David Talby

2"own/10°1/3"

Design Patterns

David Talby

This Lecture

Re-Routing Method Calls

& Proxy, Chain of Responsibility
Working with external libraries
& Adapter, Facade

Coding partial algorithms

& Template Method

The Singleton Pattern
Patterns Summary

15. Proxy

Provide a placeholder for another
object, to control access to it

For example, we'd like to defer
loading the images of a document
until we must display it

The Requirements

Only load images when required
Client code must not know whether
lazy load is used or not

Images may be loaded from a file,
a database or a network

& Such code should be encapsulated

& Should be easy to add variations,
such as security and compression

The Solution

Define a new graphic ImageProxy,
which holds an image’s file name
Holds an uninitialized Image object
When its draw() method is called:

draw() {
if (image == NULL)
image = load(filename) ;
image->draw() ;

}

The Solution Il

Many ways to implement Joad.

Read from a file or database

Use a complex network protocol

Use encryption, compression, ...

& Compute the returned object
Any such complex logic is well
encapsulated in the proxy

The proxy can hold part of Image’s
data for efficiency

Design Patterns

David Talby 2"own/10°1/3"

The UML The Fine Print

The Proxy vocabulary

Sutjoct & Virtual Proxy — creates expensive

o objects on demand

+ Remote Proxy — a local representative

e e [- of an object in another address space

Reauesi) Request) » & Protection Proxy — controls access to
the original object

& Smart Pointers — overload regular
pointers with additional actions

The Fine Print I The Fine Print Il

Uses of smart pointers Proxy is very much like Decorator
Reference counting Decorator = functional addition
& Synchronization (lock management) Proxy = technical addition

& Profiling and statistics
Copy-on-write

& Cache coherence

¢ Pooling

Smart pointers are easy in C++
thanks to overloading = and —>

Known Uses 16. Chain of Responsibility
Every programming language Decouple the sender and receiver
Every middleware package of a message, and give more than

one receiver a chance to handle it

For example, a context-sensitive
help system returns help on the
object currently in focus

Or its parent if it has no help
Recursively

Every database package

Design Patterns 2

David Talby

The Requirements

Allow calling for context-sensitive
help from any graphical object

If the object can’t handle the
request (it doesn't include help),
it knows where to forward it

The set of possible handlers is
defined and changed dynamically

2"own/10°1/3"

The Solution

Define a HelpHandler base class:

class HelpHandler
{
handleHelp() {
if (successor != NULL)
successor->handleHelp() ;
}

HelpHandler* successor = NULL;

The Solution Il

Class Graphic inherits HelpHandler
Graphic descendants that have help
to show redefine handleHelp:
handleHelp() {

ShowMessage (“"Buy upgrade”) ;
}
Either the root Graphic object or
HelpHandler itself can redefine
handleHelp to show a default

[HangeRoquests | [HendeReauesiy |

The Fine Print

Receipt isn’t guaranteed

Usually parents initialize the
successor of an item upon creation
& To themselves or their successor
The kind of request doesn’'t have to
be hardcoded:

class Handler {

handle (Request* request) {
// rest as before

Design Patterns

Known Uses

Context-sensitive help

Messages in a multi-protocol
network service

Handling user events in a user
interface framework

Updating contained objects/queries
in a displayed document

David Talby

2"own/10°1/3"

17. Adapter

Convert the interface of a class
into another that clients expect
For example, We'd like to use
advanced Text and SpellCheck
component that we bought

But Text doesn’t inherit Graphic or
supply iterators, and SpellCheck
doesn't inherit Visitor

We don’t have their source code

The Requirements
Convert the interface of a class
into a more convenient one
Without the class’s source code

& No compilation dependencies

The class may be a module in a
non-object oriented language

The Solution

If you can’t reuse by inheritance,
reuse by composition:
class TextGraphic
: public Graphic

{
public:

void draw() { text->paint(); }

// other methods adapted...
private:

BoughtTextComponent *text;

The Requirements I
Stacks and queues are kinds of lists,
but they provide less functionality
LinkedQueue is a linked list
implementation of interface Queue
We'd like to reuse LinkedList for it
Inheritance can’t be used if children
offer less than their parents

The Solution Il

Object Adapter

Class LinkedQueue will hold a
reference to a LinkedList and
delegate requests to it

Class Adapter

Class LinkedQueue will inherit from
both Queue and LinkedList

¢ Method signatures in both classes
must match

In C++ class adapters are safer

thanks to private inheritance

The UML

Object Adapter:

[ciem |+ rager |

[easestr |

Adaptee

|
SpecificRequest() ‘

___________ ‘adaptee—>SpecificRequest()

Design Patterns

David Talby

2"own/10°1/3"

The UML I

Class Adapter:

‘ Client }—-1Target ‘ ‘Adnp(se

(implementation}

,,,,,,,, .

