
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 6

Dynamic data structures
• Motivation
• Common dynamic ADTs
• Stacks, queues, lists: abstract description
• Array implementation of stacks and queues
• Linked lists
• Rooted trees
• Implementations

Data Structures, Spring 2004 © L. Joskowicz �

Motivation (1)
• So far, we have dealt with one type of data

structure: an array. Its length does not change, so it
is a static data structure. This either requires
knowing the length ahead of time or waste space.

• In many cases, we would like to have a dynamic
data structure whose length changes according to
computational needs

• For this, we need a scheme that allows us to store
elements in physically different order.

2 50 3 4 1 3 42 1 0 5

Data Structures, Spring 2004 © L. Joskowicz �

Motivation (2)
• Examples of operations:

– Insert(S, k): Insert a new element

– Delete(S, k): Delete an existing element

– Min(S), Max(S): Find the element with the
maximum/minimum value

– Successor(S,x), Predecessor(S,x): Find the
next/previous element

• At least one of these operations is usually
expensive (takes O(n) time). Can we do better?

Data Structures, Spring 2004 © L. Joskowicz �

Abstract Data Types –ADT
• An abstract data type is a collection of formal

specificationsof data-storing entities with a well
designed set of operations.

• The set of operations defined with the ADT
specification are the operations it “supports” .

• What is the difference between a data structure (or a
class of objects) and an ADT?

�
The data structure or class is an implementation of

the ADT to be run on a specific computer and
operating system. Think of it as an abstract JAVA
class. The course emphasis is on ADTs.

Data Structures, Spring 2004 © L. Joskowicz �

Common dynamic ADTs

• Stacks, queues, and lists

• Nodes and pointers

• Linked lists

• Trees: rooted trees, binary search trees, red-black
trees, AVL-trees, etc.

• Heaps and priority queues

• Hash tables

Data Structures, Spring 2004 © L. Joskowicz �

• A stack S is a linear sequence of elements to which
elements x can only be inserted and deleted from
the head of the list in the order they appear.

• A stack implements the Last-In-First-Out (LIFO)
policy.

• The stack operations are:
– Stack-Empty(S)

– Pop(S)

– Push(S,x)

Stacks --

PopPush

null

head
2
0
1
5

• A stack S is a linear sequence of elements to which
elements x can only be inserted and deleted from
the head of the list in the order they appear.

• A stack implements the Last-In-First-Out (LIFO)
policy.

• The stack operations are:
– Stack-Empty(S)

– Pop(S)

– Push(S,x)

Data Structures, Spring 2004 © L. Joskowicz �

Queues --
• A queue Q is a linear sequence of elements to

which elements are inserted at the end and deleted
from the beginning.

• A queue implements the First-In-First-Out (FIFO)
policy.

• The queue operations are:
– Queue-Empty(Q)

– EnQueue(Q, x)

– DeQueue(Q) 2 20 3 0 1

head tail

DeQueue EnQueue

Data Structures, Spring 2004 © L. Joskowicz �

Lists --
• A list L is a linear sequence of elements.

• The first element of the list is the head and the last
is the tail. When both are null, the list is empty

• Each element has a predecessor and a successor

• The list operations are:
– Successor(L,x), Predecessor(L,x)

– List-Insert(L,x)

– List-Delete(L,x)

– List-Search(L,k)
2 20 3 0 1

xhead tail

Data Structures, Spring 2004 © L. Joskowicz �

Implementing stacks and queues

• Array implementation
– use an array A of n elements A[i], where n is the

maximum number of elements expected.
– Top(A), Head(A), and Tail(A) are array indices
– Stack and queue operations involve index manipulation
– Lists are not efficiently implemented with arrays

• Linked list
– Create objects for elements as they appear
– Do not have to know the maximum size in advance
– Manipulate pointers

Data Structures, Spring 2004 © L. Joskowicz
� �

Stacks: array implementation

Push(S, x)
1. if top[S] = length[S]
2. then error “ overflow”
3. top[S]

