Data Structures – LECTURE 2

Elements of complexity analysis

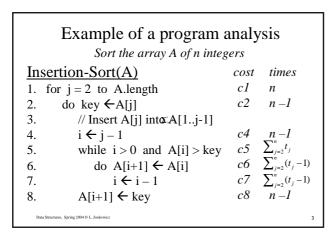
- Performance and efficiency
- Motivation: analysis of Insertion-Sort
- · Asymptotic behavior and growth rates
- Time and space complexity
- Big-Oh functions: $O(f(n)), \Omega(f(n)), \Theta(f(n))$
- Properties of Big-Oh functions

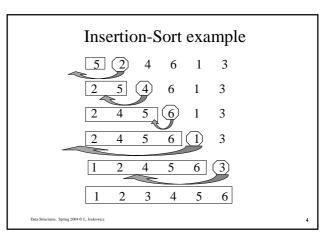
Data Structures, Spring 2004 © L. Joskowicz

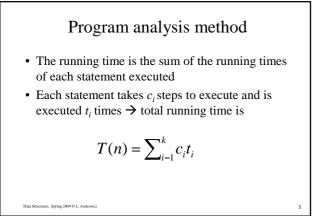
Performance and efficiency

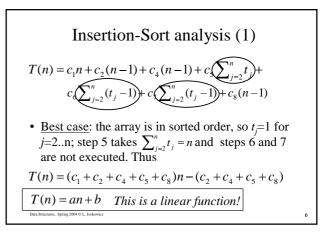
- We can quantify the <u>performance of a program</u> by measuring its run-time and memory usage.
 It depends on how fast the computer is, how good the compiler is, etc. → a very local and partial measure!
- We can quantify the <u>efficiency of an algorithm</u> by calculating its space and time requirements as a function of the basic units (memory cells and operations) it requires → independent of the implementation technology, but is only a guideline!

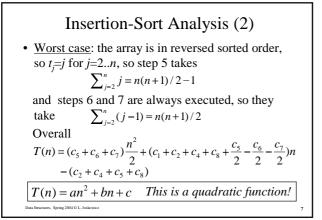
Data Structures, Spring 2004 © L. Josko

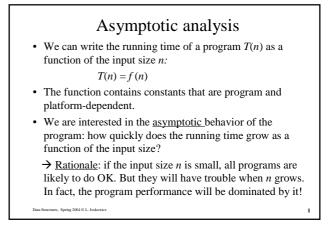


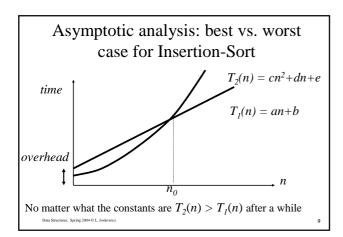


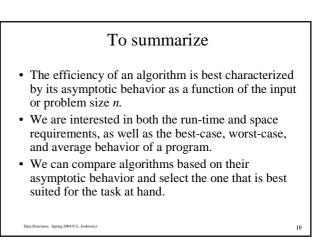


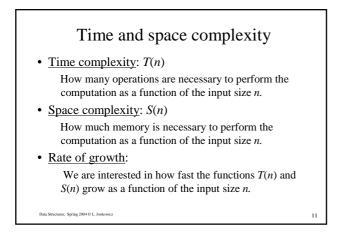




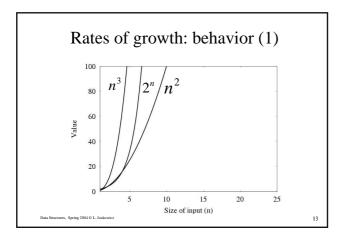


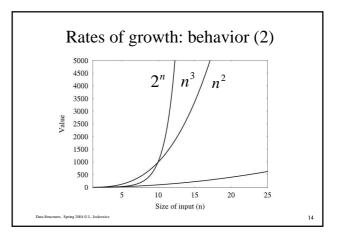








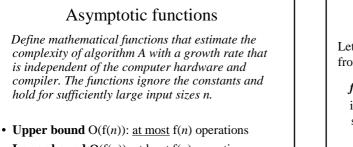




Algorithm	Time	Maximum problem size		
	Complexity	1 sec	1 min	1 hour
A_1	n	1000	6 x10 ⁴	3.6 x 10 ⁶
A_2	$n \log_2 n$	140	4893	2.0 x 10 ⁵
A_3	n^2	31	244	1897
A_4	n^3	10	39	153
A_5	2^n	9	15	21

Assuming one unit of time equals one millisecond. Dues Structures, Spring 2004 O L Joshervicz

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Algorithm
A_2 $n \log_2 n$ s_2 appro-	peed-up	after speed	before speed-up	Complexity	
(for la	Os_1	10s ₁	s ₁	n	A_{I}
	rox. 10s ₂	approx.	<i>s</i> ₂	$n \log_2 n$	A_2
A_3 n^2 s_3 3.1	large s_2)	(for larg			
	.16s3	3.16s	<i>S</i> ₃	n^2	A_3
A_4 n^3 s_4 2.1	2.15s ₄	2.15s	S_4	n^3	A_4
A_5 2^n s_5 s_5	₅ + 3.3	$s_5 +$	<i>s</i> ₅	2^n	A_5



15

17

- Lower bound $\Omega(f(n))$: <u>at least</u> f(n) operations
- **Tight bound** $\Theta(f(n))$: <u>order of</u> f(n) operations

