
Chapter 7: The Virtual Machine 1

7. The Virtual Machine II: Flow Control1

It’s like building something where you don’t have to order the cement.
 You can create a world of your own, your own environment,

and never leave this room.
(Ken Thompson, 1983 Turing Award lecture)

Chapter 6 introduced the notion of a virtual machine (VM), and ended with the construction of a
basic VM implementation over the Hack platform. In this chapter we continue to describe the
virtual machine abstraction, language, and implementation. In particular, we focus on a variety
of stack-based mechanisms designed to handle nested subroutine calls (procedures, methods,
functions) of procedural or object-oriented languages. As the chapter progresses, we extend the
previously built basic VM implementation, ending with a full-scale VM translator. This
translator will serve as the backend of the compiler that we will build in chapters 9 and 10,
following the introduction of a high-level object-based language in chapter 8.

In any “Great Gems in Computer Science” contest, stack processing will be a strong finalist. The
previous chapter showed how arithmetic and Boolean expressions could be calculated by
elementary stack operations. In this chapter we show how this remarkably simple data structure
can further support remarkably complex tasks like dynamic memory management, nested
subroutine processing, and recursion. Stack processing is one of the secret weapons that make the
implementation of modern programming languages less formidable than seen at first sight.

7.1 Background

The last chapter described the data manipulation commands of a stack-based virtual machine:
arithmetic operations performed on stack elements as well as commands for moving data between
the stack and the memory. In addition to these data-oriented commands, every virtual machine
must have some form of control-oriented commands, allowing the construction of loops,
conditional execution, and subroutine calls. While the implementation of the flow control
commands needed to support loops and conditional execution is rather simple, the
implementation of subroutine calls is rather challenging. Hence, virtual machines that implement
subroutine calls as a primitive feature deliver a significant and useful abstraction. The Java VM
as well as the VM we describe in this book both provide such a primitive. As will be seen
throughout the chapter, the implementation of subroutine calls can be elegantly modeled on a
stack structure.

Program flow

The default execution of computer programs is linear, one command after the other. In some
cases this sequential flow needs to be broken, e.g. in order to embark on another iteration of a
loop. In low-level programming, this is done by instructing the computer to continue the program
execution at some specified part of the program other than in the next instruction. The re-
direction directive is implemented by a “goto destination” command, also called “jump” or

1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd

Chapter 7: The Virtual Machine 2

“branch”. The destination specification can take several forms, the most primitive being the
physical address of the instruction that should be executed next. A slightly more abstract
redirection mechanism is established by assigning a symbolic label to the destination command
and specifying this label (rather than the physical address) as the jump target. This variation
requires that the language will also have some sort of a labeling command.

This basic goto mechanism described above can be easily modified to affect conditional
branching as well. Instead of instructing the computer to jump to some destination
unconditionally, a conditional branch command instructs to take the jump only if a certain
condition is true; if the condition is false, the regular flow of control should continue. Different
virtual machines provide different ways to specify the jump condition. In stack-based machines,
the simplest and most natural approach is to condition the jump on the value of the stack’s top
element: if it’s not zero, jump to the specified destination; otherwise execute the next command
in the program.

The resulting set of low-level program flow commands (labeling, goto label, and if condition then
goto label) can be used by compilers to translate all the conditional and repetition constructs
found in high-level programming languages. Fig. 7-1 gives two typical examples.

 High-level source code Compiled low-level code

if (cond) code for computing cond
 s1 if-false-goto L1
else code for executing s1
 s2 goto L2
… label L1
 code for executing s2
 label L2
 …

while (cond) label L1
 s1 code for computing cond
… if-false-goto L2
 code for executing s1
 goto L1
 label L2
 …

Figure 7-1: VM programming: From high-level code to pseudo VM code.