�
top[S] + 1

4. S[top[S]]
�

x

Pop(S)
1. if top[S] = 0
2. then error “ underflow”
3. else top[S]

�
top[S] – 1

4. return S[top[S] +1]

1 5 2 3

Direction of
insertion

top

Stack-Empty(S)
1. if top[S] = 0
2. then return true
3. else return false

Data Structures, Spring 2004 © L. Joskowicz
� �

Queues: array implementation

Enqueue(Q, x)
1. Q[tail[Q]]

�
x

2. if tail[Q] = length[Q]
3. then tail[Q]

�
x

4. else tail[Q]
�

(tail[Q]+1)mod n

Dequeue(Q)
1. x

�
Q[head[Q]]

2. if head[Q] = length[Q]
3. then head[Q]

�
1

4. else head[Q]
�

(head[Q]+1)mod n

5. return x

1 5 2 3 0

headtail

Boundary
conditions

omitted
Data Structures, Spring 2004 © L. Joskowicz

� �

Linked Lists --
• The physical and logical order of elements need

not be the same; instead, use pointers to indicate
where the next (previous) element is.

• By manipulating the pointers, we can insert and
delete elements without having to move all the
others! Lists can be signly or doubly linked.

a1 a2 ana3
head

null
null

tail
…

Data Structures, Spring 2004 © L. Joskowicz
� �

Nodes and pointers
• A node is an object that holds the data, a pointer to

the next node and (optionally), a pointer to the next
node. If there is no next node, the pointer is to “null”

• A pointer indicates the memory address of a node
• Nodes usually occupy constant space: � (1)

Class ListNode {
Object key;
Object data;
ListNode next;
ListNode prev;

}

data
next

prev

key

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Insertion

Insertion of a new node q between successive
nodes p and r:

a1 a3

p r

a2

p r

a1 a2

q

a3

next[q] � r

next[p] � q

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: Deletion

Deletion of a node q between previous node p
and successor node r

a1 a2

p q

a3

r

a1 a3

p r

next[p] � r

next[q] � null

a2

q

null

Data Structures, Spring 2004 © L. Joskowicz
� �

Linked lists operations
List-Search(L, k)
1. x

�
head[L]

2. while x � null and key[x] � k
3. do x

�
next[x]

4. return x

List-Insert(L, x)
1. next[x]

�
head[L]

2. if head[L] � null
3. then prev[head[L]]

�
x

4. head[L]
�

x
5. prev[x]

�� ��
null

List-Delete(L, x)
1. if prev[L] � null
2. then next[prev[x]]

�
next[x]

3. else head[L]
�

next[x]
4. if next[L] � null
5. then prev[next[x]]

�
prev[x]

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: linked list operations

a1 a2 a4a3
head

null
null

tail
x

Circular lists: connect first and last elements!

Data Structures, Spring 2004 © L. Joskowicz
� �

Rooted trees
• A rooted tree T is an ADT in which elements are ordered

in a tree-like structure.

• A tree consists of nodes, which hold elements, and edges,
which show relations between two nodes.

• There are three types of nodes: a root, internal nodes, leaf

• The tree structure is:
– Connected: there is an edge path from the root to any other node

– No cycles: there is only one path from the root to a node

– Each node except the root has a single ancestor

– Leaves have no outgoing edges

– Internal nodes have one or more out-going edges (= 2 � binary)

Data Structures, Spring 2004 © L. Joskowicz
� �

Rooted tree: example

A

B

E F

MLK

D

G J

N

C

H I

0

1

2

3

Data Structures, Spring 2004 © L. Joskowicz � �

Trees terminology
• Internal nodes have a parent and one or more children.
• Nodes on the same level are siblings (children of the same

parent)
• Ancestor/descendent relationships – recursive definition

of parent and children.
• Degree of a node: number of children
• Path: a sequence of nodes n1, n2, … ,nk such that ni is a

parent of ni+1. The path length is k.
• Tree height: length of the longest path from a root to a

leaf.
• Node depth: length of the path from the root to the node.

