
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 4

Comparison-based sorting

• Why sorting?

• Formal analysis of Quick-Sort

• Comparison sorting: lower bound

• Summary of comparison-sorting algorithms

Data Structures, Spring 2004 © L. Joskowicz �

Sorting
Definition

Input: A sequence of n numbers A = (a1, a2, …, an)
Output: A permutation (reordering)

(a1,…, a’ n) such that a’ 1
�

…
�

a’ n

Why sorting?
– Fundamental problem in Computer Science
– Many algorithms use it as a key subroutine
– Wide variety with a rich set of techniques
– Known lower bounds, asymptotically optimal
– Many programming and implementation issues come up!

Data Structures, Spring 2004 © L. Joskowicz �

Sorting algorithms
Two types of sorting algorithms:
1. Comparison sorting: the basic operation is the

comparison between two elements: ai
�

aj

– Merge-Sort, Insertion-Sort, Bubble-Sort
– Quick-Sort: analysis with recurrence equations
– Lower bounds for comparison sorting:

T(n) = � (n lg n) and S(n) = � (n)
– Heap Sort with priority queues (later, after trees)

2. Non comparison-based: does use comparisons!
– Requires additional assumptions
– Sorting in linear time: T(n) = � (n) and S(n) = � (n)

Data Structures, Spring 2004 © L. Joskowicz �

Quick-Sort
Uses a “Divide-and-Conquer” strategy:

– Split A[Left..Right] into A[Left..Middle –1] and
A[Middle+1..Right] such that the elements of A[Left..Middle –1]
are smaller or equal than those in A[Middle+1..Right]

– Sort each part recursively

Quick-Sort(A, Left, Right)

1. if Left < Right then do

2. Middle � Partition(A, Left, Right)

3. Quick-Sort(A, Left, Middle –1)

4. Quick-Sort(A, Middle +1, Right)

Data Structures, Spring 2004 © L. Joskowicz �

Partition
Rearranges the array and returns the partitioning index
The partition is the leftmost element larger than the last

Partition(A, Left, Right)
1. Pivot � A[Right]
2. i � Left – 1
3. for j �� �� Left to Right–1
4. do if (A[j] � Pivot)
5. then i � i + 1
6. Exchange(A[i], A[j])
7. Exchange (A[i+1], A[Right])
8. return i +1

Data Structures, Spring 2004 © L. Joskowicz 	

Example (1)
1st iteration

L ji R

Pivot
2 78 1 3 5 6 4

L i j

2 78 1 3 5 6 4
R

L i j

2 78 1 3 5 6 4
R

L i j
2 78 1 3 5 6 4

R

2 swapped with itself

Data Structures, Spring 2004 © L. Joskowicz �

Example (2)

L R

Pivot
2 71 8 3 5 6 4

ji

L j

2 31 8 7 5 6 4

i R

L j

2 31 8 7 5 6 4

i R

L

2 31 8 7 5 6 4

i R

1 and 8 swapped

3 and 7 swapped

Data Structures, Spring 2004 © L. Joskowicz �

Example (3)

Pivot

L

2 31 4 7 5 6 8

i R

Left list Right list

2nd iteration

Unrestricted
list

L

2 31 4 7 5 6 8

i R

Left list
A[i] � Pivot

Right list
A[i] > Pivot

general pattern
Pivot

j

Data Structures, Spring 2004 © L. Joskowicz �

Quick-Sort complexity
The complexity of Quick-Sort depends on whether
the partitioning is balanced or unbalanced, which
depends on which elements are used for partitioning

1. Unbalanced partition: there is no partition, so the
sub-problems are of size n – 1 and 0.

2. Perfect partition: the partition is always in the
middle, so the sub-problems are both of size � n/2.

3. Balanced partition: the partition is somewhere in the
middle, so the sub-problems are of size n – k and k.

Let us study each case separately!
Data Structures, Spring 2004 © L. Joskowicz

� �

Unbalanced partition

� � � � � �

� �2

1

1

)(

1

n

k

k

nnTnT

n

k

n

k

��

�
�

�
�
	

��

��

����

�

�

The recurrence equation is:

T(n) = T(n – 1) + T(0) +
�

(n)

Data Structures, Spring 2004 © L. Joskowicz
� �

Perfect partition

� � � � � �nnTnT ��� 2/2

� � � �nnnT lg��

The recurrence equation is:

T(n) � T(n/2) + T(n/2) +
�

(n)

Data Structures, Spring 2004 © L. Joskowicz
� �

General case
The recurrence equation is:

� � � � � �nqnTqTnT ������ 1)(

� � � �� � � �nqnTqTnT
nq

������
��

1)(max
0

Average case is somewhere between unbalanced

and perfect partition:

� � � �)(lg 2nnTnn ����

which one dominates?

