Data Structures— LECTURE 6

Dynamic data structures

» Motivation

» Common dynamic ADTs

» Stacks, queues, lists: abstract description

* Array implementation of stacks and queues
e Linked lists

* Rooted trees

¢ Implementations

Data Structures, Spring 2004 © L. Joskowicz

Motivation (1)

» So far, we have dealt with one type of data
structure: an array. Itslength does not change, so it
isastatic data structure. This either requires
knowing the length ahead of time or waste space.

* In many cases, we would like to have a dynamic
data structure whose length changes according to
computational needs

* For this, we need a scheme that allows us to store
elementsin physically different order.

2o [safr] [s][2]fa [[x]o]s]

Data Structures, Spring 2004 © L. Joskowicz

Motivation (2)

Examples of operations:

—Insert(S K): Insert a new element

— Delete(S k): Delete an existing element

—Min(S, Max(9): Find the element with the
maximum/minimum value

— Successor (Sx), Predecessor (Sx): Find the
next/previous element

At least one of these operationsis usually

expensive (takes O(n) time). Can we do better?

Data Structures, Spring 2004 © L. Joskowicz

Abstract Data Types—ADT

» An abstract data type is a collection of formal
specifications of data-storing entities with awell
designed set of operations.

» The set of operations defined with the ADT
specification are the operations it “ supports’.

» What isthe difference between a data structure (or a
class of objects) and an ADT?

-> The data structure or classis an implementation of
the ADT to be run on a specific computer and
operating system. Think of it asan abstract JAVA
class. The course emphasisis on ADTs.

Data Structures, Spring 2004 © L. Joskowicz 4

Common dynamic ADTs

Stacks, queues, and lists
Nodes and pointers
Linked lists

Trees: rooted trees, binary search trees, red-black
trees, AVL-trees, etc.

» Heaps and priority queues
» Hash tables

Data Structures, Spring 2004 © L. Joskowicz

Stacks -- n*10nn

» A stack Sisalinear sequence of elementsto which
elements x can only be inserted and deleted from
the head of the list in the order they appear.

* A stack implements the Last-In-First-Out (LI1FO)
policy. Push

 The stack operations are:

— Stack-Empty(S)
—Pop(9
— Push(Sx)

Data Structures, Spring 2004 © L. Joskowicz

Queues -- 7N

* A queue Qisalinear sequence of elementsto
which elements are inserted at the end and deleted
from the beginning.

* A queue implements the First-In-First-Out (FIFO)
policy.

» The queue operations are:

— Queue-Empty(Q) DeQueue EnQueue
— EnQueue(Q, X)
— DeQueue(Q) 2fof2[3 o1

e S g 2040 L sk head tail

7

Lists -- mnown

* AlistLisalinear sequence of elements.
» Thefirst element of thelist isthe head and the last

isthetail. When both are null, the list is empty

 Each element has a predecessor and a successor
» Thelist operations are:

— Successor(L,x), Predecessor(L,x)

— List-Insert(L,x)
“uxbsasty 2 o2 fs [o1]
— List-Search(L,K)
e S g 2040 L s head X tail s

Implementing stacks and queues

* Array implementation

—usean array A of n elements A[i], where nisthe
maximum number of elements expected.

—Top(A), Head(A), and Tail(A) are array indices
— Stack and queue operations involve index manipulation
— Lists are not efficiently implemented with arrays
e Linked list
— Create objects for elements as they appear
— Do not have to know the maximum size in advance
— Manipulate pointers

Data Structures, Spring 2004 © L. Joskowicz

Stacks: array implementation

Bus(S s [2]s] [|

1. if top[S = length[S]

2. then error “ overflow”

3. top[g € top[F +1 top -

. Sonls) € Dresin o
Pop(§

1. iftop[§ =0 Stack-Empty(S

2. thenerror “underflow” 1. iftop[§ =0
3. esetop[g € top[§ -1 2. thenreturntrue
4. return Jtop[§ +1] 3. esereturn false