Data Structures, Spring 2004 © L. Joskowicz � �

Binary trees

• A binary tree T is a tree whose root and internal
nodes have at most two children.

• Recursively: a binary tree is a tree that either
contains no nodes or consists of a root node, and
two sub-trees (left and right) each of which is
also a binary tree.

Data Structures, Spring 2004 © L. Joskowicz � �

Binary tree: example

A

B C

FED

G

�

A

B C

FED

G
The order
matters!!

Data Structures, Spring 2004 © L. Joskowicz � �

Full and complete trees
• Full binary tree: each node has either degree 0 (a leaf) or

2 exactly two non-empty children.

• Complete binary tree: a full binary tree in which all
leaves have the same depth.

A

B C

ED

GF

A

B C

ED GF

Full Complete
Data Structures, Spring 2004 © L. Joskowicz � �

Properties of binary trees
• How many leaf nodes does a complete binary tree of height d

have?

2d

• What is the number of internal nodes in such a tree?

1+2+4+…+2d–1 = 2d –1 (less than half!)
• What is the total number of nodes?

1+2+4+…+2d = 2d+1 –1
• How tall can a full/completebinary tree with n leaf nodes be?

(n –1)/2 2d+1 –1= n � log (n+1) –1 � log (n)

Data Structures, Spring 2004 © L. Joskowicz � �

Array implementation of binary trees

A

B C

ED GF

1 2 3 4 5 6 7

20 21 22

A B DC E F G

0

1

22

level 2d elements
at level d

Complete tree:
parent(i) = floor(i/2)
left-child(i) = 2i
right-child(i) = 2i +1

1

2 3

4 5 6 7

Data Structures, Spring 2004 © L. Joskowicz � �

Linked list implementation of
binary trees

A

B C

ED GF

H

Each node contains
the data and three
pointers:
• ancestor(node)
• left-child(node)
• right-child(node)

root(T)

data

Data Structures, Spring 2004 © L. Joskowicz � �

Linked list implementation of
general trees

A

B D

ED G

Left-child/right sibling
representation
Each node contains
the data and three
pointers:
• ancestor(node)
• left-child(node)
• right-sibling(node)

C

root(T)

F H I

J K

Data Structures, Spring 2004 © L. Joskowicz � �

Implementation of pointers and objects
Multiple-array representation of objects:

Each object with k fields is represented as an array

with k elements + 2 fields: previousand next;

/725

ABDC

52/3

1 2 3 4 5 6 7 8

next
key
prev.

7 start

Data Structures, Spring 2004 © L. Joskowicz � �

Implementation of pointers and objects
Single-array representation of objects:

Each object with k fields is represented with k

consecutive fileds 2 fields: previousand next;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

next key prev.

7
start

/A1321B46D/15C7

Data Structures, Spring 2004 © L. Joskowicz � �

Memory management
• Most languages have a mechanism for allocating and

freeing storage objects.
• Memory can thought of as containing two zones:

free memory and used memory.
• Allocating objects: when a new object structure is

created, the next available free memory block is used
• De-allocating objects: an object becomes unused

when it cannot be reached anymore. Accumulating
unused objects is bad since the system can run out of
memory unexpectedly.

Data Structures, Spring 2004 © L. Joskowicz � �

Allocating and freeing objects
• Two ways to deal with unused objects:

– the user explicitly frees (de-allocate) objects

– the system performs “garbage collection” upon request or
automatically, once in a while

• When a program terminates, its storage must be
recovered (marked free) for otherwise the memory
will quickly fill up.

• Keep free objects in a singly linked list managed as a
stack

�
freeing and releasing an object takes O(1).

Data Structures, Spring 2004 © L. Joskowicz � �

Code for allocate and free
Allocate-Object()
1. if free = null
2. then error “ out of space”
3. else x

�
free

4. free
�

next[x]
5. return x

Free-Object(x)
1. next[x]

�
free

2. free
�

x

