Data Structures - LECTURE 5

Linear-time sorting

- Can we do better than comparison sorting?
- Linear-time sorting algorithms:
- Counting-Sort
- Radix-Sort
- Bucket-sort

Data Smacturss. Spring 2004 0 L. Joskowics

Counting sort

Input: n integer numbers in the range $[0 . . k]$ where k is an integer and $k=O(n)$.
The idea: determine for each input element x its rank: the number of elements less than x.
Once we know the rank r of x, we can place it in position $r+1$
Example: if there are 6 elements smaller than 17, then we can place 17 in the $7^{\text {th }}$ position.
Repetitions: when there are several elements with the same value, locate them one after the other in the order in which they appear in the input \rightarrow this is called stable sorting,

Datat Stucuruses, Spring 20040 L. Jostowicr

Linear time sorting

- With more information (or assumptions) about the input, we can do better than comparison sorting. Consider sorting integers.
- Additional information/assumption:
- Integer numbers in the range $[0 . . k]$ where $k=O(n)$.
- Real numbers in the range $[0,1)$ distributed uniformly
- Three algorithms:
- Counting-Sort
- Radix-Sort
- Bucket-Sort

Counting sort: intuition (1)

For each $A[i]$, count the number of elements \leq to it. This rank of $\mathrm{A}[i]$ is the index indicating where it goes

When there are no repetitions and $n=k$, $\operatorname{Rank}[A[i]]=A[i]$ and $B[\operatorname{Rank}[A[i]] \leftarrow A[i]$

Counting sort: intuition (2)

Counting sort: intuition (3)

When $n>k$ or there are repetitions, place them one after the other in the order in which they appear in the input and adjust the index by one \rightarrow this is called stable sorting

Counting sort

Counting-Sort (A, B, k)

for $i \leftarrow 0$ to k do $C[i] \leftarrow 0$

A[1..n] is the input array B [1..n] is the output array
for $j \leftarrow 1$ to length $[A]$ $C[0 . . k]$ is a counting array do $C[A[j]] \leftarrow C[A[j]]+1$
/* now C contains the number of elements equal to i
for $i \leftarrow 1$ to k
do $C[i] \leftarrow C[i]+C[i-1]$
$I *$ now C contains the number of elements \leq to i
for $j \leftarrow$ length $[A]$ downto 1
do $B[C[A[j]]] \leftarrow A[j] \quad / *$ place element
$\quad C[A[j]] \leftarrow C[A[j]]-1 \quad / *$ reduce by one

Counting sort example (1)

Counting sort example (2)

$\boldsymbol{A}=$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{3}$ |

$C=$| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | 6 | 7 | 8 |

$C=$| | 2 | 4 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Counting sort example (3)

$\boldsymbol{A}=$| | | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{3}$ |

$C=$| 2 | 2 | 4 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\boldsymbol{B}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{0}$ | | | | 3 | 3 | |
| 0 | 1 | 2 | 3 | 4 | 5 | | |

$C=$| 1 | 2 | 4 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Counting sort: complexity analysis

- for loop in lines $1-2$ takes $\Theta(k)$
- for loop in lines 3-4 takes $\Theta(n)$
- for loop in lines 6-7 takes $\Theta(k)$
- for loop in lines 9-11 takes $\Theta(n)$
- Total time is thus $\Theta(n+k)$
- Since $k=O(n), T(\mathrm{n})=\Theta(n)$ and $S(\mathrm{n})=\Theta(n)$ \rightarrow the algorithm is optimal!!
- This does not work if we do not assume $k=O(n)$. Wasteful if $k \gg n$ and is not sorting in place.

Radix sort

Input: n integer numbers with d digits
The idea: look at one digit at a time and sort the numbers according to this digit only. Start from the least significant digit, working up to the most significant one. Since there are only 10 different digits $0 . .9$, there are only 10 places used for each column.
For example, we can use Counting-Sort for each call, with $k=9$. In general, $k \ll n$, so $k=\mathrm{O}(n)$.
At the end, the numbers will be sorted!!

