David Talby

2"own/10°1/3"

_ Design Patterns |

David Talby

This Lecture

Representing Data Structures

& Composite, Flyweight, Decorator
Traversing Data Structures

+ lterator, Visitor

A Word Processor

Pages, Columns, Lines, Letters,
Symbols, Tables, Images, ...
Font and style settings per letter

Frames, Shadows, Background,
Hyperlink attached to anything
Unlimited hierarchy: Tables with
several Paragraphs containing
hyper-linked images inside tables

Should be open for additions...

A Data Structure

First, a uniform interface for simple
things that live in a document:
class Glyph

{

void draw(Window *w) = 0;

void move(double x, double y) = 0;
bool intersects(Point *p) = 0;
void insert(Glyph *g, int i) = 0;
void remove(int i) = 0;

Glyph* child(int i) = 0;

Glyph* parent() = 0;

Composite Documents

Glyph

Deaw(Window)
Intersects(Poini)
Insert(Giyob, int)

Character [ Rectangie | Row

o

[ I children
fostieren |

Draw(Windoww) D--=-
Intersacts(Point p)

]
Inser(Giyph g, int ) ?

.

At Runtime

(column)

oo
(row)

Unlimited Hierarchy problem solved
Dynamic selection of composites
Open for additions

Design Patterns




David Talby

2. Flyweight

Use sharing to support a large
number of small objects efficiently
For example, if every character
holds font and style data, a long
letter will require huge memory
Even though most letters use the
same font and style

How do we make it practical to
keep each character as an object?

2"own/10°1/3"

The Requirements
Reduce the memory demands of
having an object per character

Keep the flexibility to customize
each character differently

The Solution

Extrinsic state = worth sharing
Intrinsic state = not worth sharing

ERvecaosseonG)

FeueccheacerE
~— " flyweight pool

The Solution Il

Put extrinsic state in a class:

class CharacterContext {
Font* font;
bool isItalic, isBold, ...;
int size;
int asciiCode;
// many others..

draw(int x, int y) { ... }
// other operational methods

The Solution llI

Original class holds rest of state:
class Character : public Glyph {

CharacterContext *cc;
int x, y;

draw() {
cc->draw(x,y) ;

}

Design Patterns

The Solution IV

A factory manages the shared pool

It adds the object to the pool if it
doesn’t exists, and returns it

Here’s Character's constructor:

Character(int x, int y, Font *f, .)
this->x = x;
this->y =y’
this->cc =

factory.createCharacter(f, .);

{




David Talby

The UML

[y}

GetFyweightikey) @

Flyweight

OperationfextrinsicState)

if (yweighifkey] exists) |
retum exsting fiyweight;

Jelse

S poor ol i
3110 o0l of Hwelghts;
| he new fywoigh:

2"own/10°1/3"

"’ intinsicState ’—\ allstate
Client

The Fine Print

There’s a lot of tradeoff in what is
defined as “extrinsic”

Shared pool is usually a hash table

Use reference counting to collect
unused flyweights

Don't rely on object identity
+ Different objects will seem equal

Known Uses

Word processors

¢ Average 1 flyweight per 400 letters
Widgets

& All data except location, value
Strategy design pattern

State design pattern

3. Decorator

Attach additional features to an
objects dynamically

For example, many features can be
added to any glyph in a document

& Background, Note, Hyperlink,
Shading, Borders, ...

