Overview RTTI and Reflection

Static typing

Run-Time Type Information in C++ David Talby
Reflection in Java

Dynamic Proxies in Java

Syntax, uses and misuses for each

Advantages of Static Typing Typing
Reliability

Relative cost of error correction, from Boehm,
“Software Engineering Economics", 1981:

Static Typing, or Strong Typing:

- The type of every object and expression must be
specified and checked at compile-time

- Or: All type violations are caught at compile-tine

Dynamic Typing or Weak Typing:

] - Type violations are only detected at run-time,
PROWCTS What is a type violation?

- Given C x; x.foo(arg); C has no method/operator joo

= TIL FROIECT - Or, arg is not an acceptable argument for it

Advantages IT
Readability

- Part of an interface, like Design by Contract
Efficiency

- Constant-time dynamic binding

- Static binding and inlining

- Optimized machine-code instructions

Run-Time Type Information

David Talby

Static Typing # Static Binding
- Object-oriented language usually use
static typing with dynamic binding

Polymorphic Collections

A list<Shape*> is polymorphic
How to count rectangles, or find maxyradius?

A

The language requires a mechanism to test
whether a given object is of a given type

dynamic_cast

Source type must be polymorphic
- But not the target type
- Dynamic casts aren't useful for static types

This enables an efficient implementation:
Hold a pointer to npe info in the v-table

my_circle: .
and Type_info: type_info:
i type_info “Circle”

(bases) “Shapq

dynamic_cast TIT

Fails if the source objecthas more than
one unique target base class

— |
I

Virtual inheritance: Ordinary inheritance:
each D has one A each D has two A’s

Run-Time Type Information

A mechanism for safely bypassing typing
Controversial: can be easily abused
Capabilities (C++):

- Testing if an object is of a given type

- Testing if two objects are of the same type
- Retrieving the name of a type

- Imposing a full order on types

C++: dynamic_cast and typeid operators
Java: casting and instanceof operator

Polymorphic Collections IT

double max_radiu
for (iterator<Shape*> it = list->be I=iSt>end(); it++)
if (Circle* ¢ = dynamic cast<C

lTl‘(L\il”(lkillIS = max{ lTll'l\il"(h,]H.l,\. c->radius());

In Java: combine instanceof and C-style cast
Cast will succeed for descendants of Circlg
- Obeys Liskov Substitution Principle

dynamic_cast II

Can be used for pointers and references

- If cast to a pointer failed, returnQ

- If cast to areferece failed, throw sa
In Java

-~ The instanceof always returns a boolean

- All casts are dynamic (checked): CastExXeepiion
What about siazic cast?

- Equivalent to deprecated C-style casts: (Circle)
- More efficient: doesn't examine source object

- Required to cast from void

- Best avoided - dynamic cast is safer

More Uses for RTTI

Recelvmg an obJecT of uncerTam content

= Ever‘yone getsa bonus except The 72
- Best solution: viriual bonus() in Worker

- If Worker can't be changed (no source, many
dependencies) - RTTI is the only solution

Misuses of RTTI IT

Using over-generic base classes
class List {

list<Shape*
This poses several problems
- Forces casting in source code
- Less efficient
- Reduces compiler type-checking
This is why Java will have generics

RTTI & Casting Guidelines

There are very few correct uses

- Polymorphic collections

- Validation of an received object

- Compromise, when a class can't be changed
Usually, casting means a design errop

- Excluding casting between primitive types
- Excluding the current Java collections
Static typing also tests your design

The typeid operator

Returns the npe info* of an object
type_info supports comparison

- Several type_info* may exist in memory for
the same type - required for DLLs

- Compare its objects, not pointers to'objects
type_info has a before() order function
- Unrelated to inheritance relationships
type_info has a char* name() function

- Useful for printing debug messages

- Useful for keying more per-type data

Misuses of RTTI

It's easy to use RTTI to violate basics
- Single Choice Principle
- Open-Closed Principle

Virtual functions are required insteadiof:

Misuses of RTTI IIT

Cas‘rmg instead of using adapters

1ce Storable { int objectld(); }

ice Book {

retName() {
Autl

class Booklmpl implements Book, Storal
“Clients should only work with interfaces
- Only some clients should know about objetd)
Accessing objecild() requires casting

Violates Liskov Substitution Principle

n

What is Reflection?

Library and runtime support for:

- Creating class instances and arrays

- Access and modify fields of objects, classes
and elements of arrays

- Invoke methods on objects and classes

Java is the most widely used example

- The java.lang.reflect package

- Inja o: classes Class and Object

All under the Java security model

Reflection API - Class IT

class Class also provides:
Field getField(String name); // and 'declared’ version
Field[] getFields(); // and 'declared’ version
Class getDeclaringClass(); // for inner classes
Class[] getInterfaces();
Method getMethod(String name, Class[] params);
Method[] getMethods(); // and 'declared versioh
String getName();
String getPackage();
int getModifiers();

Reflection API - Members

<<interface>>

Member AccessibleObject

SClass getDeclaringClass()
Fint getModifiers()
®String getName()

SsetAccessible(boolean flag)
Sboolean isAccessible()

Reflection

David Talby

Reflection API - Class

class Object has a getClass() method:

System.out.println(o etClass().getNeumied)),

class Class provides:
static Class forName(String className);
Class[] getClasses(); // all inner classes
Class[] getDeclaredClasses(); // excludes inherited
ClassLoader getClassLoader();
Constructor getConstructor(Class[] parameters);
Constructor[] getConstructors();
Constructor[] getDeclaredConstructors();

