David Talby

2"own/10°1/3"

Design Patterns

David Talby

This Lecture

Handle Synchronization & Events
& Observer

Simplify Complex Interactions

& Mediator

Change Behavior Dynamically

& Strategy, State

Undo, Macros and Versions

¢ Command

10. Observer

Define a one-to-many dependency
between objects, so that changing
one automatically updates others
For example, a spreadsheet and
several charts of it are open
Changing data in a window should
be immediately reflected in all

The Requirements
Document and Chart classes must
not know each other, for reuse

Easily add new kinds of charts or
other links

A dynamic number of charts

The Solution

Terminology

& Subject and Observer

¢ Publisher and Subscriber

e Listeners

Subjects attach and detach
listeners, and notify of events
Clients update themselves after
receiving a notification

The Solution Il

Here’s an abstract observer:
class Observer {

void update() = 0;
}
Concrete observers such as
class Chart will inherit Observer

Design Patterns

David Talby

2"own/10°1/3"

The Solution llI

Here's the (concrete!) subject:
class Subject {
void attach(Observer *o0)
{ observers.add(o); }
void detach (Observer *0)
{ observers.remove(o); }
void notify() {
for i in observers do

o->update() ;
}
protected:
List observers;

}

The Solution IV

Both subject and observer will
usually inherit from other classes
as well

If multiple inheritance is not
available, the observer must be a
separate class that has a reference
to the chart object and updates it
Java has a special mechanism —
Inner classes — to make this easier

The UML

Subject observers W
Aach(Observer)
Detach{Observes) =

for all 0 in observers [

Notfy) o----~ -1 o) A
4 ConcreteObserver
=

5 subject |- { observerState =

Update() s ‘Subjeci-»GetStatel)
Gorstate() 0=~ N observerState
Setstatel)

subjectState

The Fine Print

Observing more than one subject

& Update must include an extra
argument to tell who is updating

Observing only certain events

Attach must include an extra
argument to tell which events
interest this observer

Observing small changes

& Update includes arguments to tell
what changed, for efficiency

The Fine Print I

Who calls Notify?
Greedy — the subjects, on change
& Lazy — the observers, on query
Common errors

+ Forgetting to detach an object when
it is destroyed

+ Calling Notify in an inconsistent state

Java includes Observer as part of
the standard libraries

#In package java.util

Known Uses
All frameworks of all kinds
& MFC, COM, Java, EJB, MVC, ...
Handle user interface events
Handle asynchronous messages

Design Patterns

David Talby

11. Mediator

Encapsulate a complex interaction
to preserve loose coupling

Prevent many inter-connections
between classes, which means
that changing their behavior
requires subclassing all of them
For example, a dialog box includes
many interactions of its widgets.
How do we reuse the widgets?

2"own/10°1/3"

The Requirements

A widget is a kind of colleague

Colleague don’'t know about the
interactions they participate in

Can be reused for different dialogs
Colleagues don’t know about others
¢ Allow only O(n) connections

Easy to change interactions

The Solution

All colleagues talk with a mediator
The mediator knows all colleagues

Whenever a colleague changes, it
notifies its mediator

The mediator codes the interaction
logic, and calls operations on other
colleagues

The Solution |l
An example interaction:

Mediator Colleagues
aClient aFontDialogDirector aListBox anEntryField

WidgetChanged()

GetSelection()

The Solution llI

Only O(n) connections:

aFontDialogDirector

Design Patterns

ConereteColleague2

David Talby

2"own/10°1/3"

The Fine Print

The interaction logic (mediator) and
colleagues can be reused separately
and subclassed separately

Protocols are simpler since n-to-1
relations replace n-to-m relations
Abstract mediator class is unnecessary
if there’s only one mediator

Observer or mediator?

¢ One-to-many or many-to-many?

+ Should the logic be centralized?

Known Uses

Widgets in a user interface
< Delphi and VB “hide” this pattern
Connectivity constraints in diagrams

12. Strategy

A program must switch between
complex algorithms dynamically
For example, a document editor
has several rendering algorithms,
with different time/beauty tradeoffs
Word is a common example

The Requirements

Algorithms are complex, would be
havoc to have them inside the one
Document class

Switch algorithms dynamically
Easy to add new algorithms

The Solution

Define an abstract class that
represents an algorithm:
class Renderer {

void render (Document *d) = 0;
}
Each specific algorithm will be a
descendant class
FastRenderer, TexRenderer, ..