Data Structures, Spring 2004 © L. Joskowicz 10

Queues: array implementation

Dequeug(Q)

1. x ¢ Qhead[q]] afs [[[2]3]o0]
2. if head[Q] = length[Q]

3. thenhead[Q] €1 tail head

4. elsehead[Q] € (head[Q]+1) o n

5. returnx

Enqueue(Q, X)

1. Qtail[qQ]] € x

2. if tail[Q] = length[Q] Boundary

3. thentail[Q] € x conditions

4. dsetail[Q] € (tail[Q]+1)04n omitted

Data Structures, Spring 2004 © L. Joskowicz

Linked Lists-- nmwpn minowA

» The physical and logical order of elements need
not be the same; instead, use pointers to indicate
where the next (previous) element is.

« By manipulating the pointers, we can insert and
delete elements without having to move al the
others! Lists can be signly or doubly linked.

head tail
al a2 a3 an [T

13

— — null

SN A1V | I »

Nodes and pointers
* A nodeisan object that holds the data, a pointer to
the next node and (optionally), a pointer to the next
node. If thereis no next node, the pointer isto “null”

Class ListNode { key
Object key; data
Object data; next ———
ListNode next; N
ListNode prev; prev

* A pointerjindicates the memory address of anode
» Nodes usually occupy constant space: ©(1)

Data Structures, Spring 2004 © L. Joskowicz 13

Example: Insertion

Insertion of a new node q between successive
nodesp andr:

Pl | r 3 la |r

al a3

a2 a3
a2
next[q] < r
next[p] € q

Data Structures, Spring 2004 © L. Joskowicz 14

Example: Deletion

Deletion of a node q between previous node p
and successor hode r

Pl la 1 p] | r

a2 a3 al a3

next[p] € r a2
next[q] € null —13 null

Data Structures, Spring 2004 © L. Joskowicz 15

Linked lists operations
List-Search(L, k)
1. x € head[L]
2. whilex# null and key[x] # k
3. dox <€ next[x]

4. returnx
List-Insert(L, x) List-Delete(L, X)
1. next[X] € head[L] 1. if prev[L] #null
2. if head[L] # null 2. then next[prev[X]] € next[X]
3. then previhead[L]] € x 3. elsehead[L] € next[x]
4. head[L] € x 4. if next[L] # null
5. prev[x] € null 5. then previnext[X]] € prev(X]

Data Structures, Spring 2004 © L. Joskowicz 16

Example: linked list operations

head | x tail
al a2 a3 a4 [
3

Jr_ null
null

Circular lists: connect first and last elements!

Data Structures, Spring 2004 © L. Joskowicz

Rooted trees

» Arootedtree T isan ADT inwhich elements are ordered
in atree-like structure.
« A tree consists of nodes, which hold elements, and edges,
which show relations between two nodes.
» There are three types of nodes: aroot, internal nodes, leaf
* Thetreestructureis:
— Connected: there is an edge path from the root to any other node
— No cycles: there is only one path from the root to a node
— Each node except the root has a single ancestor
— Leaves have no outgoing edges
— Internal nodes have one or more out-going edges (= 2 = binary)

Data Structures, Spring 2004 © L. Joskowicz 18

Rooted tree: example
O
(®) (D) 1

f FHOD :

Data Structures, Spring 2004 © L. Joskowicz 19

Trees terminology

« Internal nodes have a parent and one or more children.

* Nodes on the same level are siblings (children of the same
parent)

« Ancestor/descendent relationships — recursive definition
of parent and children.

¢ Degree of anode: number of children

 Path: asequence of nodesny, n,, ... ,n suchthat n;isa
parent of n,,; The path length isk.

« Treeheight: length of the longest path from aroot to a
leaf.

* Node depth: length of the path from the root to the node.

