
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 2

Elements of complexity analysis

• Performance and efficiency
• Motivation: analysis of Insertion-Sort
• Asymptotic behavior and growth rates
• Time and space complexity
• Big-Oh functions: O(f(n)),

�
(f(n)), � (f(n))

• Properties of Big-Oh functions

Data Structures, Spring 2004 © L. Joskowicz �

Performance and efficiency
• We can quantify the performance of a program by

measuring its run-time and memory usage.
It depends on how fast the computer is, how good
the compiler is, etc. � a very local and partial
measure!

• We can quantify the efficiency of an algorithm by
calculating its space and time requirements as a
function of the basic units (memory cells and
operations) it requires � independent of the
implementation technology, but is only a guideline!

Data Structures, Spring 2004 © L. Joskowicz �

Example of a program analysis

Insertion-Sort(A)
1. for j = 2 to A.length
2. do key � A[j]
3. // Insert A[j] into A[1..j-1]
4. i � j – 1
5. while i > 0 and A[i] > key
6. do A[i+1] � A[i]
7. i � i – 1
8. A[i+1] � key

cost
c1
c2

c4
c5
c6
c7
c8

� �n

j jt
2

times
n
n –1

n –1

n –1

� �n

j jt
2

)1(
2 	� �n

j jt

)1(
2 	� �n

j jt

Sort the array A of n integers

Data Structures, Spring 2004 © L. Joskowicz

5 2 4 6 1 3

Insertion-Sort example

1 2 3 4 5 6

2 5 4 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3

1 2 4 5 6 3

Data Structures, Spring 2004 © L. Joskowicz �

Program analysis method

• The running time is the sum of the running times
of each statement executed

• Each statement takes ci steps to execute and is
executed ti times � total running time is

i

k

i itcnT �
1

)(

Data Structures, Spring 2004 © L. Joskowicz �

Insertion-Sort analysis (1)

• Best case: the array is in sorted order, so tj=1 for
j=2..n; step 5 takes and steps 6 and 7
are not executed. Thus

)1()1()1(82726 ����� �� �� nctctc
n

j j

n

j j

������� � �n

j jtcncncncnT
25421)1()1()(

nt
n

j j �� �
2

)()()(854285421 ccccncccccnT ���������
bannT ��)(This is a linear function!

Data Structures, Spring 2004 © L. Joskowicz �

• Worst case: the array is in reversed sorted order,
so tj=j for j=2..n, so step 5 takes

and steps 6 and 7 are always executed, so they
take

Overall

Insertion-Sort Analysis (2)

12/)1(
2

���� �
nnj

n

j

2/)1()1(
2 ���	

nnj
n

j

n
ccc

cccc
n

cccnT)
222

(
2

)()(765
8421

2

765 ���������
)(8542 cccc ����

cbnannT ��� 2)(This is a quadratic function!
Data Structures, Spring 2004 © L. Joskowicz �

Asymptotic analysis
• We can write the running time of a program T(n) as a

function of the input size n:

T(n) = f (n)

• The function contains constants that are program and
platform-dependent.

• We are interested in the asymptotic behavior of the
program: how quickly does the running time grow as a
function of the input size?

� Rationale: if the input size n is small, all programs are
likely to do OK. But they will have trouble when n grows.
In fact, the program performance will be dominated by it!

Data Structures, Spring 2004 © L. Joskowicz �

Asymptotic analysis: best vs. worst
case for Insertion-Sort

T1(n) = an+b

T2(n) = cn2+dn+e
time

n

overhead

No matter what the constants are T2(n) > T1(n) after a while

n0

Data Structures, Spring 2004 © L. Joskowicz
� �

To summarize

• The efficiency of an algorithm is best characterized
by its asymptotic behavior as a function of the input
or problem size n.

• We are interested in both the run-time and space
requirements, as well as the best-case, worst-case,
and average behavior of a program.

• We can compare algorithms based on their
asymptotic behavior and select the one that is best
suited for the task at hand.

Data Structures, Spring 2004 © L. Joskowicz
� �

Time and space complexity

• Time complexity: T(n)
How many operations are necessary to perform the
computation as a function of the input size n.

• Space complexity: S(n)
How much memory is necessary to perform the
computation as a function of the input size n.

• Rate of growth:
We are interested in how fast the functions T(n) and
S(n) grow as a function of the input size n.

Data Structures, Spring 2004 © L. Joskowicz
� �

Rates of growth of common functions

)log(n

n

2n
)log(nn

n2

Data Structures, Spring 2004 © L. Joskowicz
� �

Rates of growth: behavior (1)

2nn2
3n

Data Structures, Spring 2004 © L. Joskowicz
�

Rates of growth: behavior (2)

2nn2 3n

Data Structures, Spring 2004 © L. Joskowicz
� �

Algorithm Time Maximum problem size

Complexity 1 sec 1 min 1 hour

A1 n 1000 6 x104 3.6 x 106

A2 n log2 n 140 4893 2.0 x 105

A3 n2 31 244 1897

A4 n3 10 39 153

A5 2n 9 15 21

Assuming one unit of time equals one millisecond.

Problem size as a function of time

Data Structures, Spring 2004 © L. Joskowicz
� �

Algorithm Time Maximum problem size

Complexity before speed-up after speed-up

A1 n s1 10s1

A2 n log2 n s2 approx. 10s2

(for large s2)

A3 n2 s3 3.16s3

A4 n3 s4 2.15s4

A5 2n s5 s5 + 3.3

Effect of a tenfold speedup

Data Structures, Spring 2004 © L. Joskowicz
� �

Asymptotic functions
Define mathematical functions that estimate the
complexity of algorithm A with a growth rate that
is independent of the computer hardware and
compiler. The functions ignore the constants and
hold for sufficiently large input sizes n.

• Upper bound O(f(n)): at most f(n) operations

• Lower bound
�

(f(n)): at least f(n) operations

• Tight bound � (f(n)) : order of f(n) operations

Data Structures, Spring 2004 © L. Joskowicz
� �

Asymptotic upper bound – Big-Oh

f (n) = O(g(n))
if there exist c > 0 and n0>1
such that

f (n) c(g(n))

for all n n0

f(n) =O(g(n))

cg(n)

f(n)

n0

Let f (n) and g(n) be two functions
from naturals to positive reals

�

�

Data Structures, Spring 2004 © L. Joskowicz
� �

Asymptotic lower bound – Big-Omega

f (n) =
�

(g(n))
if there exist c > 0 and n0>1
such that

f (n) c(g(n))

for all n n0

�
�

f(n) = � (g(n))

cg(n)

n0

f(n)Let f (n) and g(n) be two functions
from naturals to positive reals

Data Structures, Spring 2004 © L. Joskowicz � �

Asymptotic tight bound – Big-Theta

f (n) = � (g(n))
if there exist c1,c2 > 0 and
n0>1 such that

0 c1(g(n)) f (n) c2(g(n))

for all n n0
�

f(n) = � (g(n))
Tight bound

c2g(n)

n0

c1g(n)

f(n)

� � �

Let f (n) and g(n) be two functions
from naturals to positive reals

Data Structures, Spring 2004 © L. Joskowicz � �

Graphs for O, , and

f(n) =O(g(n))
Upper bound

cg(n)

f(n)

n0

f(n) =
�

(g(n))
Lower bound

cg(n)

n0

f(n)

f(n) = � (g(n))
Tight bound

c2g(n)

n0

c1g(n)

f(n)

Data Structures, Spring 2004 © L. Joskowicz � �

Properties of the O, , and functions
Theorem: f is tight iff it is an upper and a lower bound:

f (n) = � (g(n)) iff f (n) = O(g(n)) and f (n) = � (g(n))

• Reflexivity:

f (n) = O(f (n)); f (n) = � (f (n)); f (n) = � (f (n))

• Symmetry:

f (n) = � (g(n)) iff g(n) = � (f (n))

• Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) then f (n) = O(h(n))

f(n) = � (g(n)) and g(n) = � (h(n)) then f (n) = � (h(n))

f(n) = � (g(n)) and g(n) = � (h(n)) then f (n) = � (h(n))

Data Structures, Spring 2004 © L. Joskowicz � �

Properties of the O, , and functions
For O,

�
, and � :

• O(O(f (n)) = O(f (n))

• O(f (n) + g(n)) = O(f (n)) + O(g(n))

• O(f (n).g(n)) = O(f (n)).O(g(n))

• O(log n) = O(lg n) lg is log2

• Polynomials:

• Factorials:
)()(

1

kk

i

i
i nOnaO �� �

���	

�� ��	
�����	
���
ne

n
nn

n
1

12! � O(n!) = O(nn+0.5)
O(log n!) = O(n lg n)

Data Structures, Spring 2004 © L. Joskowicz �

Asymptotic functions

• Asymptotic functions are used in conjunction with
recurrence equations to derive complexity bounds

• Proving a lower bound for an algorithm is usually
harder than proving an upper bound for it. Proving
a tight bound is hardest!

• Note: still does not answer the if this is the least or
the most work for the given problem. For this, we
need to consider upper and lower problem bounds
(later in the course).