Radix-Sort

$\underline{\text { Radix-Sort }}(A, d)$

1. for $i \leftarrow 1$ to d
2. do use a stable sort to sort array A on digit d

Notes:

- Complexity: $T(n)=\Theta(d(n+k)) \rightarrow \Theta(n)$ for constant d and $k=\mathrm{O}(1)$
- Every digit is in the range [0.. $k-1]$ and $k=\mathrm{O}(1)$
- The sorting MUST be a stable sort, otherwise it fails!
- This algorithm was invented to sort computer punched cards!
Datas Stucutures, Spring 20040 L L Joskowicz

Proof of correctness of Radix-Sort (1)

We want to prove that Radix-Sort is a correct stable sorting algorithm

Proof: by induction on the number of digits d.
Let x be a d-digit number. Define x_{l} as the number formed by the last l digits of x, for $l \leq d$.
For example, $x=2345$ then $x_{I}=5, x_{2}=45, x_{3}=345 \ldots$

Base: for $d=1$, Radix-Sort uses a stable sorting algorithm to sort n numbers in the range [0..9]. So if $x_{1}<y_{1}, x$ will appear before y. When $x_{1}=y_{1}$, the positions of x and y will not be changed since stable sorting was used.
Data Structurss, Spring 2004 © L. Joskowicz

Assume now $x_{i}=y_{i}$.

All the digits that have been sorted are the same.
By induction, x and y remain in the same order they appeared before the ith iteration, and snde the ith iteration is stable, they will remain so after the additional iteration.
This completes the proof!

Proof of correctness of Radix-Sort (3)

This

Proof of correctness of Radix-Sort (2)

General case: assume Radix sorting is correct after $i-1<d$ passes, the numbers $x_{\mathrm{i}-1}$ are sorted in stable sort order
Assume $x_{\mathrm{i}}<y_{\mathrm{i}}$. There are two cases:

1. The $i^{\text {th }}$ digit of $x<i^{\text {th }}$ digit of y Radix-Sort will put x before y, so it is OK.
2. The $i^{\text {th }}$ digit of $x=i^{\text {th }}$ digit of y

By the induction hypothesis, $x_{\mathrm{i}-1}<y_{\mathrm{i}-1}$, so x appears before y before the iteration and since the $i^{\text {th }}$ digits are the same, their order will not change in the new iteration, so they will remain in the same order.

Properties of Radix-Sort

- Given $n b$-bit numbers and a number $r \leq b$. RadixSort will take $\Theta\left((b / r)\left(n+2^{r}\right)\right)$
- Take $d=b / r$ digits of r bits each in the range [$0 . .2^{r}-1$], so we can use Counting-Sort with $k=2^{r}-1$. Each pass of Counting-Sort takes $\Theta(n+k)$ so we get $\Theta\left(n+2^{r}\right)$ and there are d passes, so the total running time is $\Theta\left(d\left(n+2^{r}\right)\right)$, or $\Theta\left((b / r)\left(n+2^{r}\right)\right)$.
- For given values of n and b, we can choose $r \leq b$ to be optimum \rightarrow minimize $\Theta\left((b / r)\left(n+2^{r}\right)\right)$.
- Choose $r=\lg n$ to get $\Theta(n)$.

Bucket sort

Input: n real numbers in the interval [0..1) uniformly distributed (numbers have equal probability)
The idea: Divide the interval [0..1) into n buckets $0,1 / n, 2 / n . \ldots(n-1) / n$. Put each element a_{i} into its matching bucket $1 / i \leq a_{i} \leq 1 /(i+1)$. Since the numbers are uniformly distributed, not too many elements will be placed in each bucket. If we insert them in order (using Insertion-Sort), the buckets and the elements in them will always be in sorted order.

Bucket-Sort

Bucket-Sort(A)
$n \leftarrow \operatorname{length}(A)$
for $i \leftarrow 0$ to n
3. do insert $A[i]$ into list $B[f \operatorname{loor}(n A[i])]$
for $i \leftarrow 0$ to $n-1$
5. do Insertion-Sort($B[i]$)
6. Concatenate lists $B[0], B[1], \ldots B[n-l]$ in order
$A[i]$ is the input array $B[0], B[1], \ldots B[n-l]$ are the bucket lists

Summary

With additional assumptions, we can sort n elements in optimal time and space $\Omega(n)$.

| .78 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .17 |
| .39 |
| .26 |
| .72 |
| .94 |
| .21 |
| .12 |
| .23 |
| .68 |

Bucket-Sort: complexity analysis

- All lines except line 5 (Insertion-Sort) take $O(n)$ in the worst case.
- In the worst case, $O(n)$ numbers will end up in the same bucket, so in the worst case, it will take $O\left(n^{2}\right)$ time.
- However, in the average case, only a constant number of elements will fall in each bucket, so it will take $O(n)$ (see proof in book).
- Extensions: use a different indexing scheme to distribute the numbers (hashing - later in the course!)

Summary
With additional assumptions, we can sort n
elements in optimal time and space $\Omega(n)$.