Subroutine Calls

Any programming language is characterized by a fixed repertoire of elementary commands. The
key abstraction mechanism provided by modern languages is the freedom to extend this
repertoire with high-level operations, designed to meet various programming needs. Each high-
level operation has an interface specifying how it can be used, and an implementation consisting

Chapter 7: The Virtual Machine 3

of elementary commands and previously defined high-level operations. In procedural languages,
the high-level operations are called subroutines, procedures, or functions. In object-oriented
languages they are usually called methods, and are typically grouped into classes. In this chapter
we will use the term subroutine to refer to all of these high-level programming constructs.

The use of a subroutine is typically referred to as a call operation. Ideally, the part of the
program that calls the subroutine -- the caller -- should treat the subroutine like any other basic
operation in the language. To illustrate, the caller typically contains a sequence of commands
like <c1, c2, call s1, c3, call s2, c4, …>, where the c’s are elementary commands and the s’s
are subroutine names. In other words, the caller assumes that the code of the called subroutine
will get executed -- somehow -- and that following the subroutine’s termination the flow of
control will return -- somehow -- to the next instruction in the caller’s code. The freedom to
ignore these implementation details enables the programmer to write programs in abstract terms,
using high-level operations closer to the world of algorithmic thought than to the world of
machine execution. Of course the more abstract is the high level, the more work we have to do at
the low level. In particular, in order to support subroutine calls, VM implementations must
handle several issues:

• Passing parameters to the called subroutine, and optionally returning a value from the
subroutine back to the caller;

• Jumping to execute the subroutine’s code;

• Allocating memory space for the local variables of the called subroutine, and freeing the
memory when it is no longer needed;

• When the called subroutine terminates, returning (jumping back) to the command
following the call operation in the caller’s code.

These issues must be handled in a way that takes into account that subroutine calls can be
arbitrarily nested, i.e. one subroutine may call another subroutine, which may then call another
subroutine, and so on and so forth. To add to the complexity, we also need to support recursion,
meaning that subroutines are allowed to call themselves, and each recursion level must be
executed independently of the other calls. To sum up, the low-level handling of subroutine calls
is an intricate task.

The property that makes this task tractable is the inherently hierarchical nature of any multi-
subroutine program: the called subroutine must complete its execution before the caller can
resume its own execution. This protocol implies a Last-In-First-Out (LIFO) structure,
resembling (conceptually) a stack of active subroutines. All the layers in the stack are waiting for
the top layer to complete its execution, at which point the stack become shorter and execution
resumes at the level just below the previous top layer. Indeed, users of high-level programming
languages often encounter terms like “function-call-stack,” “stack overflow,” and so on.

Fig. 7.2 illustrates a method calls pattern in some high-level program, along with some run-time
checkpoints and the states of the abstract method-call stack associated with them.

Chapter 7: The Virtual Machine 4

Method A:
 Call B
 Call C

Method B:
 Call C
 Call D

Method C:
 Call D

Method D:
 …

Start A
 Start B
 Start C
 Start D
 Stack state
 End D
 End C
 Start D
 Stack state
 End D
 End B
 Start C
 Start D
 End D
 End C
End A

 A
 B
 C
 D

A
B
D

Figure 7-2: Subroutine calls and the abstract call-stack states generated by their execution.

We now describe some of the points that need to be addressed when providing such a call-and-
return subroutine mechanism. Any particular VM implementation will have to handle all of
them, as well as take care of coordinating between these tasks as well as with the low level details
of implementation. The complete set of data that is kept for each subroutine invocation is usually
called a “frame”, and it is these frames that are actually kept in the call-stack.

Return Address

The VM implementation of the “call subName” command is straightforward. Since the name
of the target subroutine is specified in the command, the VM implementation simply has to
resolve the name to an address in memory, and then jump to execute the instruction stored in that
address.

Returning from the called subroutine via a “return” command is trickier, as the command
specifies no return address. Indeed, the caller’s anonymity is inherent in the very notion of a
subroutine. Subroutines like sqrt(x) or modulu(x,y) are designed to serve many unknown
callers, implying that the return address cannot be part of their code. Thus a “return” command
should be interpreted as follows: re-direct the program’s execution to the command following the
command that called the current subroutine, wherever this command may be in the program’s
code. The memory location to which we have to return is called return address.

