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7. The Virtual Machine II: Flow Control1 
 

It’s like building something where you don’t have to order the cement. 
 You can create a world of your own, your own environment, 

and never leave this room.  
(Ken Thompson, 1983 Turing Award lecture) 

 
Chapter 6 introduced the notion of a virtual machine (VM), and ended with the construction of a 
basic VM implementation over the Hack platform.  In this chapter we continue to describe the 
virtual machine abstraction, language, and implementation.  In particular, we focus on a variety 
of stack-based mechanisms designed to handle nested subroutine calls (procedures, methods, 
functions) of procedural or object-oriented languages.  As the chapter progresses, we extend the 
previously built basic VM implementation, ending with a full-scale VM translator.  This 
translator will serve as the backend of the compiler that we will build in chapters 9 and 10, 
following the introduction of a high-level object-based language in chapter 8.  
 
In any “Great Gems in Computer Science” contest, stack processing will be a strong finalist.  The 
previous chapter showed how arithmetic and Boolean expressions could be calculated by 
elementary stack operations.  In this chapter we show how this remarkably simple data structure 
can further support remarkably complex tasks like dynamic memory management, nested 
subroutine processing, and recursion. Stack processing is one of the secret weapons that make the 
implementation of modern programming languages less formidable than seen at first sight. 
 
7.1 Background 
 
The last chapter described the data manipulation commands of a stack-based virtual machine: 
arithmetic operations performed on stack elements as well as commands for moving data between 
the stack and the memory.  In addition to these data-oriented commands, every virtual machine 
must have some form of control-oriented commands, allowing the construction of loops, 
conditional execution, and subroutine calls.   While the implementation of the flow control 
commands needed to support loops and conditional execution is rather simple, the 
implementation of subroutine calls is rather challenging.  Hence, virtual machines that implement 
subroutine calls as a primitive feature deliver a significant and useful abstraction.  The Java VM 
as well as the VM we describe in this book both provide such a primitive.  As will be seen 
throughout the chapter, the implementation of subroutine calls can be elegantly modeled on a 
stack structure. 
 
Program flow 
 
The default execution of computer programs is linear, one command after the other.  In some 
cases this sequential flow needs to be broken, e.g. in order to embark on another iteration of a 
loop. In low-level programming, this is done by instructing the computer to continue the program 
execution at some specified part of the program other than in the next instruction.  The re-
direction directive is implemented by a “goto destination” command, also called “jump” or 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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“branch”.  The destination specification can take several forms, the most primitive being the 
physical address of the instruction that should be executed next.  A slightly more abstract 
redirection mechanism is established by assigning a symbolic label to the destination command 
and specifying this label (rather than the physical address) as the jump target.  This variation 
requires that the language will also have some sort of a labeling command. 
 
This basic goto mechanism described above can be easily modified to affect conditional 
branching as well.  Instead of instructing the computer to jump to some destination 
unconditionally, a conditional branch command instructs to take the jump only if a certain 
condition is true; if the condition is false, the regular flow of control should continue.  Different 
virtual machines provide different ways to specify the jump condition.  In stack-based machines, 
the simplest and most natural approach is to condition the jump on the value of the stack’s top 
element: if it’s not zero, jump to the specified destination; otherwise execute the next command 
in the program. 
 
The resulting set of low-level program flow commands (labeling, goto label, and if condition then 
goto label) can be used by compilers to translate all the conditional and repetition constructs 
found in high-level programming languages.  Fig. 7-1 gives two typical examples. 
 
 High-level source code   Compiled low-level code  

if (cond)     code for computing cond 
   s1    if-false-goto L1 
else    code for executing s1 
   s2    goto L2 
…  label L1 
    code for executing s2 
  label L2 
       … 
  

  
while (cond)  label L1 
   s1    code for computing cond 
…    if-false-goto L2 
    code for executing s1 
    goto L1 
  label L2 
        … 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 7-1: VM programming: From high-level code to pseudo VM code.  
 
 
Subroutine Calls 
 
Any programming language is characterized by a fixed repertoire of elementary commands. The 
key abstraction mechanism provided by modern languages is the freedom to extend this 
repertoire with high-level operations, designed to meet various programming needs.  Each high-
level operation has an interface specifying how it can be used, and an implementation consisting 
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of elementary commands and previously defined high-level operations.  In procedural languages, 
the high-level operations are called subroutines, procedures, or functions. In object-oriented 
languages they are usually called methods, and are typically grouped into classes.  In this chapter 
we will use the term subroutine to refer to all of these high-level programming constructs.   
 
