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4. Computer Architecture 1 
 

Make everything as simple as possible, but not simpler.  
(Albert Einstein, 1879-1955) 

 
 
This chapter is the pinnacle of the "hardware" part of our journey.  We are now ready to take all 
the chips that we built in previous chapters, and integrate them into a general-purpose computer 
capable of running stored programs written in a machine language.  The specific computer that 
we will build, called Hack, has two important virtues.  On the one hand, Hack is a simple 
machine that can be constructed in one or two days of work, using previously-built chips and the 
supplied hardware simulator. On the other hand, Hack is sufficiently powerful to illustrate all the 
key operating principles and hardware elements of any digital computer.  Therefore, building it 
will give you an excellent understanding of how modern computers work at the low-level 
hardware and software levels. 
 
Following an introduction of the stored program concept, Section 4.1 gives a detailed description 
of the von Neumann architecture -- a central dogma in computer science underlying the design of 
almost all modern computers.  The Hack platform is one example of a von Neumann machine, 
and Section 4.2 gives its exact specification, focusing on its architecture, language, and hardware 
interfaces.  Section 4.3 describes how the Hack platform can be implemented from available 
chips, in particular the ALU built in Chapter 2 and the registers and memory systems built in 
Chapter 3.   
 
In the spirit of the opening quote of this chapter, the computer that will emerge from this 
construction will be as simple as possible, but not simpler.  This means that it will have the 
minimal configuration necessary to run interesting programs and deliver reasonable performance. 
The comparison of this machine to typical computers is taken up in Section 4.4, which 
emphasizes the critical role that optimization plays in the design of industrial-strength computers, 
but not in this chapter. As usual, the simplicity of our approach has a purpose: all the chips 
mentioned in the chapter, culminating in the Hack computer itself, can be built and tested on your 
home computer, following the instructions given in the chapter’s last section.  The result will be a 
minimal yet surprisingly powerful computer. 
 
4.1 Background 
 
The Stored Program Concept 
 
Compared to all the other machines around us, the most unique feature of the digital computer is 
its amazing versatility.  Here is a machine with finite hardware that can perform an infinite array 
of tasks, from interactive games to word processing to scientific calculations. This remarkable 
flexibility  -- a boon that we have come to take for granted -- is the fruit of a brilliant idea called 
the stored program concept.  Formulated independently by several mathematicians in the 1930s, 
the stored program concept is still considered the most profound invention, if not the very 
foundation of, modern computer science. 

                                                 
1 From The Digital Core, by Nisan & Schocken, 2003, www.idc.ac.il/csd, forthcoming by MIT Press. 
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Like many scientific breakthroughs, the basic idea is rather simple.  The computer is based on a 
fixed hardware platform, capable of executing a fixed repertoire of instructions.  At the same 
time, these instructions can be used and combined like building blocks, yielding arbitrarily 
sophisticated programs. Importantly, the logic of these programs is not embedded in the hardware 
design, as it was in mechanical computers predating 1930.  Instead, the program’s code is stored 
and manipulated in the computer memory, just like data, becoming what is known as “software”.   
Since the computer’s operation manifests itself to the user through the currently executing 
software, the same hardware platform can be made to behave completely differently each time it 
is loaded with a different program. 
 
The von-Neumann Architecture  
 
The stored program concept is a key element of many abstract and practical computer models, 
most notably the Turing machine (1936) and the von Neumann machine (1945).  The Turing 
machine -- an abstract artifact describing a deceptively simple computer -- is used mainly to 
analyze the logical foundations of computer systems.  In contrast, the von Neumann machine is a 
practical architecture, and the conceptual blueprint of almost all computer platforms today.  The 
architecture is based on a central processing unit (CPU), interacting with a memory device, 
receiving data from some input device, and sending data to some output device (Fig. 4-1).  At the 
heart of this architecture lies the stored program concept: the computer’s memory stores not only 
the data that the computer manipulates, but also the very instructions that tell the computer what 
to do at all times.  We now turn to describe this architecture in detail. 
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FIGURE 4-1: The von-Neumann Architecture, which, at this level of detail, describes 
the architecture of almost all digital computers.  The program that operates the 
computer resides in its memory, in accordance with the stored program concept. 