One way to implement this calling protocol is to have the VM implementation save the return
address in advance. This piece of information must be saved just before the subroutine is called,
and retrieved just after the subroutine exits. This store-and-recall setting lends itself perfectly to a
stack storage paradigm: the VM implementation can push the return address onto the stack when
a subroutine is called, and pop it from the stack when the subroutine returns.

Chapter 7: The Virtual Machine 5

Parameter Passing

An important requirement in well-designed languages is that the high-level operations defined by
the programmer will have the same “look and feel” as that of elementary commands. Consider for
example the operations add and of raise to a power. VM implementations will typically feature
the former as an elementary operation, while the latter may be written as a subroutine. In spite of
their different implementations, we would like to use both operations in the same way. Thus,
assuming that we have already written a Power(x,y) subroutine that computes x to the y’th
power, we would like to be able to write VM code segments like those depicted in Prog. 7-3.

 // x+3 // x^3 // (x^3+2)^y

push x push x push x
push 3 push 3 push 3
add call power call power
 push 2
 add
 push y
 call power

PROGRAM 7-3: VM elementary commands (left) and high-level operations
(middle) have the same look-and-feel in terms of arguments usage and return
values. Thus they can be easily mixed together (right).

Note that from the caller’s perspective, any subroutine -- no matter how complex -- is viewed and
treated as a black box operation. In particular, just like with primitive arithmetic VM commands,
the caller expects the subroutine to remove its arguments from the stack and replace them with a
return value (which may be ignored). Thus, the caller can pass the arguments to the subroutine
by pushing them onto the stack; the called subroutine pops the arguments from the stack, carries
out its computation, and then pushes a return value onto the stack. The result is a simple and
natural parameter passing protocol requiring no memory beyond the already available stack
structure.

Allocation of Local Variables

Subroutines usually use local variables for temporary storage. These local variables must be
stored in memory only during the subroutine call’s lifetime, i.e. from the point the subroutine
starts executing until a return command is encountered, at which point the memory space
allocated to the local variables can be freed. Further, when the subroutine is used recursively,
each recursion level must have its own set of local variables. How can the VM implementation
effect this dynamic memory management?

Once again, the stack comes to the rescue. Although the subroutines calling chain may be
arbitrarily deep as well as recursive, only one subroutine (or subroutine instance in case of
recursion) executes at the end of the chain, while all the other subroutines up the calling chain are
waiting. The VM implementation can exploit this last-in-first-out processing model by storing
the local variables of all the waiting subroutines on the stack, and reinstating them when control
returns to the subroutine to which they belong.
.

Chapter 7: The Virtual Machine 6

7.2 VM Specification, Part II

This section extends the basic VM Specification (section 6.2) with program flow and function
calling commands. This completes the overall VM speciation.

7.2.1 Program Flow Commands

The VM language features three program flow commands:

label c This command labels the current location in the function’s code. Only labeled
locations can be jumped to from other parts of the program. The label c is an
arbitrary string composed of letters, numbers, and the special characters “_”,
“:”, and “.”. The scope of this label is the current function.

goto c This command effects a "goto" operation, causing the program to continue
execution from the location labeled by c. The jump destination must be in the
same function.

if-goto c This command effects a "conditional goto" operation. The command pops the
topmost value from the stack and goes to label c if the value is non-zero. The
destination must be in the same function.

TABLE 7-4: Program flow commands.

7.2.2 Function-related Commands

Each function has a symbolic name that is used globally to call it. The function name is an
arbitrary string composed of letters, numbers, and the special characters “_” and “.”. (We
expect that a method m in class C in some high-level language will be translated by the language
compiler to a VM function named C.m).

The VM language features three function-related commands:

function f n Here starts the code of a function named f, which has n local variables;

call f m Call function f, stating that m arguments have already been pushed unto
the stack;

return Return to the calling function.

TABLE 7-5: Function calling commands.

Chapter 7: The Virtual Machine 7

7.2.2.1 The Calling Protocol

The events of calling a function and returning from a function can be viewed from three different
perspectives, as follows.

