Frameworks Frameworks:
Swing Case Study

A reusable, semi-complete application

An object-oriented technique David Talby
Reuse of both code & design

Hollywood Principle + Hooks

Enables the creation of Components

Origin of many design patterns

Many application domains

- Our focus: User interfaces

The Problem Swing

Hardware and operating system support Java’s User Interface FW.since JDK 1.2
primitive I/O operations
Drawing pixels and lines on the screen
- Class java.awt.Graphics has drawl ine(), — .
setColor(), fillRect(), setFont(), .. methods o — :
Receiving user input e
- Reading file and device input streams e
- Platform-dependent E

Swing Features The Problem IT

Wide variety of visual components Visual components are not reused
Button, Label, List, Panel, Table, Tree, ... ; :
Standard Dialog Boxes (Open, Save, Coler, ...) Should be in standard |lbr‘ar‘y'
Pluggable look-and feel Look-and-feel should be co‘nSISTenT
Platform independence Easy to create / buy new visual components
Dynamically changeable Design of user interface is not reused

e =i e Separating visual design, data structures,

Ft'JC|I|TaT§s writing components or look-and-feels user input handling and applicative code
Action objects . q
Shared commands in toolbars and menus Code is not pIanorm-mdependenT

Generic Undo capability A lot of code & design is required

A Simple Form

The application will show this dialog box:

[E SimplePanel Example [-[O]

Clear Text [Hetlo vorid

We'll use JButton and JTextField
Inside a JPanel container

Inside a JFrame (a window container)
Whose main() method will run the show

The Simple Form Code

Step 1 is to subclass JPanel:

class SimplePar anel {

J1 ield t

Tovt!)-
lext”);

tener(new ActionListener()§
‘med(ActionEvent e)

The Simple Form Code ITT

The same class also contains main():

1e NEXGIIRK "),

lapter() {

The framework takes over after main()

Swing Features IT
Keystroke Handling

- Global, form, container and component shortcuts

- Conflict management
Nested Containers

- Windows, Dialogs, Frames, Panels, Tables; ...

- Virtually anything can be in anything, at any depth
Text Manipulation

- HTML and RTF editing (multi-font, colors, et¢.)
Accessibility

- Alternative user interface support: Braille, sound...

Anonymous Classes Syntax

We need a little extra Java syntax first

Given an interface, it's possible to:construct an
object that implements it by providing.an
implementation during the initialization
For example, since the ActionListener interface
only defines the actionPerformed() method:

tener al = new A

\.V/!'L;/ ac I/"/v

textField set

The "new" class is an inner class of its scope
This is the anonymous inner classes syntax

The Simple Form Code TI

Step 2 is to subclass JFrame:
publi SimplePanellest extendspll-rame {
it WIDTH = 300;
nt HEIGHT = 100;

Component Hierarchy The Framework in Action

Common ancestor is javax.swing.JCompc Inversion of Control
Listener registration for keyboard & mouse events - Event loop is handled by a Swing thread

Painting infrastructure: double buffering, borders - Hardware- and OS-specific input fornats are

Keyboard mapping, custom properties, tool-tips, translated to standard interfaces
look and feel, accessibility, serialization,.. -

B Ry heavyweight contiuuy - Building the visual controls is white-box style
= JFrame, JDialog, JApplet, JWindow - Registering to events is black-box style
Any subclass of JComponent is a component Design Patterns

- Easy to write ComboBox, DatePicker, ImageList

- Composit: Ladd(Component c)
- Standard dialog boxes are implemented this way

- Observer: itton.addActionListener(al)

Text Editor Kits Editor Actions

All text editors share some commands
— Cut, Copy, Paste, Clear, Insert Special.Char, ...
These are encapsulated in Aciion objects

Editor kits can do two things
- Read & write documents in a particular. format
- Hold alist of actions supported by that fonmat
Predefined kits: Default, Styled, HTML, RTE e e RS uppon Ts getdci
Editor kits dynamically define text editors: Actions are added to menus, foolbars, efe:
Each EditorKit registers with the JEditorPane ‘ Il ey

When a file is loaded into the pane, it checksits m" I Action),
format against the registered editor kits Action objects are shared by default

The matching kit reads, writes and edits the text ~ Don’t modify them
Follows the State design pattern Follows the Command design pattern

Documents and Views Creating Kits

Editor Kits follow the Builder design pattern

Input: The Document interface
- Content, Mutation, Notification, Properties
- Structure: an Hierarchy of E/ement ob jects