The use of a subroutine is typically referred to as a call operation.  Ideally, the part of the 
program that calls the subroutine -- the caller -- should treat the subroutine like any other basic 
operation in the language.  To illustrate, the caller typically contains a sequence of commands 
like <c1, c2, call s1, c3, call s2, c4, …>, where the c’s are elementary commands and the s’s 
are subroutine names. In other words, the caller assumes that the code of the called subroutine 
will get executed -- somehow -- and that following the subroutine’s termination the flow of 
control will return -- somehow -- to the next instruction in the caller’s code.  The freedom to 
ignore these implementation details enables the programmer to write programs in abstract terms, 
using high-level operations closer to the world of algorithmic thought than to the world of 
machine execution.  Of course the more abstract is the high level, the more work we have to do at 
the low level.  In particular, in order to support subroutine calls, VM implementations must 
handle several issues: 

• Passing parameters to the called subroutine, and optionally returning a value from the 
subroutine back to the caller; 

• Jumping to execute the subroutine’s code; 

• Allocating memory space for the local variables of the called subroutine, and freeing the 
memory when it is no longer needed; 

• When the called subroutine terminates, returning (jumping back) to the command 
following the call operation in the caller’s code. 

 
These issues must be handled in a way that takes into account that subroutine calls can be 
arbitrarily nested, i.e. one subroutine may call another subroutine, which may then call another 
subroutine, and so on and so forth.  To add to the complexity, we also need to support recursion, 
meaning that subroutines are allowed to call themselves, and each recursion level must be 
executed independently of the other calls.  To sum up, the low-level handling of subroutine calls 
is an intricate task. 
 
The property that makes this task tractable is the inherently hierarchical nature of any multi-
subroutine program: the called subroutine must complete its execution before the caller can 
resume its own execution.  This protocol implies a Last-In-First-Out (LIFO) structure, 
resembling (conceptually) a stack of active subroutines.  All the layers in the stack are waiting for 
the top layer to complete its execution, at which point the stack become shorter and execution 
resumes at the level just below the previous top layer.  Indeed, users of high-level programming 
languages often encounter terms like “function-call-stack,” “stack overflow,” and so on. 
 
Fig. 7.2 illustrates a method calls pattern in some high-level program, along with some run-time 
checkpoints and the states of the abstract method-call stack associated with them. 
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Method A: 
      Call B 
      Call C 
 
Method B: 
       Call C 
       Call D 
 
Method C: 
       Call D 
 
Method D: 
       … 

Start A 
      Start B 
          Start C 
               Start D 
                             Stack state  
               End D 
          End C 
          Start D 
                             Stack state  
          End D 
      End B 
      Start C 
           Start D 
           End D 
      End C 
End A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A 
 B 
 C 
 D 

A 
B 
D 
 

 
Figure 7-2: Subroutine calls and the abstract call-stack states generated by their execution. 

 
We now describe some of the points that need to be addressed when providing such a call-and-
return subroutine mechanism.  Any particular VM implementation will have to handle all of 
them, as well as take care of coordinating between these tasks as well as with the low level details 
of implementation.  The complete set of data that is kept for each subroutine invocation is usually 
called a “frame”, and it is these frames that are actually kept in the call-stack. 
 
Return Address 
 
The VM implementation of the “call subName” command is straightforward.  Since the name 
of the target subroutine is specified in the command, the VM implementation simply has to 
resolve the name to an address in memory, and then jump to execute the instruction stored in that 
address. 
 
Returning from the called subroutine via a “return” command is trickier, as the command 
specifies no return address.  Indeed, the caller’s anonymity is inherent in the very notion of a 
subroutine.  Subroutines like sqrt(x) or modulu(x,y) are designed to serve many unknown 
callers, implying that the return address cannot be part of their code. Thus a “return” command 
should be interpreted as follows: re-direct the program’s execution to the command following the 
command that called the current subroutine, wherever this command may be in the program’s 
code.  The memory location to which we have to return is called return address. 
 