The calling function view:

1. Before calling the function, the caller must push all the arguments unto the stack;

2. The caller invokes the function f using the command “call f “;

3. After the function returns, all arguments have disappeared from the stack and the function’s
return value (that always exists) appears at the top of the stack;

4. All the memory segments (e.g. arguments and locals) of the caller are the same as
before the call, except for the Temp segment that is now undefined.

The called function view:

1. Upon getting called, the working stack is empty, the local variables segment has been
allocated and initialized to zero, the argument segment is initialized with the arguments
passed by the caller, the static segment is set to the static segment of the file to which
the called function belongs, and the T-segments are the same as they were in the calling
function;

2. Just before returning, a return value must be pushed onto the stack.

The VM implementation view: The function call protocol described above is implemented by the
VM implementation, as follows.

Upon calling a function, the VM implementation:
• Saves the return address and the segment pointers of the calling function, except for temp,

which is not saved;
• Allocates, and initializes to zero, as many local variables as needed by the called function;
• Sets the local and argument segments of the called function;
• Transfers control to the called function.

Upon returning from a function, the VM implementation:
• Clears the arguments and other junk from the stack;
• Restores the local, argument, this and that segments of the calling function;
• Transfers control back to the calling function, by jumping to the saved return address.

Initialization

When the VM starts running (or is reset) the VM function named “Sys.init” gets executed.

Chapter 7: The Virtual Machine 8

7.3 Implementation

This section describes how to complete the VM implementation that we started to build in
Chapter 6. We begin by describing the intricate stack structure that must be maintained by the
implementation, continue to describe its standard mapping over the Hack platform, and end with
design suggestions and a proposed API for the VM translator. This completes the
implementation notes from Section 6.3, leading to the construction of a full-scale VM
implementation.

The Global Stack

The “internal memory” of the VM is implemented by maintaining a global stack. Each time a
function is called, a new block is added to the global stack. The block consists of the arguments
that were set for the called function, a set of pointers used to save the state of the calling function,
the local variables of the called function (initialized to 0), and an empty working stack for the
called function. Importantly, the called function sees only the tip of this iceberg, , i.e. the
working stack. The rest of the global stack is used only by the VM implementation.

argument n-1

ARG

Saved state of the
calling function.
Used to retrun to, and
resote the segments of,
the calling function
upon returning from the
called function.

saved THIS

saved ARG

return address pointer

saved LCL

local variable 0

local variable 1

. . .
local variable k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

FIGURE 7-6: The global stack: the currently executing function sees only the working
stack. The rest of the global stack is managed by the VM implementation behind the scene.

Chapter 7: The Virtual Machine 9

Example: The factorial (n!) of a given number n can be computed by the bottom-up iterative
formula . A VM program that implements this calculation is given at the top
of Fig. 7-7.

nnn ⋅−⋅⋅⋅=)1(21! K

 function: fact function: mult

 args: n args: x,y

 vars: result,j vars: sum,j

 result=1 sum=0

 j=1 j=y

loop: loop:

 j=j+1 if j==0 goto end

 if j>n goto end sum=sum+x

 result=mult(result,j) j=j-1

 goto loop goto loop

end: end:

 return result return sum

2

call
fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

FIGURE 7-7: The life cycle of function calls: function p (an arbitrary function that needs factorial
services) calls function fact, which then calls mult several times. Vertical arrows depict transfer of
control from one function to another. Full horizontal lines depict the currently running function,
whereas broken horizontal lines depict "waiting" states. At any given point of time, only one function
is running, while all the functions up the calling chain are waiting for it to return. When a function
returns, the function that called it resumes its execution (which typically does something useful with
the value returned by the called function).

Fig. 7-8 shows some snapshots from the global stack that the VM implementation maintains
while the program is running.

