
are all leaves of the tree, so each is a 1-element 
heap to begin with. The Build-Max-Heap 
procedure has to go through the remaining nodes 
of the tree and run Max-Heapify on each one 

� 	
])...12/[( nnA 


Build-Max-Heap(A)
1. heapsize[A] 

�
length(A)

2. for   i � downto 1 
3. do Max-Heapify(A,i)

� 
2/][ Alength
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Example: building a heap (1)
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Example: building a heap (2)
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Example: building a heap (3)
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Example: building a heap (4)
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Example: building a heap (5)
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Example: building a heap (6)
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Example: building a heap (7)
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Correctness of Build-Heap

• A useful technique for proving the correctness of 
an algorithm is to use loop invariants, which are 
properties that hold throughout the loop. 

• It is very similar to induction, but it is stated in 
terms of  the loop. We show that the loop 
invariant holds before the loop is executed, 
during the loop, and after the loop terminates. 
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Invariant of Build-Heap 

The loop invariant is:

Before the execution of each for step each node 
i + 1, i + 2, … , n is the root of a max-heap

Build-Max-Heap(A)
1. heapsize[A] 

�
length(A)

2. for   i � downto 1 
3. do Max-Heapify(A,i)

� 
2/][ Alength
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Proof of loop invariant
• Initialization: before the first iteration, i = floor(n/2) and 

each node is a leaf and is thus trivially a max-heap of size 1. 

• Maintenance: show that if the invariant holds before the 
iteration, it will also hold after the iteration. Note that all the 
the nodes larger than i are roots of a max-heap, from 
previous iterations. Therefore, the sub-tree rooted at i is also 
a heap, but not a max-heap. After the execution of the    
Max-Heapify routine, it becomes a max-heap. 

• Termination: i = 0, so  A[1] is the root of a max-heap
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Complexity analysis of Build-Heap (1)

• For each height 0 < h � lg n , the number of 
nodes in the tree is at most n/2h+1

• For each node, the amount of work is 
proportional to its height h, O(h) 

�
n/2h+1 .O(h)

• Summing over all heights, we obtain: ��� ��� �������� 		
���		
��� �� � �� � n
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Complexity analysis of Build-Heap (2)

• We use the fact that

• Therefore: 

• Building a heap takes only linear time and space!
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Sorting with heaps: Heap-Sort
• We can use the heap structure to sort an array A[i] of n

elements in place:

• Since the maximum element of the array is its first element, 
A[1], it can be put in its correct final position at the end of the 
array, in A[n].

• We can now recursively fix the heap of the sub-tree rooted at 
node 1 and containing n – 1  elements with Max-Heapify until 
two elements are left.

• Each call to Max-Heapify takes O(lg n), and it is called once 
for each element in the array, so the running time is O(n lg n) 
always (best, average, and worst case) with O(n) space.
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Heap-Sort

Heap-Sor t(A)
1. Build-Max-Heap(A) 
2. heapsize[A] � length(A)
3. for   i � length[A] downto 2 
4. do Exchange(A[1],A[i])
5. heapsize[A] � length(A) –1 
6. Max-Heapify(A,1)

put maximum 
at the root
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Example: Heap-Sort
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Example: Heap-Sort (2)
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Example: Heap-Sort (3)
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Example: Heap-Sort (4)
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Example: Heap-Sort (5)
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Example: Heap-Sort (6)
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Example: Heap-Sort (7)
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Example: Heap-Sort (8)
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Priority queues

We can implement the priority queue ADT with a 
heap. The operations are:

• Max(S) – returns  the maximum element

• Extract-Max(S) – remove and return the                   
maximum  element

• Insert(x,S) – insert element x into S

• Increase-Key(S,x,k) – increase x’ s value to k
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Priority queues: Extract-Max
Heap-Maximum(A) return A[1]

Heap-Extract-Max(A)
1. if heapsize[A] < 1 
2. then er ror   “heap underflow”
3. max �� �� A[1]
4. A[1] �� �� A[heapsize[A]] 
5. heapsize[A] � heapsize[A] –1 
6. Max-Heapify(A,1)
7. return max

Make last 
element the root
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Priority queues: Increase-Key

Heap-Increase-key(A, i, key)
1. if key < A[i]
2. then er ror   “new key smaller than existing one”

3. A[i] �� �� key 
4. while i > 1 and A[parent(i)] < A[i]  
5. do Exchange(A[i], parent(A[i]))
6. i � parent(i) 
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Priority queues: Insert-Max

Heap-Inser t-Max(A, key)
1. heapsize[A] � heapsize[A] + 1 

2. A[heapsize[A]] � –
3. Heap-Increase-Key(A, heapsize[A], key)
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Example: increase key (1)
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Example: increase key (2)
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Example: increase key (3)
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Example: increase key (4)
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Summary
• All dynamic operations on a heap take O(lg n)

• All operations preserve the structure of the heap 
as an almost complete binary tree

• Tree rearrangement is in place

• Heapsort takes time � (n lg n) and space � (n)