 
Memory 
 
In terms of memory organization, the von Neumann architecture comes in two main variants.  In 
some computer platforms, the data and the instructions share the same address space.  Other 
platforms employ separate data and instruction memories, each featuring a different address 
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space. In spite of their different functions, both memories have the same generic random-access 
structure: a continuous array of cells of some fixed width, also called words or locations, each 
having a unique address according to which it is accessed.  Hence, an individual word 
(representing either a data item or an instruction) is specified by supplying its address.  We note 
in passing that all these memory devices can be constructed from the RAM chips built in Chapter 
3.  
 
In some computer platforms (e.g. game machines) the instruction memory is implemented in a 
read-only direct-access device called ROM (Read Only memory). In order to run a new program 
(play a new game) on such a computer, the entire instruction memory (game cartridge) is 
replaced, and the computer is reset.  Each replaceable ROM device can store a different program, 
permanently burnt into its memory circuits.  
 
Data Memory: High-level programs manipulate abstract artifacts like variables, arrays, and 
objects.  When translated into machine language, these data abstractions become series of binary 
numbers, stored in the computer’s data memory.  Once an individual word has been selected from 
the data memory by specifying its address, it can be either read or written to.  In the former case, 
the CPU retrieves the word’s value.  In the latter case, the CPU stores a new value into the 
selected location, erasing the old value. 
 
Instruction memory:  High level programs use structured commands like while j<100 
{sum=sum+j}. When translated into machine language, such a command becomes a series of 
words, each representing a single machine language instruction.  These instructions are stored in 
the computer’s instruction memory.  In each step of the computer’s operation, the CPU fetches 
(i.e. reads) a word from the instruction memory, decodes it, executes the underlying instruction, 
and figures out which instruction to execute next.  Thus, changing the contents of the instruction 
memory has the effect of completely changing the computer’s operation.  
 
Computer platforms with separate data and instruction memories have simpler architectures.  
Therefore, in what follows, we assume a computer with separate memory modules.  
 
Central Processing Unit 
 
The CPU -- the centerpiece of the computer’s architecture -- is in charge for executing the 
instructions of the currently loaded program. These instructions tell the CPU to carry out various 
calculations, to read and write values from and into the memory, and to conditionally jump to 
execute other instructions in the program. In order to execute these tasks, every CPU employs at 
least three hardware elements: an Arithmetic-Logic Unit, a set of registers, and a control unit. 

Arithmetic-Logic Unit: the ALU is built to perform all the low-level arithmetic and logical 
operations featured by the computer.  For instance, a typical ALU can add two numbers, test 
whether a number is positive, manipulate the bits in a word of data, and so on.  The fixed 
repertoire of the possible ALU operations is called instruction set, and is considered a key 
element of the underlying hardware platform. 

Registers: The CPU is designed to carry out simple calculations, quickly.  In order to boost 
performance, the results of many such calculations can often be stored locally, rather than 
shipped in and out of memory. Thus, every CPU is equipped with a small set of high-speed 
registers, each capable of holding a single word. 
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Control unit: A computer instructions is represented as a binary code, typically 16- or 32-bits 
long. This code is divided into several binary fields, each coding a specific operation code (add, 
sub, etc.) or arguments of the operation, e.g. register numbers and  memory addresses. Before 
such an instruction can be executed, it must be decoded, and the information embedded in its 
fields must be used to signal various hardware devices (ALU, registers, memory) how to execute 
the instruction.  The instruction decoding task is done by the CPU’s control unit,  which is also 
responsible for figuring out which instruction to fetch and execute next. 
 
The CPU operation can now be described as a repeated loop: fetch an instruction (word) from 
memory; decode it; execute it, fetch the next instruction, and so on. The instruction execution 
may involve one or more of the following micro tasks: have the ALU compute some value, 
manipulate internal registers, read a word from the memory, and write a word to the memory.  In 
the process of executing these tasks, the CPU also figures out which instruction to fetch and 
execute next, as we describe below. 
 
Registers 
 
Memory access is a slow process.  When the CPU is instructed to retrieve the contents of address 
n of the memory, the following process ensues: (a) n travels from the CPU to the RAM; (b) the 
RAM locates address n; (c) the contents of the selected word travels back to the CPU.  Registers 
provide the same service -- data retrieval and storage -- without the travel and search expenses.  
First, the registers reside physically inside the CPU chip, so accessing them is almost 
instantaneous Second, there are typically only a handful of registers (compared to millions of 
memory cells), and thus machine language instructions can specify which registers they want to 
manipulate using just a few bits, yielding faster decoding and processing throughput. Different 
CPUs employ different numbers of registers, and these registers may be segmented in different 
classes according to their purpose. 

