Introduction to Artificial Intelligence

Data Structures— LECTURE 1

Introduction

Motivation: algorithms and abstract data types
* Easy problems, hard problems

Lecture and exercise topics

Style of lectures and requirements

DAST, Spring 2004. © L. Joskowicz

Programs and algorithms

* Why do we need algorithms?
-> to solve prablems with a computing device

» What is the difference between an algorithm and
aprogram?
-> aprogram is an implementation of an
algorithm to be run on a specific computer and
operating system. An algorithm is more abstract
in that it does not deal with machine specific
details— think of it asamethod to solve a
problem. The course emphasisis on algorithms.

DAST, Spring 2004. © L. Joskowicz 2

Data structures

» A datastructure is amethod of storing data for
the purpose of efficient computation
-> variables, arrays, linked lists, binary trees

» How datais stored is key for how a problem
will be solved.

» Assumptions about the nature of the data
determine what data structure and algorithm
will be used - sorting integers vs. words

* Data structures and algorithm development go

hand in hand! Y ou cannot have one without
the other!

DAST, Spring 2004. © L. Joskowicz

Abstract Data Types—ADT

» An abstract data type is a collection of formal
specifications of data-storing entities with awell
designed set of operations.

» The set of operations defined with the ADT
specification are the operations it “ supports’

» What is the difference between a data structure (or
aclass of objects) and an ADT?

-> The data structure or class is an implementation
of the ADT to be run on a specific computer and
operating system. Think of it as an abstract JAVA
class. The course emphasisison ADTSs.

DAST, Spring 2004. © L. Joskowicz 4

Focus of the course

* Inthis course, we will study algorithms and
ADTSs for solving the most common
computational problems: searching, sorting,
indexing, etc.

» We will learn how to rigorously analyze an
algorithm and describe its space and time
complexity = is Al always better than A2?

» We will learn how to adapt know algorithms
and develop new ones.

* Youwill implement in JAVA variations of
the algorithms to better understand them!

DAST, Spring 2004. © L. Joskowicz

Algorithms and problem solving

Say you have a computational problem to solve
Is there an algorithm that solvesit?

-> not always! Example: the halting problem.
Isthere an efficient algorithm that solvesit?

-> not always! Example: packing problem.

Is my algorithm the best possible algorithm?
- not necessarily! Example: sorting in O(n?)
What is the best algorithm we can develop?

-> sorting takes Q(nlogn) time and Q(n) space.

DAST, Spring 2004. © L. Joskowicz 6

Introduction to Artificial Intelligence

Easy problems, hard problems

¢ Over the past 50 years (and especially the last 30 years),
many algorithms for awide variety of computational
tasks have been developed

¢ A classification of hard and easy problems has also
been devel oped, together with formal toolsto prove
what is their complexity and how they are related to
each other.

-> Equivalence classes of complexity
Q(n) —linear; Q(nlogn);
Q(n?) — quadratic; Q(nK) — polynomial;
Q(2") — exponential; Q(»2") doubly exponential
unsolvable!

DAST, Spring 2004. © L. Joskowicz 7

Easy problem: shortest path planning

Find the shortest path (minimum number of changes
and stops) between two stations in the Paris metro

O(n)
~ in the number
of segments

Bin packing: a hard problem!

Given aboard and a set of parts, pack them without
overlap so that they occupy the smallest rectangle.

2 b E
| 11T |
7 parts, 30 squares

DAST, Spring 2004. © L. Joskowicz 9

Bin packing: possible solutions

[40 squares

36 squares

DAST, Spring 2004. © L. Joskowicz 10

Bin packing: optimal solution

Algorithm
* Generate all the legal

|| combinations
» record area covered
* keep the best one

30 squares
Number of legal configurations: combinatorial

Thereis no better solution in the worst case!!

DAST, Spring 2004. © L. Joskowicz 11

What kind of efficiency?

Given an algorithm A, we can ask the following
guestions on its time and space compl exity.

* Best case: what isthe complexity for the most
favorable kind of input?

» Worst case: what is the complexity for the least
favorable kind of input?