One way to implement this calling protocol is to have the VM implementation save the return 
address in advance. This piece of information must be saved just before the subroutine is called, 
and retrieved just after the subroutine exits.  This store-and-recall setting lends itself perfectly to a 
stack storage paradigm: the VM implementation can push the return address onto the stack when 
a subroutine is called, and pop it from the stack when the subroutine returns. 
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Parameter Passing 
 
An important requirement in well-designed languages is that the high-level operations defined by 
the programmer will have the same “look and feel” as that of elementary commands. Consider for 
example the operations add and of raise to a power.  VM implementations will typically feature 
the former as an elementary operation, while the latter may be written as a subroutine.  In spite of 
their different implementations, we would like to use both operations in the same way.  Thus, 
assuming that we have already written a Power(x,y) subroutine that computes x to the y’th 
power, we would like to be able to write VM code segments like those depicted in Prog. 7-3. 
 
 // x+3  // x^3  // (x^3+2)^y 

push x  push x  push x 
push 3  push 3  push 3 
add  call power  call power 
    push 2 
    add 
    push y 
    call power 

 
 
 
 
 
 
 
 
 

PROGRAM 7-3: VM elementary commands (left) and high-level operations 
(middle) have the same look-and-feel in terms of arguments usage and return 
values.  Thus they can be easily mixed together (right).  

 
Note that from the caller’s perspective, any subroutine -- no matter how complex -- is viewed and 
treated as a black box operation. In particular, just like with primitive arithmetic VM  commands, 
the caller expects the subroutine to remove its arguments from the stack and replace them with a 
return value  (which may be ignored).  Thus, the caller can pass the arguments to the subroutine 
by pushing them onto the stack; the called subroutine pops the arguments from the stack, carries 
out its computation, and then pushes a return value onto the stack.  The result is a simple and 
natural parameter passing protocol requiring no memory beyond the already available stack 
structure. 
 
Allocation of Local Variables 
 
Subroutines usually use local variables for temporary storage.  These local variables must be 
stored in memory only during the subroutine call’s lifetime, i.e. from the point the subroutine 
starts executing until a return command is encountered, at which point the memory space 
allocated to the local variables can be freed.  Further, when the subroutine is used recursively, 
each recursion level must have its own set of local variables.  How can the VM implementation 
effect this dynamic memory management? 
 
Once again, the stack comes to the rescue.  Although the subroutines calling chain may be 
arbitrarily deep as well as recursive, only one subroutine (or subroutine instance in case of 
recursion) executes at the end of the chain, while all the other subroutines up the calling chain are 
waiting.  The VM implementation can exploit this last-in-first-out processing model by storing 
the local variables of all the waiting subroutines on the stack, and reinstating them when control 
returns to the subroutine to which they belong.  
.   
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7.2 VM Specification, Part II 
 
This section extends the basic VM Specification (section 6.2) with program flow and function 
calling commands.  This completes the overall VM speciation. 
 
7.2.1 Program Flow Commands 
 
The VM language features three program flow commands: 
 

label c This command labels the current location in the function’s code.  Only labeled 
locations can be jumped to from other parts of the program.  The label c is an 
arbitrary string composed of letters, numbers, and the special characters “_”, 
“:”, and “.”.  The scope of this label is the current function. 

goto c This command effects a "goto" operation, causing the program to continue 
execution from the location labeled by c.  The jump destination must be in the 
same function. 

if-goto c This command effects a "conditional goto" operation.  The command pops the 
topmost value from the stack and goes to label c if the value is non-zero.  The 
destination must be in the same function. 

 
TABLE 7-4: Program flow commands. 

 
 
7.2.2 Function-related Commands 
 
Each function has a symbolic name that is used globally to call it.  The function name is an 
arbitrary string composed of letters, numbers, and the special characters “_” and “.”.   (We 
expect that a method m in class C in some high-level language will be translated by the language 
compiler to a VM function named C.m).  
 
The VM language features three function-related commands: 
 

function f n Here starts the code of a function named f, which has n local variables; 

call f m Call function f, stating that m arguments have already been pushed unto 
the stack; 

return Return to the calling function. 

 
TABLE 7-5: Function calling commands. 

 

 



Chapter 7:   The Virtual Machine                                                                                                              7     
              
7.2.2.1 The Calling Protocol 
 
The events of calling a function and returning from a function can be viewed from three different 
perspectives, as follows. 
 