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: 9-to-1 proportional split

• Suppose that the partitioning algorithm always
produces a 9-to-1 proportional split.

• The complexity is:
T(n) = T(n/10) + T(9n/10) +

�
(n)

• At every level, the boundary condition is reached at
depth log10 n with cost

�
(n). The recursion

terminates at depth log10/9 n
• Therefore, the complexity is T(n) = O(n lg n)
• In fact, this is true for any proportional split!

Data Structures, Spring 2004 © L. Joskowicz
� �

Worst-case analysis: proof (1)

Claim:
Proof:
Base of induction:True for n=1.
Induction step: Assume for n < n’ , and prove for n’ .

� � � �� � � �

''2)'(2

')'(

'')(max'

22

22

'1

dncqnnccq

dnqnccq

nqnTqTnT
nq

����

����

�����
��

� � � �� � � �nqnTqTnT
nq

�����
��

)(max
1

� � � �22 nOcnnT ��

Data Structures, Spring 2004 © L. Joskowicz
� �

Worst-case analysis: proof (2)
To prove the claim, we need to show that this is
smaller than , or equivalently that:

Since q(n’ -q) is always greater than n/2, as can be
easily verified by checking the two cases:

or

we can pick c such that the inequality holds.

)'(2' qncqdn ��

2)'(nc

2
nq �

2
nqn ��

Data Structures, Spring 2004 © L. Joskowicz
� 	

Average case complexity
• We must first define what is an average case
• The behavior is determined by the relative

ordering of the elements, not by the elements
themselves.

• Thus, we are interested in the average of all
permutations, where each permutation is equally
likely to appear (uniformly random input).

• The average complexity is the number of steps
averaged over a uniformly random input.

• The complexity is determined by the number of
“bad splits” and the number of “good splits” .

Data Structures, Spring 2004 © L. Joskowicz
� �

Bad splits and good splits -- intuition

n

0 n –1

(n –1)/2 –1 (n –1)/2

Alternate bad split Good split

�
(n)

�
(n)

In both cases, the complexity is � (n). Thus
the bad split was “ absorbed” by a good one!

n

(n –1)/2(n –1)/2

Data Structures, Spring 2004 © L. Joskowicz
� �

Randomization and average complexity
• One way of studying the average case analysis is to

analyze the performance of a randomized version of
the algorithm.

• In the randomized version, choices are made with a
uniform probability, and this mimicks input
generality – essentially, we reduce the chances of
hitting the worst input!

• Randomization ensures that the performance is good
without making assumptions on the input

• Randomness is one of the most important concepts
and tools in modern Computer Science!

Data Structures, Spring 2004 © L. Joskowicz
� �

Randomized Quick-Sort
• Randomized Complexity: The number of steps, (for

the WORST input !) averaged over the random
choices of the algorithm.

• For Quick-Sort, the pivot determines the number of
good and bad splits

• We chose the leftmost element to select a pivot.
What if we choose instead any element randomly?

• In Partition, use Pivot � A[Random(Left,Right)]
instead of Pivot � A[Left]

• Note that the algorithm remains correct!

Data Structures, Spring 2004 © L. Joskowicz � �

Randomized complexity
• Randomized-case recurrence:

The pivot is equally likely to be in any place, and since there
are n places, each case occurs in 1/n of the inputs.

We get:

• This is “Recurrence with Full History” , since it depends on
all previous sizes of the problem.

It can be proven, using methods which we will not get into
this time, that the solution for this recurrence satisfies:

� � � �� � � �nqnTqT
n

nT
n

q

����
�

�
��
	

���

�

�

1

1

)(
1

� �)lg(lg nnOncnnT ��

Data Structures, Spring 2004 © L. Joskowicz � �

Sorting with comparisons
• The basic operation of all the sorting algorithms we

have seen so far is the comparison between two
elements: ai

�
aj

• The sorted order they determine is based only on
comparisons between the input elements!

• We would like to prove that any comparison sorting
algorithm must make � (n lg n) comparisons in the
worst case to sort n elements (lower bound).

• Sorting without comparisons takes � (n) in the worst
case, but we must make assumptions about the input.

Data Structures, Spring 2004 © L. Joskowicz � �

Comparison sorting – lower bound

• We want to prove a lower bound (�) on the worst-case
complexity sorting for ANY sorting algorithm that uses
comparisons.