Reflection API - Class IIT

class Class even provides:
Class getSuperClass();
boolean isArray();
boolean isAssignableFrom(Class c);
boolean isInstance(Class c):
boolean isInterface();
boolean isPrimitive();
Object[] getSigners(); //and other security data
String toString():
Object newInstance(); // uses default constructor

Reflection API - Others

class Array

- Getters and setters by index, geibengih)

— newlnsiance() of single- or multi-dimensienal
class Modifier

- Check return values of gerModifiers(

class ReflectPermission

- Beyond normal access/modify/create checks
- Currently only supports SuppressA s
Several exception types (ignored here)

Object Inspection

Printing an object fields' names.and values
! tFi 5

Pr‘m‘rmg an mher‘l‘rqnce tree, glven a class name
y ssName);

tName());

Serialization IT

Non-primitive reference objects must be
recursively written as XML elements
() to test each fieldtype

aren't wr‘lh‘en

Objects must be r‘ebUII‘r fr‘om XML da‘ra

-~ Use Class.forName() to find object's class,
) to find fields, and 7 (

Java serialization is implemented this way
- But writes to a more efficient binary format

Reflection APT - Members IT

Constructor Field

¥Class]] getExceptionTypes() ®Object get(Object o)
®Class[] getParameterTypes() ®set(Object o, Object value)
®Object newlnstance(Object[] args) ®Class getType()

Method

plus getters and 5

SClass[] getExceptionTypes() setters for
SClass[] getParamater Types() primitive types
SClass getReturnType()

SObject invoke(Object o, Object]] args)

What is it good for?

Development Tools

- Inspectors of JavaBeans

- Debuggers, class browsers

Runtime services

- Object Serialization

- Object-relational database mapping
Frameworks

- Hooks through a class naming convention
- Plug-ins and add-ins

Serialization
Wr‘n’rmg an obJecT to XML:

Plug-Ins II

The weapons array is a list.of prototypes
- Alternative: Hold Class[] array

Multiple interfaces are easy to support

- Use Class.getlnterfaces() on downloaded files
All iweapon code is type-safe

- And secure, if there's a security policy

There are better plug-in implementations
- See class ClassLoader

- Classes can be stored and used from the net

Dynamic Proxies

David Talby

Invocation Handlers

Start by defining the handler:
- interface java.lang.reflect.InvocationHandler
- With a single method:

Object invoke(// return value of call
Object proxy, // call's target
Method method, // the method called
Object[]args) // method's arguments

The “real” call made: proxy.method(args)

- Simplest invoke(): method.invoke(proxy,arkgs)

Plug-Ins

Your hew game enables downloading new
weapons from the web

Define an interface for IWeapon

Download *.class files of new stuff into:
- Adirectory called c:\MyGame\weapons

- Or afile called c:\MyGame\weapons. jar

- where c:\MyGame is the home class path
When the program starts:
S S =] :Names(

Reflection Guidelines

© Reflection is a hew reuse mechanism
® It's a very expensive one

Use it when field and class names as
strings were necessary anyway

- Class browsers and debuggers, serialization
to files or databases, plug-in class names

Use it to write very generic frameworks
- Plug-ins and hooks to be written by othens
Don't use it just to show off...

Dynamic Proxies

Support for creating classes at runtime

- Each such class implements interface(s)

- Every method call to the class will'be
delegated to a handler, using reflection

- The created class is a proxy for its handler

Applications

- Aspect-Oriented Programming: standard
error handling, log & debug for all objects

- Creating dynamic event handlers

Creating a Proxy Instance

A proxy class has one constructor which takes
one argument - the invocation handler

Given a proxy class, find and invoke this
consfr‘ucfor‘

(! mdler() });
Class Proxy pr‘ovndes a shor"rcu’r

Foo f= (Foo) Prox

A Debugging Example

We'll write an extremely generic class, that can
wrap any object and print a debug message
before and after every method call'to it
Instead of a public constructor, it willhave a
static factory method to encapsulate the proxy
instance creation

It will use /nvocationTargetException to be
exception-neutral to the debugged object

A Debugging Example ITI

The inyoke() method

return !

Creating a Proxy Class

Defme the proxy interface:

Use java, Icmg r‘eflecf Proxy static methods to
create the proxy class:
Class Prox; g

Foo.class.getClassLoader(), new Class[] { Foo\classss
First ar‘gumen‘r the new class's class loader
2nd argument - list of implemented interfaces
The expression C.c
version of C

A Few More Details

We |gnor'ed a bunch of exceptions
rgumentExc if proxy class can't exist
edThrow eption if the handler throws
an excepTlon the interface didn't declare
on if return value type is wrong
— InvocationTargetException wraps checked exceptions

A proxy class's name is undefined
- But begins with Proxy$

Primitive types are wrapped by /nteger, Boolean,
and so on for argument and return values

The syntax is very unreadable!
- Right, but it can be encapsulated inside the handler

A Debugging Example IT

The class's deflnmon and construction:

private ()/
pulb
return java

private D,

Dynamic Proxies: Summary

Applications similar to above example:

- Log every exception to a file and.rethrow it
- Apply an additional security policy.

Other kinds of applications exist'as well
- Dynamic event listeners in Swing

- In general, being an observer to many
different objects or interfaces at once

It's a very new feature - from JDK 1.3
- There may be other future applications

A Debugging Example IV

Now that the handler is written, it's very

Foo foo = (Foo)De y.newlnstance(new Fooluplohs

This is not much different than using any
proxy or decorator

Just much, much slower