The calling function view:  

1. Before calling the function, the caller must push all the arguments unto the stack;   

2. The caller invokes the function f using the command “call f “; 

3. After the function returns, all arguments have disappeared from the stack and the function’s 
return value (that always exists) appears at the top of the stack;   

4. All the memory segments (e.g. arguments and locals) of the caller are the same as 
before the call, except for the Temp segment that is now undefined.   

 
The called function view: 

1. Upon getting called, the working stack is empty, the local variables segment has been 
allocated and initialized to zero, the argument segment is initialized with the arguments 
passed by the caller, the static segment is set to the static segment of the file to which 
the called function belongs, and the T-segments are the same as they were in the calling 
function;  

2. Just before returning, a return value must be pushed onto the stack. 
 
The VM implementation view: The function call protocol described above is implemented by the 
VM implementation, as follows. 

Upon calling a function, the VM implementation: 
• Saves the return address and the segment pointers of the calling function, except for temp, 

which is not saved; 
• Allocates, and initializes to zero, as many local variables as needed by the called function; 
• Sets the local and argument segments of the called function;  
• Transfers control to the called function. 

Upon returning from a function, the VM implementation: 
• Clears the arguments and other junk from the stack; 
• Restores the local, argument, this and that segments of the calling function; 
• Transfers control back to the calling function, by jumping to the saved return address. 

 
Initialization 
 
When the VM starts running (or is reset) the VM function named “Sys.init” gets executed.   
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7.3 Implementation 
 
This section describes how to complete the VM implementation that we started to build in 
Chapter 6.  We begin by describing the intricate stack structure that must be maintained by the 
implementation, continue to describe its standard mapping over the Hack platform, and end with 
design suggestions and a proposed API for the VM translator.  This completes the 
implementation notes from Section 6.3, leading to the construction of a full-scale VM 
implementation. 
 
The Global Stack 
 
The “internal memory” of the VM is implemented by maintaining a global stack.  Each time a 
function is called, a new block is added to the global stack.  The block consists of the arguments 
that were set for the called function, a set of pointers used to save the state of the calling function, 
the local variables of the called function (initialized to 0), and an empty working stack for the 
called function.  Importantly, the called function sees only the tip of this iceberg, , i.e. the 
working stack.  The rest of the global stack is used only by the VM implementation. 
 

argument n-1

ARG

Saved state of the
calling function.
Used to retrun to, and
resote the segments of,
the calling function
upon returning from the
called function.

saved THIS

saved ARG

return address pointer

saved LCL

local variable 0

local variable 1

. . .
local variable k-1

argument 0

argument 1

. . .

frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

 
 

FIGURE 7-6: The global stack: the currently executing function sees only the working 
stack. The rest of the global stack is managed by the VM implementation behind the scene. 
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Example: The factorial (n!) of a given number n can be computed by the bottom-up iterative 
formula .  A VM program that implements this calculation is given at the top 
of Fig. 7-7. 

nnn ⋅−⋅⋅⋅= )1(21! K

 
 function: fact  function: mult  

    args: n    args: x,y 

    vars: result,j    vars: sum,j 

    result=1    sum=0 

    j=1    j=y 

loop:  loop: 

    j=j+1    if j==0 goto end 

    if j>n goto end    sum=sum+x 

    result=mult(result,j)    j=j-1 

    goto loop    goto loop 

end:  end: 

    return result    return sum 

 
 

 
 
 
 
 
 

 
 
 
 

 

2

call
fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

 
FIGURE 7-7: The life cycle of function calls: function p (an arbitrary function that needs factorial 
services) calls function fact, which then calls mult several times.  Vertical arrows depict transfer of 
control from one function to another.  Full horizontal lines depict the currently running function, 
whereas broken horizontal lines depict "waiting" states.  At any given point of time, only one function 
is running, while all the functions up the calling chain are waiting for it to return.  When a function 
returns, the function that called it resumes its execution (which typically does something useful with 
the value returned by the called function).   