Request() O

Known Uses
Using external libraries
Reusing non O-O code
Limiting access to classes

18. Facade

Provide a unified interface to a set of

interfaces of subsystems

For example, a compiler is divided

into many parts

& Scanner, parser, syntax tree data
structure, optimizers, generation, ...

Most clients just compile files, and

don’t need to access inner parts

The Requirements
Provide a simple, easy to use and
remember interface for compilation

Keep the flexibility to tweak inner
parts when needed

The Solution

Define a facade Compiler class as
the entry point to the system

T

|] o

The UML

sUbsystem classes

Design Patterns

David Talby

The Fine Print

Advantages of a fagade:
Most users will use a very simple
interface for the complex system
Clients are decoupled from the system
+ Makes it easier to replace the entire
system with another
Packages (Java) and namespaces
(C++) are ways to define “systems”
of classes and decide which classes
are visible to the system’s clients

2"own/10°1/3"

Known Uses

A Compiler or XML Parser
Browsing objects at runtime

The Choices O-O operating system
The File and Memory systems

19. Template Method

Define the skeleton of an algorithm
and let subclasses complete it

For example, a generic binary tree
class or sort algorithm cannot be
fully implemented until a comparison
operator is defined

How do we implement everything
except the missing part?

The Requirements

Code once all parts of an algorithm
that can be reused

Let clients fill in the gaps

The Solution

Code the skeleton in a class where
only the missing parts are abstract:

class BinaryTree<G>
{
void add(G* item) {
if (compare(item, root))
// usual logic
}
int compare(G* gl, G* g2) = 0;

Design Patterns

The Solution Il

Useful for defining comparable

objects in general:
class Comparable
{
operator <(Comparable x) = 0;
operator >=(Comparable x) {
return ! (this < x);
}
operator >(Comparable x) {
return ! (this < x) &&
! (this == x);

David Talby

The Solution llI

A very common pattern:

class HelpHandler
{
handleHelp() {
if (successor != NULL)
successor->handleHelp() ;
}

HelpHandler* successor = NULL;

2"own/10°1/3"

The UML

AbstractClass

BrimitiveOperationt)
PrimitiveOperation1() g
PrimitveOperalion2() PrimitiveOperation2()

ConcreteClass

PrimitiveOperation ()
PrimitiveOperafion2()

The Fine Print

The template method is public, but
the ones it calls should be protected
The called methods can be declared
with an empty implementation if this
is a common default

This template can be replaced by
passing the missing function as a
template parameter

Java sometimes requires more
coding due to single inheritance

Known Uses
So fundamental that it can be found
almost anywhere

Factory Method is a kind of template
method specialized for creation

20. Singleton

Ensure that only one instance of a
class exists, and provide a global
access point to it

For example, ensure that there’s
one WindowManager, FileManager Or
PrintSpooler object in the system
Desirable to encapsulate the
instance and responsibility for its
creation in the class

Design Patterns

The Solution

0-0O languages support methods
shared by all objects of a class

& static in C++ and Java

class methods in SmallTalk, Delphi
The singleton class has a reference
to its single instance
The instance has a getter method
which initializes it on the first request

The class’s constructor is protected
to prevent creating other instances

David Talby

2"own/10°1/3"

The Solution

class Spooler {

public:
static Spooler* instance() {
if (_instance == NULL)

_instance = new Spooler();
return _instance;
}
protected:
Spooler() { ... }
private:
static Spooler* _instance = 0;

The UML

Singleton

o
SingletonOperation()
GetSingletonDatal}

staic uniquelnsiance
sigletonData

The Fine Print

Passing arguments for creation can
be done with a create(...) method
Making the constructor public makes
it possible to create other instance
except the “main” one

¢ Not a recommended style
instance() can manage concurrent
access or manage a list of instances
Access to singletons is often a
bottleneck in concurrent systems

Known Uses

Every system has singletons!

WindowManager, PrinterManager,
FileManager, SecurityManager, ...

Class Application in a framework
Log and error reporting classes
With other design patterns

21. Bridge

Separate an abstraction from its
implementations

For example, a program must run on
several platforms

An Entire Hierarchy of Interfaces
must be supported on each platform
Using Abstract Factory alone would
result in a class per platform per
interface — too many classes!

22. Interpreter

Given a language, define a data
structure for representing sentences
along with an interpreter for it

For example, a program must
interpret code or form layout, or
support search with regular
expression and logical criteria

Not covered here

Design Patterns

David Talby

23. Momento

Without violating encapsulation,
store an object’s internal state so
that it can be restored later

For example, a program must store
a simulation’s data structures before
a random or approximation action,
and undo must be supported

Not covered here

2"own/10°1/3"

Patterns Summary

0-O concepts are simple

Objects, Classes, Interfaces
Inheritance vs. Composition
Open-Closed Principle
Single Choice Principle
Pattern of patterns

The Benefits of Patterns

Finding the right classes
Finding them faster
Common design jargon
Consistent format
Coded infrastructures

and above all:

Pattern = Documented Experience

Design Patterns

