
Introduction to Artificial Intelligence

�

DAST, Spring 2004. © L. Joskowicz �

Data Structures – LECTURE 1

Introduction

• Motivation: algorithms and abstract data types

• Easy problems, hard problems

• Lecture and exercise topics

• Style of lectures and requirements

DAST, Spring 2004. © L. Joskowicz �

Programs and algorithms
• Why do we need algorithms?

�
to solve problems with a computing device

• What is the difference between an algorithm and
a program?

�
a program is an implementation of an

algorithm to be run on a specific computer and
operating system. An algorithm is more abstract
in that it does not deal with machine specific
details – think of it as a method to solve a
problem. The course emphasis is on algorithms.

DAST, Spring 2004. © L. Joskowicz �

Data structures
• A data structure is a method of storing data for

the purpose of efficient computation
�

variables, arrays, linked lists, binary trees
• How data is stored is key for how a problem

will be solved.
• Assumptions about the nature of the data

determine what data structure and algorithm
will be used

�
sorting integers vs. words

• Data structures and algorithm development go
hand in hand! You cannot have one without
the other!

DAST, Spring 2004. © L. Joskowicz �

Abstract Data Types –ADT
• An abstract data type is a collection of formal

specificationsof data-storing entities with a well
designed set of operations.

• The set of operations defined with the ADT
specification are the operations it “supports”

• What is the difference between a data structure (or
a class of objects) and an ADT?
�

The data structure or class is an implementation
of the ADT to be run on a specific computer and
operating system. Think of it as an abstract JAVA
class. The course emphasis is on ADTs.

DAST, Spring 2004. © L. Joskowicz �

Focus of the course
• In this course, we will study algorithms and

ADTs for solving the most common
computational problems: searching, sorting,
indexing, etc.

• We will learn how to rigorously analyze an
algorithm and describe its space and time
complexity

�
is A1 always better than A2?

• We will learn how to adapt know algorithms
and develop new ones.

• You will implement in JAVA variations of
the algorithms to better understand them!

DAST, Spring 2004. © L. Joskowicz �

Algorithms and problem solving
Say you have a computational problem to solve

• Is there an algorithm that solves it?
�

not always! Example: the halting problem.
• Is there an efficient algorithm that solves it?

�
not always! Example: packing problem.

• Is my algorithm the best possible algorithm?
�

not necessarily! Example: sorting in O(n2)
• What is the best algorithm we can develop?

�
sorting takes � (nlogn) time and � (n) space.

Introduction to Artificial Intelligence

�

DAST, Spring 2004. © L. Joskowicz �

Easy problems, hard problems
• Over the past 50 years (and especially the last 30 years),

many algorithms for a wide variety of computational
tasks have been developed

• A classification of hard and easy problems has also
been developed, together with formal tools to prove
what is their complexity and how they are related to
each other.

�
Equivalence classes of complexity
� (n) – linear; � (nlogn);
� (n2) – quadratic; � (nk) – polynomial;
� (2n) – exponential; � (22n) doubly exponential
unsolvable!

DAST, Spring 2004. © L. Joskowicz 	

Easy problem: shortest path planning
Find the shortest path (minimum number of changes
and stops) between two stations in the Paris metro

O(n)

in the number
of segments

DAST, Spring 2004. © L. Joskowicz

Bin packing: a hard problem!
Given a board and a set of parts, pack them without
overlap so that they occupy the smallest rectangle.

7 parts, 30 squares

DAST, Spring 2004. © L. Joskowicz ��

Bin packing: possible solutions

40 squares

36 squares

DAST, Spring 2004. © L. Joskowicz ��

Bin packing: optimal solution

Algorithm
• Generate all the legal

combinations
• record area covered
• keep the best one

30 squares

Number of legal configurations: combinatorial

There is no better solution in the worst case!!
DAST, Spring 2004. © L. Joskowicz ��

What kind of efficiency?
Given an algorithm A, we can ask the following
questions on its time and spacecomplexity.

