
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 5 

Linear-time sorting

• Can we do better than comparison sorting?

• Linear-time sorting algorithms:
– Counting-Sort

– Radix-Sort

– Bucket-sort

Data Structures, Spring 2004 © L. Joskowicz �

Linear time sorting
• With more information (or assumptions) about 

the input, we can do better than comparison 
sorting.  Consider sorting integers. 

• Additional information/assumption: 
– Integer numbers  in the range [0..k] where k = O(n).
– Real numbers in the range [0,1) distributed uniformly

• Three algorithms:
– Counting-Sort
– Radix-Sort
– Bucket-Sort

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort
Input: n integer numbers  in the range [0..k] where k is an 
integer and k = O(n).

The idea: determine for each input element x its rank: the 
number of elements less than x.

Once we know the rank r of x, we can place it in position 
r+1

Example: if there are 6 elements smaller than 17, then we 
can place 17 in the 7th position.

Repetitions: when there are several elements with the same 
value, locate them one after the other in the order in which 
they appear in the input � this is called stable sorting,

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort: intuition (1)

1 32 4 5

When there are no
repetitions and n = k, 
Rank[A[i]] = A[i] and
B[Rank[A[i]] � A[i]

For each A[i], count 
the number of 

elements �
to it. This

rank of A[i] is the index
indicating where it goes 

4 12 5A =

B =

Rank =

4

3

521 3

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort: intuition (2)

5 12 3A =

32 3 4Rank =

When there are no
repetitions and n < k, 
some cells are 
unused, but the 
indexing still works.

B = 52

1

1 3

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort: intuition (3)

4 12 2A =

1 43 5Rank =

When n > k or there 
are repetitions, place 
them one after the other 
in the order in which 
they appear in the input 
and adjust the index by 
one � this is called 
stable sortingB =

3

3 421 2

2



Data Structures, Spring 2004 © L. Joskowicz �

Counting sort
Counting-Sort(A, B, k)
1. for i � 0 to k
2. do C[i] � 0
3. for j � 1 to length[A] 
4. do C[A[j]] � C[A[j]] +1   
5. /* now C contains the number of elements equal to i
6. for i � 1 to k
7. do C[i] � C[i] + C[i –1]
8. /* now C contains the number of elements 

�
to i

9. for j � length[A] downto 1 
10. do B[C[A[j]]] � A[j]            /* place element
11. C[A[j]] � C[A[j]] – 1      /* reduce by one

A[1..n] is the input array
B [1..n] is the output array
C [0..k] is a counting array 

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort example (1)
n = 8
k = 6

B[C[A[j]]] � A[j]
C[A[j]] � C[A[j]] – 1
after line 11

C[A[j]] � C[A[j]] +1
after line 4C =

0      1      2       3     4      5

2 20 3 0 1

2 35 0 2 3 0 3A =

1      2       3     4      5      6      7      8

2 42 7 7 8C =

0      1      2       3     4      5
C[i] � C[i] + C[i –1]
after line 7

2 42 7 8C =
0      1      2       3     4      5

7

1      2       3     4      5      6      7      8

B = 3

6

Data Structures, Spring 2004 © L. Joskowicz �

Counting sort example (2)

0 3B =

2 42 6 7 8C =

0      1      2       3     4      5

1      2       3     4      5      6      7      8

2 35 0 2 3 0 3A =

1      2       3     4      5      6      7      8

2 42 6 7 8C =
0      1      2       3     4      5

1

Data Structures, Spring 2004 © L. Joskowicz
� �

Counting sort example (3)

0 3B =

1 42 6 7 8C =

0      1      2       3     4      5

1      2       3     4      5      6      7      8

2 35 0 2 3 0 3A =

1      2       3     4      5      6      7      8

2 42 6 7 8C =
0      1      2       3     4      5

3

5

Data Structures, Spring 2004 © L. Joskowicz
� �

Counting sort: complexity analysis
• for loop in lines 1—2  takes � (k)

• for loop in lines 3—4  takes � (n)

• for loop in lines 6—7  takes � (k)

• for loop in lines 9 –11 takes � (n)

• Total time is thus � (n+k)

• Since k = O(n), T(n) = � (n) and S(n) = � (n)       
� the algorithm is optimal!!

• This does not work if we do not assume k = O(n). 
Wasteful if k >> n and is not sorting in place. 

Data Structures, Spring 2004 © L. Joskowicz
� �

Radix sort
Input: n integer numbers with d digits
The idea: look at one digit at a time and sort the 

numbers according to this digit only. Start from 
the least significant digit, working up to the most 
significant one. Since there are only 10 different 
digits 0..9, there are only 10 places used for each 
column.

For example, we can use Counting-Sort for each 
call, with k = 9. In general, k << n, so k = O(n).

At the end, the numbers will be sorted!!