 
 
Fig. 7-8 shows some snapshots from the global stack that the VM implementation maintains 
while the program is running. 
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just before  "call mult"

ARG arg 0         (of fact)

return addr    (in p)

LCL               (of p)

ARG              (of p)

THIS               (of p)

working
stack         (of fact)

arg 0        (of mult)

arg 1        (of mult)

local 0       (of fact)

local 1       (of fact)

LCL

SP

just after mult is entered just after mult returns

THAT              (of p)

ARG

arg 0         (of fact)

return addr    (in p)

LCL               (of p)

ARG              (of p)

THIS               (of p)

working
stack         (of fact)

arg 0        (of mult)

arg 1        (of mult)

local 0       (of fact)

local 1       (of fact)

LCL

SP

THAT              (of p)

return addr (in fact)

LCL           (of fact)

ARG         (of fact)

THIS         (of fact)

0   (local 0 of mult)

0   (local 1 of mult)

THAT        (of fact)

ARG arg 0         (of fact)

return addr    (in p)

LCL               (of p)

ARG              (of p)

THIS               (of p)

working
stack         (of fact)

ret. value  (of mult)

local 0       (of fact)

local 1       (of fact)

LCL

SP

THAT              (of p)

 
 
FIGURE 7-8: Dynamic global stack behavior. We assume that function p (not seen in this figure) 
called fact, then fact called mult. If we ignore the middle stack instance, we observe that fact 
has set up some arguments and called mult to operate on them (left instance).  When  mult returns 
(right instance), the arguments of the called function have been replaced with the function's return 
value. In other words, when the dust clears from the function call, the calling function has received the 
service that it has requested, and processing resumes as if nothing happened: the drama of mult's 
processing (middle) has left no trace whatsoever on the stack, except for the return value. 
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7.3.1 Standard Mapping on the Hack Platform, Part II 
 
By standard mapping we refer to a set of guidelines on how to map VM implementations on a 
specific target architecture.  This section completes the standard mapping of the VM 
implementation over the Hack platform, with special emphasis on how to model and manage the 
global stack. 
 
Function Calling Protocol 
 
In order to implement the method calling protocol described in Section 7.2.2.1, the VM 
implementation should effect the following commands (pseudo-code):  
 

VM command VM Implementation 

call f c 

 

push return-address // (using label below) 

push LCL            // save LCL of calling function 

push ARG            // save ARG of calling function 

push THIS           // save THIS of calling function 

push THAT           // save THAT of calling function 

ARG = SP-c-5        // reposition ARG (c=number of args)  

LCL = SP            // reposition LCL 

goto f              // transfer control 

(return-address)       // label for the return address 

function f c 

(f)                    // label for function entry    

repeat c times:     // c = number of local variables 

PUSH 0              // initialize all of them to 0 

return 

 

FRAME=LCL           // FRAME is a temporary variable 

RET=*(FRAME-5)      // Save return address in a temp. var 

*ARG=pop()          // reposition return value for caller 

SP=ARG+1            // restore SP for caller 

THAT=*(FRAME-1)     // restore THAT of calling function 

THIS=*(FRAME-2)     // restore THIS of calling function  

ARG=*(FRAME-3)      // restore ARG of calling function 

LCL=*(FRAME-4)      // Restore LCL of calling function 

goto RET            // GOTO the return-address 

 
TABLE 7-9: VM implementation of the function call commands (in pseudo code).  

 



Chapter 7:   The Virtual Machine                                                                                                              12     
              
Assembly Language Symbols 
 

Symbol Usage 

“functionName:label” 
symbols 

Each “label b” command in a VM function f should generate a 
globally unique symbol f:b where f is the function name and b is the 
label symbol within the function’s code. When translating “goto b” 
and “if-goto b” VM commands into the target language, the full 
label specification f:b should be used instead of b. 

“functionName” labels Each VM function f should generates a symbol f that refers to its 
entry point in the instruction memory of the target architecture. 

return address symbols Each VM function call should generate a unique symbol that serves 
as a return address, i.e. the location of the command following the 
call command in the instruction memory of the target architecture. 

 
TABLE 7-10: Special assembly symbols prescribed by the standard mapping.  
This table completes Table 6-16.  

 
 
Bootstrap Code 
 
When the Hack computer is reset, it is wired to fetch and execute the word located in ROM 
address 0x0000.  Thus the code that starts at address 0x0000 is called “bootstrap code”, as it is 
the first thing that gets executed when the computer is reset.  With that in mind, VM 
implementations over the Hack platform should place the following code in that address: 
 

SP = 0x0100     // initialize the stack pointer 

call Sys.init   // invoke Sys.init 

This bootstrap code sets the stack pointer to its right value and then calls the Sys.init function.  
The Sys.init function then calls the “main function” of the “main program” (compilation-
specific concepts that vary from one high level language to another), and enters an infinite loop. 
 