Chapter 7: The Virtual Machine 10

just before "call mult"

ARG arg 0 (of fact)

return addr (in p)

LCL (of p)

ARG (of p)

THIS (of p)

working
stack (of fact)

arg 0 (of mult)

arg 1 (of mult)

local 0 (of fact)

local 1 (of fact)

LCL

SP

just after mult is entered just after mult returns

THAT (of p)

ARG

arg 0 (of fact)

return addr (in p)

LCL (of p)

ARG (of p)

THIS (of p)

working
stack (of fact)

arg 0 (of mult)

arg 1 (of mult)

local 0 (of fact)

local 1 (of fact)

LCL

SP

THAT (of p)

return addr (in fact)

LCL (of fact)

ARG (of fact)

THIS (of fact)

0 (local 0 of mult)

0 (local 1 of mult)

THAT (of fact)

ARG arg 0 (of fact)

return addr (in p)

LCL (of p)

ARG (of p)

THIS (of p)

working
stack (of fact)

ret. value (of mult)

local 0 (of fact)

local 1 (of fact)

LCL

SP

THAT (of p)

FIGURE 7-8: Dynamic global stack behavior. We assume that function p (not seen in this figure)
called fact, then fact called mult. If we ignore the middle stack instance, we observe that fact
has set up some arguments and called mult to operate on them (left instance). When mult returns
(right instance), the arguments of the called function have been replaced with the function's return
value. In other words, when the dust clears from the function call, the calling function has received the
service that it has requested, and processing resumes as if nothing happened: the drama of mult's
processing (middle) has left no trace whatsoever on the stack, except for the return value.

Chapter 7: The Virtual Machine 11

7.3.1 Standard Mapping on the Hack Platform, Part II

By standard mapping we refer to a set of guidelines on how to map VM implementations on a
specific target architecture. This section completes the standard mapping of the VM
implementation over the Hack platform, with special emphasis on how to model and manage the
global stack.

Function Calling Protocol

In order to implement the method calling protocol described in Section 7.2.2.1, the VM
implementation should effect the following commands (pseudo-code):

VM command VM Implementation

call f c

push return-address // (using label below)

push LCL // save LCL of calling function

push ARG // save ARG of calling function

push THIS // save THIS of calling function

push THAT // save THAT of calling function

ARG = SP-c-5 // reposition ARG (c=number of args)

LCL = SP // reposition LCL

goto f // transfer control

(return-address) // label for the return address

function f c

(f) // label for function entry

repeat c times: // c = number of local variables

PUSH 0 // initialize all of them to 0

return

FRAME=LCL // FRAME is a temporary variable

RET=*(FRAME-5) // Save return address in a temp. var

*ARG=pop() // reposition return value for caller

SP=ARG+1 // restore SP for caller

THAT=*(FRAME-1) // restore THAT of calling function

THIS=*(FRAME-2) // restore THIS of calling function

ARG=*(FRAME-3) // restore ARG of calling function

LCL=*(FRAME-4) // Restore LCL of calling function

goto RET // GOTO the return-address

TABLE 7-9: VM implementation of the function call commands (in pseudo code).

Chapter 7: The Virtual Machine 12

Assembly Language Symbols

Symbol Usage

“functionName:label”
symbols

Each “label b” command in a VM function f should generate a
globally unique symbol f:b where f is the function name and b is the
label symbol within the function’s code. When translating “goto b”
and “if-goto b” VM commands into the target language, the full
label specification f:b should be used instead of b.

“functionName” labels Each VM function f should generates a symbol f that refers to its
entry point in the instruction memory of the target architecture.

return address symbols Each VM function call should generate a unique symbol that serves
as a return address, i.e. the location of the command following the
call command in the instruction memory of the target architecture.

TABLE 7-10: Special assembly symbols prescribed by the standard mapping.
This table completes Table 6-16.

Bootstrap Code

When the Hack computer is reset, it is wired to fetch and execute the word located in ROM
address 0x0000. Thus the code that starts at address 0x0000 is called “bootstrap code”, as it is
the first thing that gets executed when the computer is reset. With that in mind, VM
implementations over the Hack platform should place the following code in that address:

SP = 0x0100 // initialize the stack pointer

call Sys.init // invoke Sys.init

This bootstrap code sets the stack pointer to its right value and then calls the Sys.init function.
The Sys.init function then calls the “main function” of the “main program” (compilation-
specific concepts that vary from one high level language to another), and enters an infinite loop.