The Requirements

We can freely combine features

# An image can have a background,
a border, a hyper-link and a note

Features are added and removed
dynamically

Can'’t afford a class per combination
Should be easy to add new features
o Don’t put it all in Glyph

Design Patterns

The Solution

Meet Decorator, a class for adding
responsibilities to another glyph:
class Decorator : public Glyph
{

void draw() {

component->draw() ;

}

// same for other features
private:

Glyph *component;




David Talby

2"own/10°1/3"

The Solution Il

Define concrete decorators:

class BackgroundDecorator
: public Decorator
{
void draw() {
drawBackground() ;
glyph->draw() ;
}

The Solution llI

Many decorators can be added
and removed dynamically:

( oaermmcormor

component

Behavior can be added before and
after calling the component

Efficient in space
Order of decoration can matter

Decorator::Operation(
Spermend T T [y ™
s

The Fine Print

The Decorator class can be omitted
if there’s only one decorator or
Glyph is very simple

The Glyph class should be
lightweight and not store data

Known Uses

Embellishing Document

& Background, Border, Note, ...
Communication Streams

¢ Encrypted, Buffered, Compressed

Data Structure Summary

Patterns work nicely together

& Composite, Decorator, Flyweight
don't interfere

Data structures are not layered

# Instead, clients work on a Glyph
interface hiding structures of
unknown, dynamic complexity

Design Patterns




David Talby

2"own/10°1/3"

Saving and Loading
Each Glyph should have “deep”
read() and write() methods
Save to disk / Send over network
by simply writing the root Glyph
object of a document
All optimizations saved as well!
Also works on subtrees
Little coding

Cut, Copy, Paste

Cut = Detach a subtree
Copy = Clone a subtree
Paste = Attach a subtree

Also works on composite glyphs
Glyphs should hold a reference to
parents for the cut operations
Cloning of a flyweight should only
increase its reference count!

4. lterator

Traverse a data structure without
exposing its representation

An extremely common pattern

For example, a list should support

forward and backward traversals

¢ Certainly not by exposing its
internal data structure

Adding traversal methods to List's

interface is a bad idea

The Requirements

Traversal operations should be
separate from List<G>'s interface
Allow several ongoing traversals
on the same container

Reuse: it should be possible to
write algorithms such as findltem
that work on any kind of list

The Solution

Define an abstract iterator class:

class Iterator<G> {
void first() = 0;
void next()
bool isDone (

) 0;
G* item() = 0;

The Solution Il

Each data structure implementation
will also implement an iterator class:
# ListIterator<G>

4 HashTableIterator<G>

# FileIterator<G>

4 StringIterator<G>

Each data structure can offer more
than one iterator:

+ Forward and backward iterators

+ Preorder, inorder, postorder

Design Patterns




David Talby

The Solution llI

For example:
class BackwardArraylterator<G>
: public Iterator<G>
{
Array<G> *container;
int pos;
public:
BackwardArraylIterator (Array *a)
{ container = a; first(); }
next ()
{ --pos; }
// other methods easy

2"own/10°1/3"

The Solution IV

A data structure’s interface should
return iterators on itself:
class List<G>
{
Iterator<G>* getForwardIterator ()
{ return new
ListForwardIterator (this); }
Iterator<G>* getBackwardIterator ()
// similarly
}

Now every LinkedList object can have
many active iterators

The Solution V

Writing functions for containers:
void print(Iterator<int>* it)
{
for (it->first();
1it->isOver() ;
it->next())
cout << it->item() ;

}
Using them:
print (myList->getBackwardIterator()) ;
print (myTable->getColumnItr (“Age”)) ;
print (myTree->getPostOrderIterator()) ;

The Solution VI

Generic algorithms can be written:

G* findItem(Iterator<G>* it,
G *element)
{
while (!'it->isOver())
{
if (it->item() == element)
return element;
it->next();
}
return NULL;

The Requirements I

Some iterators are generic:

& Traverse every rn'th item

& Traverse items that pass a filter

& Traverse only first n items

& Traverse a computed view of items
Such iterators should be coded once
It should be easy to combine such
iterators and add new ones
Their use should be transparent

Design Patterns

The Solution

Use the Decorator design pattern

For example, Filteredlterator<G>
receives another iterator and the
filtering function in its constructor

It delegates all calls to its internal
iterator except first() and next():
void next () {
do it->next()
while (!filter(it->item() &&
1it->isOver()) ;