The Solution Il

The document itself chooses the
rendering algorithm:
class Document {
render () {
renderer->render (this) ;
}
setFastRendering () {
renderer = new FastRenderer() ;
}
private: Renderer *renderer;

}

Design Patterns

David Talby

The GoF UML

2"own/10°1/3"

The Fine Print

Inheriting a strategy would deny a
dynamic switch

Some strategies may not use all
information passed from Context
Strategies can be stateless, and
then they can be shared

In some cases strategy objects are
optional

I [
| | |

Document rendering programs
Compiler code optimizations
Different heuristic algorithms
(games, portfolio selection)
Different memory management
schemes (Booch components)
Validation of dialog boxes (optional
strategies, Borland ObjectWindows)

13. State

Allow an object to alter its behavior
when its internal state changes
For example, most methods of a
TCPConnection object behave in
different ways when the connection
is closed, established or listening
How do we encapsulate the logic
and data of every state?

The Requirements

A class has a state diagram, and
many methods behave in wildly
different ways in different states
When in a state, only allocate
memory for data of that state

The logic of a specific state should
be encapsulated

Design Patterns

Pattern of Patterns

Encapsulate the varying aspect

State of an object

Interfaces

o Let's have a TCPState interface that
has all the state-sensitive methods

Inheritance describes variants

& TCPEstablished, TCPListen and
TCPClosed implement the interface

Composition allows a dynamic

choice between variants

David Talby 2"own/10°1/3"

The Solution Il The UML

A TCPConnection codes state

transitions and refers to a TCPState state siare
i AN
()

state

Owan()"i'i'fi Open() state-~Handle(} 1 -
el) \ | |
‘ Handle() ‘ ‘ Handio ‘

state—-Open() S‘ is TCPListen TCPClosed

Open() Open() Open(}

Closel) Closel) Close()

The Fine Print Known Uses

In complex cases it is better to let Streams and connections
states define transitions, by addlng Different tools on a drawing program
a SetState method to Context & Select, Erase, Crop, Rotate, Add, ...

States may be created on-demand
or on Context's creation

This pattern is really a workaround
for the lack of dynamic inheritance

State is very much like Strategy
+ State = Many (small) actions
¢ Strategy = One (complex) action

14. Command The Requirements |
Encapsulate commands as objects Undo / redo at unlimited depth
We’'ll take the the uses one by one: Only store relevant data for undo

¢ Undo/Redo Easy to add commands
& Macros

& Queues and logs
& \ersion control

& Crash recovery

¢ Message Grouping

Design Patterns 6

David Talby

The Solution

Repesent a command as a class:

class Command

{

public:
virtual void execute() = 0;
virtual void undo() = 0;

2"own/10°1/3"

The Solution Il

Concrete commands hold undo data:
class Deleteline : public Command {
void execute() {
line = document->getLine() ;
document->removelLine() ;
}
void undo() {
document->addLine(line) ;
}
private:
Line line;

The Solution llI

Keep a list of executed commands:
Array<Command*> commands;

int i;

When you click the ‘Undo’ button:
commands (i) ->undo () ;

i--;

When you click the ‘Redo’ button:
commands (i) ->execute() ;

i++;

The Solution IV

Whenever a command is activated:
commands . add (new_command) ;

i = commands.count() ;

When you save a document:
document->save () ;
commands.clear() ;

i=0;

The commands list may or may not
be limited in size

Only relevant undo data is kept

The Requirements I

Macros are a series of commands
Any command with any of its
options may be used

There are also for and while loops, if
statements, calls to other macros...

Design Patterns

The Solution

A macro is a Composite Command

c->Execute()

if, for, while are Decorator Commands

David Talby

2"own/10°1/3"

The Requirements i

Commands are accessible from
menus as well as toolbars

A command may be available from
more than one place

We'd like to configure the menus
and toolbars at runtime

The Solution

Each Menultem or Toolbarltem
refers to its command object

Just as it refers to an image

The command can be configured
& Less command classes

Macros fit in the picture as well!

The Requirements IV

Keep multiple versions of a
document

When saving, only store the
changes from the previous version

The Solution

The changes are exactly the list of
commands since the last version
was loaded

In addition, a compaction algorithm
is needed for commands that cancel
each other

Save = Serialize the compacted list

Load = Read early version and call
execute on command lists

(More!) Known Uses

Programs log commands to disk so
they can be used in case of a crash
& Works, since commands are small

Usually in a background thread
Commands can be grouped and
sent as one command to a server

Grouping for efficient communication
Grouping to define a transaction

& Works even for user defined macros!

Summary

Pattern of patterns

Encapsulate the varying aspect
¢ Interfaces

& Inheritance describes variants

Composition allows a dynamic
choice between variants

Design patterns are old, well known
and thoroughly tested ideas

Over twenty years!

Design Patterns