Chapter 7: The Virtual Machine 13

7.3.2 Design Suggestions for the VM implementation

In chapter 6 we proposed implementing the VM translator as a main program consisting of two
modules: parser and code writer. The basic translator built in Project 6 was based on basic
versions of these modules. In order to turn the basic translator into a full-scale VM
implementation, you now have to extend the basic Parser and CodeWriter classes with the
functionality described below.

Parser

If the basic parser that you built according to section 6.3.2 does not already parse the six
commands specified in this chapter, then add their parsing now. Specifically, make sure that the
method getCommandType() returns the constants that correspond to the six commands
described in this chapter: COMMAND_LABEL, COMMAND_GOTO, COMMAND_IF,
COMMAND_FUNCTION, COMMAND_RETURN, COMMAND_CALL.

Code Writer

The basic CodeWriter specified in section 6.3.2 should be augmented with the following
methods.

Void writeInit(): Writes the assembly code that effects the VM initialization (also called
bootstrap code). This code should be placed in the ROM beginning in memory location
0x0000.

Void writeLabel(Sring label): Writes the assembly code that is the translation of the
given label command.

Void writeGoto(String label): Writes the assembly code that is the translation of the
given goto command.

Void writeIf(String label): Writes the assembly code that is the translation of the given
if-goto command.

Void writeCall(String functionName, int numArgs): Writes the assembly code
that is the translation of the given Call command.

Void writeReturn(): Writes the assembly code that is the translation of the given Return
command.

Void writeFunction(String functionName, int numLocals): Writes the assembly
code that is the translation of the given Function command.

7.4 Perspective

Work in progress.

Chapter 7: The Virtual Machine 14

7.5 Build it

Chapter 6 focused on building a basic VM translator, designed to implement the arithmetic and
memory access commands of the VM language. This section describes how to complete this basic
program into a full-scale VM implementation over the Hack platform.

Objective: Extend the basic VM translator built in project 6 with the ability to handle the
program flow and function call commands specified in section 7.2. The VM should be
implemented on the Hack computer platform, conforming to the standard mapping described in
Section 7.3.1.

Contract: Write the full-scale VM translator program. Use it to compile all the test .vm
programs supplied below, yielding corresponding .asm programs written in Hack assembly.
When executed on the supplied CPU Emulator, the .asm programs generated by your translator
should deliver the results mandated by the supplied test scripts and compare files.

Proposed Implementation Stages

We recommend carrying out the implementation in two stages:

• Implementation of program flow commands
• Implementation of function-related commands

This modularity will allow you to test your translator incrementally, using step-by-step test
programs that we provide. The rest of the implementation tips are as in project 6.

Test Programs
The supplied test programs are designed to support the incremental development plan described
above. We supply five test programs and test scripts, as follows.

Program Flow Test Programs

• basicLoop: simple test of goto and if-goto commands. Computes the sum
and pushes the result unto the stack; n+++ L21

• fibonacci: a more challenging test. Computes and stores in memory the first n elements
of the fibonacci series.

Function Calling Test Programs

• simpleFunction: Simple test of the “function” and “return” commands. The called
function performs a simple calculation and returns the result.

• fullTest: a full test of the function call commands, the bootstrap section and most of the
other VM commands. Consists of two .vm files:

• Math.vm contains one recursive function called fibonacci().
This function returns the n’th element of the Fibonacci series;

• Sys.vm contains one function called init(). This function calls
the Math.fibonacci function with n=5, and then loops infinitely.

Chapter 7: The Virtual Machine 15

Since there are two .vm files, the whole directory should be compiled in
order to create one fullTest.asm file (compiling each .vm file separately
will result in 2 separate .asm files, which is not desired here).

As prescribed by the VM Specification (section 7.2), the bootstrap code must include a call to the
Sys.init function.

Steps

1. Download the project7.zip file and extract its contents to a directory called project7 on
your computer.

2. Write and test the full-scale VM translator in stages, as described above.