David Talby

The Solution Il

It is then easy to combine such
generic iterators

Print square roots of the first 100
positive elements in a list:
print(new LimitedIterator (100,
new ComputedIterator (sqrt,
new FilteredIterator (positive,
list->getForwardIterator())))) ;

Adding an abstract Decoratoriterator
reduces code size if many exist

2"own/10°1/3"

The UML

Herator

first()

Next()
ssDone()
Currentiteen()

; Jﬁ
Greataliorator() ¢

return new Concrefelteratorthis)

The Fine Print

Everything is a container

# Character strings

& Files, both text and records

# Socket streams over the net

# The result of a database query

& The bits of an integer

# Stream of random or prime numbers
This allows reusing the print, find and
other algorithms for all of these

The Fine Print I

lterators may have privileged access
# They can encapsulate security rights
Kinds of abstract iterators

# Direct access iterators

# Access the previous item
Robustness issues

& |s the iterator valid after insertions or
removals from the container?

Iterators and the Composite pattern

Known Uses

All major standard libraries of
popular programming languages
& STL for C++
& The Java Collections Framework
New libraries for file, network and
database access in C++ conform
to STL’s iterators as well

Design Patterns

5. Visitor

Separate complex algorithms on a
complex data structure from the
structure’s representation
For example, a document is a composite
structure involved in many complex
operations

# Spell check, grammar check,

hyphenation, auto-format, ...

How do we avoid cluttering Glyph
subclasses with all this code?




David Talby

2"own/10°1/3"

The Requirements
Encapsulate complex algorithms
and their data in one place
Outside the data structure

Easily support different behavior
for every kind of Glyph

Easily add new tools

The Solution

Say hello to class Visitor:

class Visitor {

public:
void visitImage (Image *i) { }
void visitRow (Row *r) { }
void visitTable(Table *t) { }
// so on for every Glyph type

}

Every tool is a subclass:
class SpellChecker : public Visitor

The Solution Il

Add to Glyph’s interface the ability to
accept visitors:
void accept(Visitor *v) = 0O;
Every glyph subclass accepts a
visitor by an appropriate callback:
class Image : public Glyph {

void accept (Visitor *v)

{ v->visitImage (this); }

This way the visitor is activated for
the right kind of glyph, with its data

The Solution llI

Initiating a spell check (one option):
+ Create a SpellChecker object
4 root->accept(sc) ;
Graphic non-text glyphs will just ignore
the visit
# This is why Visitor includes default empty
method implementations
Composite glyphs also do nothing

# They can forward the visit to children. This
can be coded once in CompositeGlyph

The Solution IV

Easy to add operations

& Word count on characters

¢ Filters such as sharpen on images

& Page layout changes on pages

Works on any glyph

# In particular, a dynamic selection
as long as it's a composite glyph

Adding a tool does not require

recompilation of Glyph hierarchy

The UML

VisitConeretek lementA (Concretelementa)
VisitConcreteflement8(Concretelements)

[ concratavisitors ConerotoVisitorz |

JAN
i i

‘«- iC ‘

Objecsinuture |————mef Element |

Accepl{Visior)

Cangrete€lementa

AoceptlVisiors)©
OperationB) |

AoceplVisiorv)  §
Operationd) |

Design Patterns




David Talby

The Fine Print

The big problem: adding new Glyph
subclasses is hard

& Requires small addition to Visitor, and

recompilation of all its subclasses

How do we traverse the structure?
& Using an iterator

# From inside the accept() code

& From inside the visitxxx() code
Visitors are really just a workaround
due to the lack of double dispatch

2"own/10°1/3"

Known Uses

Document Editors

& Spell Check, Auto-Format, ...
Photo Editors

o Filters & Effects

Compilers

& Code production, pretty printing,
tests, metrics and optimizations
on the syntax tree

Summary

Pattern of patterns

# Encapsulate the varying aspect
¢ Interfaces

& Inheritance describes variants

# Composition allows a dynamic
choice between variants

Design patterns are old, well known
and thoroughly tested ideas

# Over twenty years!

Design Patterns




