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Data Structures – LECTURE 4 

Comparison-based sorting

• Why sorting?

• Formal analysis of Quick-Sort

• Comparison sorting: lower bound 

• Summary of comparison-sorting algorithms
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Sorting
Definition

Input: A sequence of n numbers A = (a1, a2, …, an)
Output: A permutation (reordering) 

(a1,…, a’ n)  such that  a’ 1 
�

…
�

a’ n

Why sorting?
– Fundamental problem in Computer Science
– Many algorithms use it as a key subroutine
– Wide variety with a rich set of techniques 
– Known lower bounds, asymptotically optimal
– Many programming and implementation issues come up!  
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Sorting algorithms
Two types of sorting algorithms:
1. Comparison sorting: the basic operation is the 

comparison between two elements:    ai
�

aj

– Merge-Sort, Insertion-Sort, Bubble-Sort
– Quick-Sort: analysis with recurrence equations
– Lower bounds for comparison sorting:                     

T(n) = � (n lg n) and S(n) = � (n) 
– Heap Sort with priority queues  (later, after trees)

2. Non comparison-based: does use comparisons!
– Requires additional assumptions
– Sorting in linear time: T(n) = � (n) and S(n) = � (n)  
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Quick-Sort
Uses a “Divide-and-Conquer” strategy:

– Split A[Left..Right] into A[Left..Middle –1 ] and 
A[Middle+1..Right] such that the elements of A[Left..Middle –1] 
are smaller or equal than those in A[Middle+1..Right]

– Sort each part recursively

Quick-Sort(A, Left, Right)

1. if Left < Right then do

2. Middle � Partition(A, Left, Right)

3. Quick-Sort(A, Left, Middle –1)

4. Quick-Sort(A, Middle +1, Right)
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Partition
Rearranges the array and returns the partitioning index
The partition is the leftmost element larger than the last

Partition(A, Left, Right)
1. Pivot � A[Right] 
2. i � Left – 1
3. for j �� �� Left to Right–1
4. do if (A[j] � Pivot)
5. then i � i + 1  
6. Exchange(A[i], A[j]) 
7. Exchange (A[i+1], A[Right]) 
8. return i +1
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Example (1)
1st iteration

L ji R

Pivot
2 78 1 3 5 6 4

L i j

2 78 1 3 5 6 4
R

L i j

2 78 1 3 5 6 4
R

L i j
2 78 1 3 5 6 4

R

2 swapped with itself
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Example (2)

L R

Pivot
2 71 8 3 5 6 4

ji

L j

2 31 8 7 5 6 4

i R

L j

2 31 8 7 5 6 4

i R

L

2 31 8 7 5 6 4

i R

1 and 8 swapped

3 and 7 swapped
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Example (3)

Pivot

L

2 31 4 7 5 6 8

i R

Left list Right list

2nd iteration

Unrestricted
list

L

2 31 4 7 5 6 8

i R

Left list 
A[i] � Pivot

Right list
A[i]  > Pivot

general pattern
Pivot

j
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Quick-Sort complexity
The complexity of Quick-Sort depends on whether 
the partitioning is balanced or unbalanced, which 
depends on which elements are used for partitioning

1. Unbalanced partition: there is no partition, so the 
sub-problems are of size n – 1  and 0.

2. Perfect partition: the partition is always in the 
middle, so the sub-problems are both of size � n/2.

3. Balanced partition: the partition is somewhere in the 
middle, so the sub-problems are of size n – k and k.

Let us study each case separately!
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The recurrence equation is:

T(n) = T(n – 1) + T(0) + 
�

(n)
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Perfect partition

� � � � � �nnTnT ��� 2/2

� � � �nnnT lg��

The recurrence equation is:

T(n) � T(n/2) + T(n/2) + 
�

(n)
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General case
The recurrence equation is:

� � � � � �nqnTqTnT ������ 1)(

� � � �� � � �nqnTqTnT
nq

������
��

1)(max
0

Average case is somewhere between unbalanced 

and perfect partition:

� � � � )(lg 2nnTnn ����

which one dominates?



Data Structures, Spring 2004 © L. Joskowicz
� �

Example: 9-to-1 proportional split

• Suppose that the partitioning algorithm always 
produces a 9-to-1 proportional split. 

• The complexity is:
T(n) = T(n/10) + T(9n/10) + 

�
(n)

• At every level, the boundary condition is reached at 
depth log10 n with cost 

�
(n). The recursion 

terminates at depth log10/9 n
• Therefore, the complexity is T(n) = O(n lg n)
• In fact, this is true for any proportional split!
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Worst-case analysis: proof (1)

Claim:
Proof:  
Base of induction:True for n=1. 
Induction step: Assume for n < n’ , and prove for n’ .

� � � �� � � �

''2)'(2
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� � � �� � � �nqnTqTnT
nq
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1

� � � �22 nOcnnT ��
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Worst-case analysis: proof (2)
To prove the claim, we need to show that this is 
smaller than             , or equivalently that:

Since q(n’ -q) is always greater than n/2, as can be 
easily verified by checking the two cases:

or

we can pick c such that the inequality holds.

)'(2' qncqdn ��

2)'(nc

2
nq �

2
nqn ��
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Average case complexity
• We must first define what is an average case
• The behavior is determined by the relative 

ordering of the elements, not by the elements 
themselves.

• Thus, we are interested in the average of all 
permutations, where each permutation is equally 
likely to appear (uniformly random input).

• The average complexity is the number of steps 
averaged over a uniformly random input.

• The complexity is determined by the number of 
“bad splits” and the number of “good splits” .