 

 



Chapter 7:   The Virtual Machine                                                                                                              13     
              
7.3.2 Design Suggestions for the VM implementation 
 
In chapter 6 we proposed implementing the VM translator as a main program consisting of two 
modules: parser and code writer. The basic translator built in Project 6 was based on basic 
versions of these modules. In order to turn the basic translator into a full-scale VM 
implementation, you now have to extend the basic Parser and CodeWriter classes with the 
functionality described below. 
 
Parser 
 
If the basic parser that you built according to section 6.3.2 does not already parse the six 
commands specified in this chapter, then add their parsing now.  Specifically, make sure that the 
method getCommandType() returns the constants that correspond to the six commands 
described in this chapter: COMMAND_LABEL, COMMAND_GOTO, COMMAND_IF, 
COMMAND_FUNCTION, COMMAND_RETURN, COMMAND_CALL. 
 
Code Writer 
 
The basic CodeWriter specified in section 6.3.2 should be augmented with the following 
methods. 

Void writeInit(): Writes the assembly code that effects the VM initialization (also called 
bootstrap code).  This code should be placed in the ROM beginning in memory location 
0x0000. 

Void writeLabel(Sring label): Writes the assembly code that is the translation of the 
given label command.   

Void writeGoto(String label): Writes the assembly code that is the translation of the 
given goto command.   

Void writeIf(String label): Writes the assembly code that is the translation of the given 
if-goto command.   

Void writeCall(String functionName, int numArgs): Writes the assembly code 
that is the translation of the given Call command. 

Void writeReturn(): Writes the assembly code that is the translation of the given Return 
command. 

Void writeFunction(String functionName, int numLocals): Writes the assembly 
code that is the translation of the given Function command. 
 
 
 
7.4 Perspective 
 
Work in progress. 
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7.5 Build it 
 
Chapter 6 focused on building a basic VM translator, designed to implement the arithmetic and 
memory access commands of the VM language. This section describes how to complete this basic 
program into a full-scale VM implementation over the Hack platform. 
 
Objective: Extend the basic VM translator built in project 6 with the ability to handle the 
program flow and function call commands specified in section 7.2.  The VM should be 
implemented on the Hack computer platform, conforming to the standard mapping described in 
Section 7.3.1. 
 
Contract: Write the full-scale VM translator program.  Use it to compile all the test .vm 
programs supplied below, yielding corresponding .asm programs written in Hack assembly.  
When executed on the supplied CPU Emulator, the .asm programs generated by your translator 
should deliver the results mandated by the supplied test scripts and compare files. 
 
Proposed Implementation Stages 

 
We recommend carrying out the implementation in two stages: 

• Implementation of program flow commands 
• Implementation of function-related commands 

This modularity will allow you to test your translator incrementally, using step-by-step test 
programs that we provide. The rest of the implementation tips are as in project 6. 

Test Programs 
The supplied test programs are designed to support the incremental development plan described 
above.  We supply five test programs and test scripts, as follows. 

Program Flow Test Programs 

• basicLoop: simple test of goto and if-goto commands. Computes the sum 
and pushes the result unto the stack; n+++ L21

• fibonacci: a more challenging test. Computes and stores in memory the first n elements 
of the fibonacci series. 

Function Calling Test Programs 

• simpleFunction: Simple test of the “function” and “return” commands.  The called 
function performs a simple calculation and returns the result. 

• fullTest: a full test of the function call commands, the bootstrap section and most of the 
other VM commands. Consists of two .vm files:  

• Math.vm contains one recursive function called fibonacci().  
This function returns the n’th element of the Fibonacci series; 

• Sys.vm contains one function called init().  This function calls 
the Math.fibonacci function with n=5, and then loops infinitely. 
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Since there are two .vm files, the whole directory should be compiled in 
order to create one fullTest.asm file (compiling each .vm file separately 
will result in 2 separate .asm files, which is not desired here). 

As prescribed by the VM Specification (section 7.2), the bootstrap code must include a call to the 
Sys.init function. 
 
Steps 
 
1. Download the project7.zip file and extract its contents to a directory called project7 on 
your computer. 
 
2. Write and test the full-scale VM translator in stages, as described above. 