Data Structures, Spring 2004 © L. Joskowicz 20

Binary trees

* A binary tree T isatree whose root and internal
nodes have at most two children.

» Recursively: abinary tree is atree that either
contains no nodes or consists of aroot node, and
two sub-trees (left and right) each of whichis
also abinary tree.

Data Structures, Spring 2004 © L. Joskowicz 21

Binary tree: example

BRI NS
2@ et é

Data Structures, Spring 2004 © L. Joskowicz 2

Full and complete trees

 Full binary tree: each node has either degree 0 (aleaf) or
2 exactly two non-empty children.

e Complete binary tree: afull binary treein which al
|eaves have the same depth.

C8) \D eo \
@ @é © Gé ©

Rl Complete

Data Structures, Spring 2004 © L. Joskowicz 23

Properties of binary trees

How many leaf nodes doesa complete binary tree of height d
have?

2d
What is the number of internal nodesin such atree?

1+2+4+. . .+241 = 2d1 (less than half!)
What is the total number of nodes?

1+2+4+,, +2d = 2d+1_]
How tall can afull/complete binary tree with n leaf nodes be?

(n-1)2 % 24+1_1=n - log (n+1) -1 < log (n)
s g s "

Array impl ementatl on of binary trees

'e‘(’)e' 2d elements

atlevel d
f Y

Complete tree:
parent(i) = floor(i/2)
]A|B|c|D|E|Fle\lertchnd(u) 2i
right-child(i) = 2i +1

20 2t 22

Data Structures, Spring 2004 © L. Joskowicz 25

Linked list implementation of

o 0 binary trees
oo —
Each node contains
e the data and three
pointers:
\ / * ancestor (node)
* |eft-child(node)
_Z G G e * right-child(node)
1
[
Q data

Al

DetaStructures, Spring 2004 6 L. Joskowicz o 26

Linked list implementation of
general trees

L eft-child/right sibling
representation

Each node contains
the data and three
pointers:

* ancestor (node)

* |eft-child(node)

* right-sibling(node)

root(T) —’

Data Structures, Spring 2004 © L. Joskowicz 27

I mplementation of pointers and objects

Multiple-array representation of objects:
Each object with k fieldsis represented as an array
with k elements + 2 fields: previous and next;

1 2 3456 78

o B 1

5 next
C D B A key

512 |7] |1/ prev.
= L]

Data Structures, Spring 2004 © L. Joskowicz 28

I mplementation of pointers and objects

Single-array representation of objects:
Each object with k fields is represented with k
consecutive fileds 2 fields: previous and next;

1 23456 7 8 91011121314 1516 17 18 19 20 21 22 23 24

Start

13

]
L[[[79/ole] [[[4[g2
|I_._I

next key prev.

Data Structures, Spring 2004 © L. Joskowicz 29

Memory management

» Most languages have a mechanism for allocating and
freeing storage objects.

« Memory can thought of as containing two zones:
free memory and used memory.

« Allocating objects: when a new object structure is
created, the next available free memory block is used

» De-alocating objects: an object becomes unused
when it cannot be reached anymore. Accumulating
unused objects is bad since the system can run out of
memory unexpectedly.

Data Structures, Spring 2004 © L. Joskowicz 30

Allocating and freeing objects

» Two waysto deal with unused objects:
— the user explicitly frees (de-allocate) objects
— the system performs “ garbage collection” upon request or
automatically, oncein awhile
» When a program terminates, its storage must be
recovered (marked free) for otherwise the memory
will quickly fill up.
» Keep free objectsin asingly linked list managed as a
stack > freeing and releasing an object takes O(1).

Data Structures, Spring 2004 © L. Joskowicz

Code for allocate and free

Allocate-Object()
if free = null
then error “ out of space’
elsex € free

free € next[X]
return x

aprwDNPRE

Free-Object(x)
1. next[x] € free
2. free€x

Data Structures, Spring 2004 © L. Joskowicz