Data Structures, Spring 2004 © L. Joskowicz
� �

Bad splits and good splits -- intuition

n

0 n –1

(n –1)/2 –1 (n –1)/2

Alternate bad split Good split

�
(n)

�
(n)

In both cases, the complexity is � (n). Thus 
the bad split was “ absorbed” by a good one!

n

(n –1)/2(n –1)/2
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Randomization and average complexity
• One way of studying the average case analysis is to 

analyze the performance of a randomized version of 
the algorithm.

• In the randomized version, choices are made with a 
uniform probability, and this mimicks input 
generality – essentially, we reduce the chances of 
hitting the worst input!

• Randomization ensures that the performance is good 
without making assumptions on the input

• Randomness is one of the most important concepts 
and tools in modern Computer Science!
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Randomized Quick-Sort
• Randomized Complexity: The number of steps, (for 

the WORST input !) averaged over the random 
choices of the algorithm. 

• For Quick-Sort, the pivot determines the number of 
good and bad splits

• We chose the leftmost element to select a pivot. 
What if we choose instead any element randomly?

• In Partition, use Pivot � A[Random(Left,Right)]
instead of Pivot � A[Left]

• Note that the algorithm remains correct!
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Randomized complexity
• Randomized-case recurrence:

The pivot is equally likely to be in any place, and since there 
are n places, each case occurs in 1/n of the inputs. 

We get:

• This is  “Recurrence with Full History” , since it depends on 
all previous sizes of the problem.  

It can be proven, using methods which we will not get into 
this time, that the solution for this recurrence satisfies: 
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Sorting with comparisons
• The basic operation of all the sorting algorithms we 

have seen so far is the comparison between two 
elements:    ai

�
aj

• The sorted order they determine is based only on 
comparisons between the input elements! 

• We would like to prove that any comparison sorting 
algorithm must make � (n lg n) comparisons in the 
worst case to sort n elements (lower bound).

• Sorting without comparisons takes � (n) in the worst 
case, but we must make assumptions about the input.
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Comparison sorting – lower bound 

• We want to prove a lower bound (� ) on the worst-case 
complexity sorting for ANY sorting algorithm that uses 
comparisons.

• We will use the decision tree model to evaluate the 
number of comparisons that are needed in the worst case. 

• Every algorithm � has its own decision tree � , depending 
on how it does the comparisons between elements. 

• The length of the longest path from the root to the leaves 
in this tree � will determine the maximum number of 
comparisons that the algorithm must perform.
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Decision trees

• A decision tree is a full binary tree that represents 
the comparisons between elements that are 
performed by a particular algorithm. 

• The tree has internal nodes, leaves, and branches: 
– Internal node: two indices i:j for 1 � i, j � n
–Leaf: a permutation of the input � (1), … � (n)
–Branches: result of a comparison 

ai � aj (left) or ai > aj (right)
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Decision tree for 3 elements
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Paths in decision trees
The execution of sorting algorithm � on input I 
corresponds to tracing a path in � from the root to a 
leaf

• Each internal node is associated with a yes/no
question, regarding the input, and the two edges that 
are coming out of it are associated with one of the 
two possible answers to the question. 

• The leaves are associated with one possible outcome 
of the tree, and no edge is coming out of them.

• At the leaf, the permutation � is the one that sorts 
the elements!
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Decision tree for 3 elements

� (A)=(6,7,9)

9 > 6

(7,9,6)

(7,9,6)

(7,9,6)

7 
�

9

7 > 6

Longest path: 3
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Decision tree computation

• The computation for an input starts at the root, 
and progresses down the tree from one node to 
the next according to the answers to the questions 
at the nodes. 

• The computation ends when we get to a leaf. 
• ANY correct algorithm MUST be able to produce 

each permutation of the input.
• There are at most n! permutations and they must 

all appear in the leafs of the tree.
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Worst case complexity
• The worst-case number of comparisons is the length 

of the longest root-to-leaf path in the decision tree.

• The lower bound on the length of the longest path for 
a given algorithm gives a lower bound on the worst-
case number of comparisons the algorithm requires.

• Thus, finding a lower bound on the length of the 
longest path for a decision tree based on comparisons 
provided a lower bound on the worst case complexity 
of comparison based sorting algorithms!
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Comparison-based sorting algorithms
• Any comparison-based sorting  algorithm can be 

described by a decision tree � .
• The number of leaves in the tree of any comparison 

based sorting algorithm must be at least n!, since 
the algorithm must give a correct answer to every 
possible input, and there are n! possible answers. 

• Why “at least”? Because there might be more than 
one leaf with the same answer, corresponding to 
different ways the algorithm treats different inputs.
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Length of the longest path (1)

• n! different possible answers. 
• Consider all trees with n! leaves. 
• In each one, consider the longest path. Let d be the depth 

(height) of the tree.
• The minimum length of such longest path must be such 

that n! � 2d

• Therefore, log (n!) � log (2d) = d
• Quick check:    (n/2)(n/2) � n! � nn

(n/2) log (n/2) � log (n!) � n log n
log (n!) = � (n log n) 
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Length of the longest path (2)
Claim: 

Proof:

On the other hand: 

This is the lower bound on the number of comparisons 
in any comparison-based sorting algorithm.
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for n � 2
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Complexity of comparison-sorting 
algorithms

O(n)

O(n lg n)

O(n)

O(n)

Space

O(n2 )O(n2)O(n)O(n2)Bubble-Sort

O(n2)O(n2)O(n)O(n2)Insertion-Sort

O(n lg n)O(n lg n)O(n lg n)O(n2)Quick-Sort

---O(n lg n)O(n lg n)O(n lg n)Merge-Sort

Random. 
case

Average 
case

Best caseWorst 

case

Lower bounds for comparison sorting is T(n) = � (n lg n)
and S(n) = � (n) for worst and average case, deterministic 
and randomized algorithms. 