» Average case: what is the complexity for the
average kind of input?

» Upper and lower bounds: what is the best we
can do for this problem?

* Trade-off between time and space.

DAST, Spring 2004. © L. Joskowicz 12

Introduction to Artificial Intelligence

Efficiency: sorting
Given an array of n integers A[i], sort themin
increasing order.

Two algorithms (among many others) to do this:

» BubbleSort: compare two adjacent numbers, and

Bubble sort (1)

84]55|61|10]18]35[22]97|47] start

5[l 10 8[3s[22]o7[a7] 1+ teation
N

exchange them if A[i-1] < A[i]. Repeat n times. 2nd jteration
» MergeSort: recursively split the array in half, sort . .

each part, and tlrjlenvmé/rgsg tlhem tothyhler. “m‘ " iteration
DAST, Spring 2004, © L. Joskowicz N DAST, Spring 2004. © L. Joskowicz On e pa$

Bubble sort (2) Merge sort (1)
level
st
55/61]10[18[35[22|97|8afo7] 1% pess (574 2]6]1]3]2]6] 0
4
55| 10[18]35/22] 61[47[84]97] 2w pass TaTele] [152e] -

10]18]35[22[55|61][22]84]07] 3 pass

10]18]2235[47[55]61[84]97] 1 pass

[5/4] [2]6] [1]3] [2]6] 2

[s]la] [2[e][2][3] [2]e] 3

n passes Split phase
Merge sort (2) Comparison
level SPACE T I M E

|1‘2‘2‘3‘4‘5‘6‘6| 0 Best Worst | Average

Bubble| n n n2 n4/2
|2‘4‘5‘6| |12‘<5| 1 Sort onepass | npasses | n/2 passes
|4 5| |2‘6| |1 3| |2 6| 5 Merge nlogn | nlogn nlogn nlogn

N Sort

(5] [4] [2][e][2][3][2]

Merge phase

DAST, Spring 2004. © L. Joskowicz 17

MergeSort:
* Number of levels: 2'=n-> | = log,n
* Time for merge: n

DAST, Spring 2004. © L. Joskowicz 18

Introduction to Artificial Intelligence

Other types of algorithms and analyses

Up to now, you have studied exact, deterministic
algorithms. There are other types as well:

» Randomized algorithms: makes random choices
during execution: pick a random element from an
array instead of the first one = minimize the
chances of always picking a bad one!

* Probabilistic analysis for randomized algorithms

» Approximation algorithms: instead of finding an
optimal solution, find one closeto it 2 bin
packing.

DAST, Spring 2004. © L. Joskowicz 19

Course topics (1)
 Techniques for formal analysis of asymptotic

algorithm complexity with recurrence equations

 Techniques for solving recurrence equations:
substitution, recursion-tree, master method.

* Proving upper and lower bounds

* Sorting, in-depth: merge sort, quick sort,
counting sort, radix sort, bucket sort.

DAST, Spring 2004. © L. Joskowicz

Course topics (2)

Common ADTs and their algorithms: heaps,
priority queues, binary trees, AVL trees, Red-
Black trees, B-trees.

Huffman codes, hash tables, hash functions
Graph algorithms: Breadth-First Search,
Depth-First Search, Shortest path algorithms,
Minimum Spanning Trees, Strongly
Connected Components.

Union-Find of sets (time permitting).

DAST, Spring 2004. © L. Joskowicz 21

Programming skills

» Selected topicsin JAVA

 Learn how to choose and implement ADTs
Design and program a medium size project:
the bookstore

 Learn how to use a debugger

DAST, Spring 2004. © L. Joskowicz

Style of the lectures

* Algorithmsand ADTs are described at a
higher level, in pseudo-code, not in JAVA.

» We assume you know how to program by
now, so you can turn an algorithm and an
ADT into aJJAVA program.

» More abstract and rigorous thinking: formal
proofs of complexity, proofs of algorithm
correctness.

DAST, Spring 2004. © L. Joskowicz 23

DAST, Spring 2004. © L. Joskowicz