• Best case: what is the complexity for the most
favorable kind of input?

• Worst case: what is the complexity for the least
favorable kind of input?

• Average case: what is the complexity for the
average kind of input?

• Upper and lower bounds: what is the best we
can do for this problem?

• Trade-off between time and space.

Introduction to Artificial Intelligence

�

DAST, Spring 2004. © L. Joskowicz ��

Efficiency: sorting
Given an array of n integers A[i], sort them in
increasing order.

Two algorithms (among many others) to do this:

• BubbleSort: compare two adjacent numbers, and
exchange them if A[i-1] < A[i]. Repeat n times.

• MergeSort: recursively split the array in half, sort
each part, and then merge them together.

DAST, Spring 2004. © L. Joskowicz ��

84 6155 10 18 35 22 97 47

Bubble sort (1)

One pass

start

846155 10 18 35 22 97 47 2nd iteration

84 6155 10 18 35 22 97 47 1st iteration

976155 10 18 35 22 9784 nth iteration

… …

DAST, Spring 2004. © L. Joskowicz ��

Bubble sort (2)

846155 10 18 35 22 9747 2nd pass

84225510 18 35 22 9761 3rd pass

84614710 18 22 35 9755 nth pass

… …

n passes

1st pass976155 10 18 35 22 9784

DAST, Spring 2004. © L. Joskowicz ��

Merge sort (1)

62316245

62316245

45 62 31 62

5 4 2 6 1 3 2 6

Split phase

0

1

2

3

level

DAST, Spring 2004. © L. Joskowicz ��

Merge sort (2)

66543221

5 4 2 6 1 3 2 6

54 62 31 62

63216542

Merge phase

0

1

2

3

level

DAST, Spring 2004. © L. Joskowicz �	

Comparison

n log nn log nn log nn log nMerge

Sort

n2/2

n/2 passes

n2

n passes

n

one pass

nBubble

Sort

E

Average

I M

Worst

T

Best

SPACE

MergeSort:
• Number of levels: 2l = n

�
l = log2n

• Time for merge: n

Introduction to Artificial Intelligence

�

DAST, Spring 2004. © L. Joskowicz �

Other types of algorithms and analyses
Up to now, you have studied exact, deterministic
algorithms. There are other types as well:

• Randomized algorithms: makes random choices
during execution: pick a random element from an
array instead of the first one

�
minimize the

chances of always picking a bad one!
• Probabilistic analysis for randomized algorithms
• Approximation algorithms: instead of finding an

optimal solution, find one close to it
�

bin
packing.

DAST, Spring 2004. © L. Joskowicz � �

Course topics (1)

• Techniques for formal analysis of asymptotic
algorithm complexity with recurrence equations

• Techniques for solving recurrence equations:
substitution, recursion-tree, master method.

• Proving upper and lower bounds

• Sorting, in-depth: merge sort, quick sort,
counting sort, radix sort, bucket sort.

DAST, Spring 2004. © L. Joskowicz � �

Course topics (2)

• Common ADTsand their algorithms: heaps,
priority queues, binary trees, AVL trees, Red-
Black trees, B-trees.

• Huffman codes, hash tables, hash functions
• Graph algorithms: Breadth-First Search,

Depth-First Search, Shortest path algorithms,
Minimum Spanning Trees, Strongly
Connected Components.

• Union-Find of sets (time permitting).

DAST, Spring 2004. © L. Joskowicz � �

Programming skills

• Selected topics in JAVA

• Learn how to choose and implement ADTs
Design and program a medium size project:
the bookstore

• Learn how to use a debugger

DAST, Spring 2004. © L. Joskowicz � �

Style of the lectures
• Algorithms and ADTs are described at a

higher level, in pseudo-code, not in JAVA.

• We assume you know how to program by
now, so you can turn an algorithm and an
ADT into a JAVA program.

• More abstract and rigorous thinking: formal
proofs of complexity, proofs of algorithm
correctness.

DAST, Spring 2004. © L. Joskowicz � �

