Data Structures— LECTURE 5

Linear-time sorting

* Can we do better than comparison sorting?
* Linear-time sorting algorithms:

— Counting-Sort

— Radix-Sort

— Bucket-sort

Data Structures, Spring 2004 © L. Joskowicz

Linear time sorting

» With more information (or assumptions) about
the input, we can do better than comparison
sorting. Consider sorting integers.

 Additional information/assumption:

— Integer numbers in therange [0..K] where k = O(n).

— Real numbersin the range [0,1) distributed uniformly
¢ Three algorithms:

— Counting-Sort

— Radix-Sort

— Bucket-Sort

Data Structures, Spring 2004 © L. Joskowicz

Counting sort
Input: n integer numbers in the range[0..K] wherekisan
integer and k = O(n).
Theidea: determine for each input element x itsrank: the
number of elements less than x.
Once we know the rank r of x, we can placeit in position
r+l
Example: if there are 6 elements smaller than 17, then we
can place 17 in the 7t position.
Repetitions: when there are several elements with the same
value, locate them one after the other in the order in which
they appear in theinput > thisis called stable sorting,

Data Structures, Spring 2004 © L. Joskowicz

Counting sort: intuition (1)

a= @ LI IS)
-
Rank = 16\9@0@

For each Al[i], count
the number of
elements < toit. This
rank of A[i] is the index
indicating where it goes

When there are no
n repetitionsand n = k
Rank[A[i]] = A[i] and
B[Rank[A[i]] € AJi]

Data Structures, Spring 2004 © L. Joskowicz

Counting sort: intuition (2)
A= ‘9]@@5. When there are no
repetitionsand n < k,
some cellsare
unused, but the
indexing still works.

Data Structures, Spring 2004 © L. Joskowicz

Counting sort: intuition (3)

A4@Q@@@

When n > k or there
are repetitions, place
them one after the other
in the order in which
they appear in the input
and adjust the index by
’ one - thisiscalled

B= ‘1 ‘2 ‘2 ‘3‘4 ‘ stable sorting

Data Structures, Spring 2004 © L. Joskowicz

Counting sort

Counting-Sort(A, B, k)
fori € Otok

doC[i] <0
for j € 1tolength[A]

do C[Aj]] < CIA[j]] +1
/* now C contains the number of elementsequal to i
fori € 1tok

do Cl[i] € C[i] +C[i -1]
/* now C contains the number of elements<toi
for j € length[A] downto 1
10. doB[CIA[]]]] € Ali]
1L CIAU € CIAl -1

© o NOOOAWDNE

/* place element
* reduce by one

A[l..n] istheinput array
B[1..n] isthe output array
C [0..K] isa counting array

Counting sort example (1)

1 2 3 4 5 6 7 8 n=8
a=l2fsfafo2s]of8) k=6

0 1.2 345 CIA[]] < CIA[]] +1
c=12]0]2 3 |o]| after line .

o 1 2 3 5

<l il ls | S
1 2 3 4 7

B=| | | | [| [B) | sicraim <A

0 1 2 3 4 5
c=[2]2]s (@7 [8]

Data Structures, Spring 2004 © L. Joskowicz

after line 11

ClA[j]] € C[A[j]] -1

Counting sort example (2)
1 2 3 4 5 6 7 8
a=[2]5]3 Jo [2]5 (03]
0 1 4 5

C=(2)2 (4 |6 |7 |8

Counting sort example (3)
1 2 3 4 5 6 7 8
a=[2]5[3]o[2[3]o 3

01 2 3 5
c=1|2]2 |4 (6)7 [s
1 2 3 4

1 2\8 4 5 6 7 8 N 7 8

s=| (O | | [[3]] s=| [o| | | [8fs] |
0 1 2 3 4 5 0 1 2 3 4 5

c= @lz]a 6 7] c=1[2]s {7 [
Counting sort: complexity analysis Radix sort

o for loop inlines 1—2 takes ©(k)

* for loop in lines 3—4 takes ®(n)

« for loop inlines 6—7 takes ®(k)

o for loop in lines 9 —11 takes ®(n)

* Tota timeisthus ®(n+k)

» Sincek = 0O(n), T(n) = ®(n) and S(n) = O(n)
- the algorithm is optimal!!

 This does not work if we do not assume k = O(n).
Wasteful if k >>nand isnot sorting in place.

Data Structures, Spring 2004 © L. Joskowicz

Input: n integer numbers with d digits

Theidea: look at one digit at atime and sort the
numbers according to this digit only. Start from
the least significant digit, working up to the most
significant one. Since there are only 10 different
digits 0..9, there are only 10 places used for each
column.

For example, we can use Counting-Sort for each
call, with k=9. In general, k << n, so k = O(n).
At the end, the numbers will be sorted!!

Data Structures, Spring 2004 © L. Joskowicz

Radix sort: example

329 120 °p P9
497 355 3p9 365
657 436 486 486
830 [=—=>| Aqy |[=—>{gB9 ——>|4b57
436 a5y 365 6b7
720 329 a5y 7R0
3% 439 467 889
— s LI] L]

Data Structures, Spring 2004 © L. Joskowicz 13

Radix-Sort
Radix-Sort(A, d)
1 fori< 1tod

2. do useastable sort to sort array A on digit d
Notes:
« Complexity: T(n) = ®(d(n+Kk)) = ©(n) for
constant d and k = O(1)
* Every digitisintherange[0..k—1] and k = O(1)
e The sorting MUST be a stable sort, otherwise it fails!

¢ Thisalgorithm was invented to sort computer
punched cards!

Data Structures, Spring 2004 © L. Joskowicz 14

Proof of correctness of Radix-Sort (1)

We want to prove that Radix-Sort is a correct stable
sorting algorithm

Proof: by induction on the number of digits d.
Let x be a d-digit number. Define x, as the number formed
by the last | digits of x, for I <d.
For example, X = 2345 then x,;= 5, x,= 45, Xg= 345...

Base: for d = 1, Radix-Sort uses a stable sorting algorithm to
sort n numbersin the range [0..9]. Soif X, <y,, x will appear
beforey. When x, = y,, the positions of x and y will not be
changed since stable sorting was used.

Data Structures, Spring 2004 © L. Joskowicz 15

Proof of correctness of Radix-Sort (2)

General case: assume Radix sorting is correct after i -1 <d

passes, the numbers X;_; are sorted in stable sort order
Assume X; <'Y;. There are two cases:
1. Theith digit of x < ith digit of y
Radix-Sort will put x beforey, soitis OK.
2. Theith digit of x =it digit of y
By the induction hypothesis, X;_; < Y;_;, SO X appears
beforey before the iteration and since the ith digits are
the same, their order will not change in the new iteration,
so they will remain in the same order.

Data Structures, Spring 2004 © L. Joskowicz 16

Proof of correctness of Radix-Sort (3)

Assume now X; =Y.
All the digits that have been sorted are the same.

By induction, x and y remain in the same order they
appeared before theith iteration, and snde theith iteration
is stable, they will remain so after the additional iteration.

This completes the proof!

Data Structures, Spring 2004 © L. Joskowicz 17

Properties of Radix-Sort

* Given n b-bit numbers and a number r < b. Radix-
Sort will take ®((b/r)(n+2"))

» Take d=b/r digits of r bits each in the range
[0..2—1], so we can use Counting-Sort with
k = 2"—1. Each pass of Counting-Sort takes ®(n+Kk)
so we get O(n+2") and there are d passes, so the
total running time is ®(d(n+2")), or ®((b/r)(n+27).

« For given values of n and b, we can chooser <bto
be optimum = minimize ©((b/r)(n+2")).

e Chooser =Ignto get ®(n).

Data Structures, Spring 2004 © L. Joskowicz 18

Bucket sort

Input: n real numbersin theinterval [0..1) uniformly
distributed (numbers have equal probability)

Theidea: Divide theinterval [0..1) into n buckets
0, I/n, 2/n. ... (n-1)/n. Put each element & into its
matching bucket 1/i < a < 1/(i+1). Since the
numbers are uniformly distributed, not too many
elements will be placed in each bucket. If we insert
them in order (using Insertion-Sort), the buckets
and the elementsin them will always be in sorted
order.

Data Structures, Spring 2004 © L. Joskowicz 19

Bucket sort: example

78| 0 12
17 1] 17
39 |2 |[21 2326 21
26 ‘13 [ze] 23
72 4] 26
94 5 39
.21 6 |68] 68
12 7 |[.72] 78] 72
23 |/ 8 78
68 B3 94

Data Structures, Spring 2004 © L. Joskowicz 20

Bucket-Sort

Ali] istheinput array
1. n <€ length(A) B[Q], B[1], ... B[n-1]
2. fori€Oton are the bucket lists
3 doinsert A[i] into list B[floor(nA[i])]
4. fori<0Oton-1
5
6

Bucket-Sort(A)

do Insertion-Sort(BJ[i])
Concatenate lists B[0], B[1], ... B[n—1] in order

Data Structures, Spring 2004 © L. Joskowicz 21

Bucket-Sort: complexity analysis

All lines except line 5 (Insertion-Sort) take O(n) in
the worst case.

In the worst case, O(n) numberswill end up in the
same bucket, so in the worst case, it will take O(n?)
time.

However, in the average case, only a constant
number of elements will fall in each bucket, so it will
take O(n) (see proof in book).

Extensions: use a different indexing scheme to
distribute the numbers (hashing — later in the
coursel)

Data Structures, Spring 2004 © L. Joskowicz 2

Summary

With additional assumptions, we can sort n
elementsin optimal time and space Q(n).

Data Structures, Spring 2004 © L. Joskowicz 23