• We will use the decision tree model to evaluate the
number of comparisons that are needed in the worst case.

• Every algorithm � has its own decision tree � , depending
on how it does the comparisons between elements.

• The length of the longest path from the root to the leaves
in this tree � will determine the maximum number of
comparisons that the algorithm must perform.

Data Structures, Spring 2004 © L. Joskowicz � �

Decision trees

• A decision tree is a full binary tree that represents
the comparisons between elements that are
performed by a particular algorithm.

• The tree has internal nodes, leaves, and branches:
– Internal node: two indices i:j for 1 � i, j � n
–Leaf: a permutation of the input � (1), … � (n)
–Branches: result of a comparison

ai � aj (left) or ai > aj (right)

Data Structures, Spring 2004 © L. Joskowicz � �

Decision tree for 3 elements

Data Structures, Spring 2004 © L. Joskowicz � �

Paths in decision trees
The execution of sorting algorithm � on input I
corresponds to tracing a path in � from the root to a
leaf

• Each internal node is associated with a yes/no
question, regarding the input, and the two edges that
are coming out of it are associated with one of the
two possible answers to the question.

• The leaves are associated with one possible outcome
of the tree, and no edge is coming out of them.

• At the leaf, the permutation � is the one that sorts
the elements!

Data Structures, Spring 2004 © L. Joskowicz � 	

Decision tree for 3 elements

� (A)=(6,7,9)

9 > 6

(7,9,6)

(7,9,6)

(7,9,6)

7
�

9

7 > 6

Longest path: 3

Data Structures, Spring 2004 © L. Joskowicz � �

Decision tree computation

• The computation for an input starts at the root,
and progresses down the tree from one node to
the next according to the answers to the questions
at the nodes.

• The computation ends when we get to a leaf.
• ANY correct algorithm MUST be able to produce

each permutation of the input.
• There are at most n! permutations and they must

all appear in the leafs of the tree.

Data Structures, Spring 2004 © L. Joskowicz � �

Worst case complexity
• The worst-case number of comparisons is the length

of the longest root-to-leaf path in the decision tree.

• The lower bound on the length of the longest path for
a given algorithm gives a lower bound on the worst-
case number of comparisons the algorithm requires.

• Thus, finding a lower bound on the length of the
longest path for a decision tree based on comparisons
provided a lower bound on the worst case complexity
of comparison based sorting algorithms!

Data Structures, Spring 2004 © L. Joskowicz � �

Comparison-based sorting algorithms
• Any comparison-based sorting algorithm can be

described by a decision tree � .
• The number of leaves in the tree of any comparison

based sorting algorithm must be at least n!, since
the algorithm must give a correct answer to every
possible input, and there are n! possible answers.

• Why “at least”? Because there might be more than
one leaf with the same answer, corresponding to
different ways the algorithm treats different inputs.

Data Structures, Spring 2004 © L. Joskowicz � �

Length of the longest path (1)

• n! different possible answers.
• Consider all trees with n! leaves.
• In each one, consider the longest path. Let d be the depth

(height) of the tree.
• The minimum length of such longest path must be such

that n! � 2d

• Therefore, log (n!) � log (2d) = d
• Quick check: (n/2)(n/2) � n! � nn

(n/2) log (n/2) � log (n!) � n log n
log (n!) = � (n log n)

Data Structures, Spring 2004 © L. Joskowicz � �

Length of the longest path (2)
Claim:

Proof:

On the other hand:

This is the lower bound on the number of comparisons
in any comparison-based sorting algorithm.

))log(()!log(nnn ��

).log()log()!log(

)).log((

)log()log(

)log()log()!log(

1

222

11

2

nnin

nn

iin

n

i

nnn

i
n

n

i

n

i

n

��

��

��

��

�

�

�

��

for n � 2

Data Structures, Spring 2004 © L. Joskowicz � �

Complexity of comparison-sorting
algorithms

O(n)

O(n lg n)

O(n)

O(n)

Space

O(n2)O(n2)O(n)O(n2)Bubble-Sort

O(n2)O(n2)O(n)O(n2)Insertion-Sort

O(n lg n)O(n lg n)O(n lg n)O(n2)Quick-Sort

---O(n lg n)O(n lg n)O(n lg n)Merge-Sort

Random.
case

Average
case

Best caseWorst

case

Lower bounds for comparison sorting is T(n) = � (n lg n)
and S(n) = � (n) for worst and average case, deterministic
and randomized algorithms.