Data Structures, Spring 2004 © L. Joskowicz
� �

Radix sort: example

657

457

355

839

436

329

720

355

720

436

839

657

457

329

839

329

657

457

436

355

720

839

720

657

457

436

355

329

Data Structures, Spring 2004 © L. Joskowicz
� �

Radix-Sort
Radix-Sort(A, d)

1. for i � 1 to d

2. do use a stable sort to sort array A on digit d

Notes: 

• Complexity: T(n) = � (d(n+k)) � � (n) for 
constant d and k = O(1)

• Every digit is in the range [0..k –1] and k = O(1)

• The sorting MUST be a stable sort, otherwise it fails!

• This algorithm was invented to sort computer 
punched cards!

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness of Radix-Sort (1)
We want to prove that Radix-Sort is a correct stable 
sorting algorithm

Proof: by induction on the number of digits d.
Let x be a d-digit number. Define xl as the number formed 
by the last l digits of x, for l

�
d.                                           

For example, x = 2345 then x1= 5, x2= 45, x3= 345…

Base: for d = 1, Radix-Sort uses a stable sorting algorithm to 
sort n numbers in the range [0..9]. So if  x1 < y1, x will appear 
before y. When x1 = y1, the positions of x and y will not be 
changed since stable sorting was used. 

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness of Radix-Sort (2)

General case: assume Radix sorting is correct after i –1 < d 
passes, the numbers xi–1 are sorted in stable sort order

Assume xi < yi. There are two cases:
1. The ith digit of x < ith digit of y

Radix-Sort will put x before y, so it is OK. 

2. The ith digit of x = ith digit of y

By the induction hypothesis, xi–1 < yi–1, so x appears  
before y before the iteration and since the ith digits are 
the same, their order will not change in the new iteration,  
so they will remain in the same order.

Data Structures, Spring 2004 © L. Joskowicz
� �

Proof of correctness of Radix-Sort (3)

Assume now xi = yi.
All the digits that have been sorted are the same.
By induction, x and y remain in the same order they 
appeared before the ith iteration, and snde the ith iteration 
is stable, they will remain so after the additional iteration.

This completes the proof! 

Data Structures, Spring 2004 © L. Joskowicz
� �

Properties of Radix-Sort
• Given n b-bit numbers and a number r

�
b. Radix-

Sort will take � ((b/r)(n+2r))
• Take d = b/r digits of r bits each in the range 

[0..2r–1], so we can use Counting-Sort with            
k = 2r –1. Each pass of Counting-Sort takes � (n+k) 
so we get � (n+2r) and there are d passes, so the 
total running time is � (d(n+2r)), or � ((b/r)(n+2r)). 

• For given values of n and b, we can choose r
�

b to 
be optimum � minimize � ((b/r)(n+2r)).

• Choose r = lg n to get � (n).



Data Structures, Spring 2004 © L. Joskowicz
� �

Bucket sort
Input: n real numbers in the interval [0..1) uniformly 

distributed (numbers have equal probability)
The idea: Divide the interval [0..1) into n buckets       

0, 1/n, 2/n. … (n–1)/n. Put each element ai into its 
matching bucket 1/i

�
ai

�
1/(i+1). Since the 

numbers are uniformly distributed, not too many 
elements will be placed in each bucket. If we insert 
them in order (using Insertion-Sort), the buckets 
and the elements in them will always be in sorted 
order.   

Data Structures, Spring 2004 © L. Joskowicz � �

Bucket sort: example

. 21

.12

.23

.68

.94

.72

.26

.39

.17

.78

7

6

8

9

5

4

3

2

1

0
.17.12

.26.23.21

.39

.68

.78.72

.94

.68

.72

.78

.94

.39

.26

.23

.21

.17

.12

Data Structures, Spring 2004 © L. Joskowicz � �

Bucket-Sort
Bucket-Sort(A)

1. n � length(A)

2. for i � 0 to n

3. do insert A[i] into list B[floor(nA[i])]

4. for i � 0 to n –1

5. do Insertion-Sort(B[i])

6. Concatenate lists B[0], B[1], … B[n –1] in order

A[i] is the input array
B[0], B[1], … B[n –1]  
are the bucket lists

Data Structures, Spring 2004 © L. Joskowicz � �

Bucket-Sort: complexity analysis
• All lines except line 5 (Insertion-Sort) take O(n) in 

the worst case.
• In the worst case, O(n) numbers will end up in the 

same bucket, so in the worst case, it will take O(n2) 
time. 

• However, in the average case, only a constant 
number of elements will fall in each bucket, so it will 
take O(n) (see proof in book). 

• Extensions: use a different indexing scheme to 
distribute the numbers (hashing – later in the 
course!)

Data Structures, Spring 2004 © L. Joskowicz � �

Summary

With additional assumptions, we can sort n
elements in optimal time and space � (n).