Output: The View interface ype

- Participate in layout, paint its portion of document, However, this is done by reflection on class name

translate coordinate systems, respond to events

These interfaces are only used internally

- To enable reuse of builder, data Structure, view
hierarchy and data parser separately

Keystroke Mapping

A KeyMap is a <KeyStroke, Action> map

A text component has one or more,Keymaps
By default, only JTextComponent. DEFAUEEISEY MAP
Can be modified, but the default Keymap is shared

Custom Keymaps can be added and removed
Adding requires a name and a parent Keymap
Then, add. orKeyStroke() can modify it

Keymap matching is by most-specific-first
Follows the Chain of Responsibility Pattern

Model / View / Controller

The Basic User Interface Design Pattern
- Origin is SmallTalk-80, the first OOFW

view .

MVC by Example

ButtonModel class
- Private - field, setColc

“olor() will also notify observers
ButtonView class

- Gets a ButtonModel in its constructor, storesisina
private field and registers to it

- Has a public paint() method, called on notification
MyController class
- Initialized with both model and view objects

- Handles user input events (mouse/keyboard/etct) by
changing the model and the view

The HTMLEditorKit

An Abstract FccTory for cr‘eaﬂng views
Interface ViewFactory has View creaté(Element e)
There are HTMLVlewFacTory and BasicTextUT

Very customizable using Factory Methods
Replace document: override ¢ De, Jocument
Replace views: override g
Replace parser: override
EditorKit responsible only for read() and write()

Multiple views per document, for printing

Undo / Redo

Package javax.swing.undo offers UndoableEdit

Has undo(), redo(), canUndo(), canRedo(), die(),
isSignificant(), getPresentationName() methods

Package offers an AbstractUnc 7 class
And a C Edit class for composite commands

Class U - manages done commands
Extends ¢ C - has addEdit() methad

undo(), redo(), se‘rlel‘r() trimEdits(), undoTo()
redoTo(), undoOrRedo(), discardAllEdits(), ..

Each text component supports:

EditListener(Und EditListener uel)

MVC Participants

Model

- Data structure of displayed data

- Notifies observers on state change

View

- Paints the data on the screen

- Observer on its model

Controller

- Handles user input

- Changes model, which causes views to update

Document / View

View and Controller are often.merged

- MFC: "Document” and "View"

- Swing (Text Editors): "Document” and " View"
- Swing (Components): "Model" and “"Delegate”

JFC UI Component

MVC Inside a Component

Each component is a fagade for two objects

- Each components defines getModel().and getUI()

- Usually only one component per model and.delegate
UIManager is a singleton

- Holds current look & feel properties
ComponentUT defines drawing interface

- javax.swing.plaf.* includes ButtonUI, SliderUT, ..

u
- - {Manager

The Facade Pattern

A flexible framework becomes very complex
Tt is important to provide simple facades

JEditorPane class

- No need to know EditorKit & its subclasses,
Document, Element, View, ViewFactory, KeyMap, ..

JButton class

- No need to know ComponentModel, ComponentUL,
UIManager, LookAndFeel, ..

Provide users only with concepts they know
Button, Window, Action, Menu
Document, ViewFactory, EditorKit

MVC Benefits

Three elements can be reused separately
Synchronized user interface made easy

- Multiple views observe one model

Models know nothing about presentation
- Easy to modify or create views

- Easy to dynamically change views

More efficient

- Shared models & controllers save memory

- Easy to maintain pools of views and models

Swing and MVC

There are several levels of using MVC
“Manually”, to synchronize complex views
- A file explorer, with a tree and current dir
In forms or complex components

- Custom form logic to synchronize its'field

- A table or tree and its sub-components

- A variation of the Mediator design pattern
A component is a fagade to two objects:
- Model: data structure of property values

- Delegate: handles painting and user input

Changing Look & Feel

The default is in a text configuration file

homepath/lib/swir

At runtime before creating components:
UIM. etL “

ookAndFeel");
At runtime after

Ul
Swin;
frame.pack();

Replaces the ComponentUT objécT
- Follows the Strategy pattern for paini()

Summary

Swing is a classic OOD framework

- Contains a lot of domain knowledge

- Highly customizable through design paiiterns
- Comes with a set of implemented components
- Also intended for writing new ones

- Inversion of control + hooks

It's a medium-sized framework

- Several hundred classes and interfaces

- Plus free & commercial 34 party components

Other Features

Swing supports several other features
that we don't have time fo cover:

- Drag & Drop

- Printing

- Internationalization

- Trees and Tables

- Menus & Popup menus

- Layout Management

Other standard Java graphic libraries:
- 2D drawing, 3D drawing, Multimedia