General-purpose registers: These registers give the CPU short-term memory services. For 
example, when calculating the value of (a-b)*c where a, b and c are memory locations, we 
must first compute and remember the value of (a-b).  Although this result can be temporarily 
stored in some memory location, a better solution is to store it locally inside the CPU. Hence, to 
optimize performance, every CPU uses several general-purpose registers that can serve as 
immediate outputs and inputs of the ALU. 

Addressing registers: The CPU has to continuously access the memory in order to read data, 
write data, and fetch instructions.  In every one of these operations, we must specify which 
individual memory word has to be accessed, i.e. supply an address.  This task is also done by the 
CPU, using built-in addressing hardware.  Specifically, the CPU employs an address register, 
whose output feeds the address input of the memory chip, via a set of wires called address bus.  
This way, each time the value of the address register changes, the memory responds 
“automatically” (after a time delay) by selecting the word whose address equals the register’s 
new contents, which is typically the result of some previous ALU calculation.  In short, to 
facilitate direct-access to memory, the CPU needs at least one address register.   

Program Counter (PC) register: When executing a program, the CPU must always keep track 
of the address of the next instruction (word) that must be fetched from the instruction memory.  
This address is kept in a special address register called program counter, or PC, whose output is 
connected to the address input of the instruction memory.  Thanks to this setting, the instruction 
memory always emits the instruction that the PC points at.  In the process of executing the current 
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instruction, the CPU updates the PC, in one of two different ways.  If the current instruction 
contains no “goto” directive, the PC is incremented to point to the next instruction in the 
program’s code.  If the current instruction includes a “goto n” directive, the CPU loads n into the 
PC.  Since the PC output is hard-wired to the address input of the instruction memory, the next 
instruction is automatically fetched and served to the CPU for execution. 
 
Machine Language 
 
The computer is controlled by a program, which is a series of words (binary numbers).  Each 
word codes an instruction, written in an agreed upon formalism called machine language.  Using 
these instructions, the programmer can command the CPU to perform arithmetic and logic 
operations, fetch and store values from and to the memory, move values from one register to 
another, test Boolean conditions, and so on.  Thus, as opposed to high level languages, whose 
basic design goals are generality and power of expression, the goal of machine language’s design 
is direct execution in, and total control of, a given hardware platform.  Of course, generality, 
power and elegance are still desired, but only to the extent that they support, rather than 
complicate, the basic requirement of direct execution in hardware. 
 
Machine language is the most profound interface in the overall computer enterprise -- the fine 
line where hardware and software meet.  This is the point where the abstract thoughts of the 
programmer, as manifested in symbolic instructions, are magically turned into physical 
operations performed in silicon.  Thus, machine language is considered both a programming tool 
and an integral part of the hardware architecture.  In fact, just like we say that the machine 
language is designed to exploit a given hardware architecture, we can say that the hardware 
architecture is designed to fetch, interpret and execute instructions written in a given machine 
language.  This duality will characterizes much of this chapter. 
 
Input and Output 
 
Computers interact with their external environments using a diverse array of input and output 
(I/O) devices.  These include screens, keyboards, printers, scanners, network interface cards, CD-
ROMs, etc., not to mention the bewildering array of proprietary components that embedded 
computers are called to control in automobiles, weapon systems, medical equipment, and so on. 
There are two reasons why we will not concern ourselves here with the anatomy of these various 
devices.  First, every one of them represents a unique piece of machinery requiring a unique 
knowledge of engineering.  Second, and for this very same reason, computer scientists have 
devised various schemes to make all these devices look exactly the same to the computer.  The 
simplest trick in this art is called memory-mapped I/O, as we now turn to explain. 
 
The basic idea is to create a binary emulation of the I/O device, making it “look” to the CPU like 
a normal segment of memory. In particular, each I/O device is allocated an exclusive area in 
memory, called “map”.  In the case of an input device, the memory map is made to continuously 
reflect the physical state of the device; In the case of an output device, the memory map is made 
to continuously drive the physical state of the device.  When external events effect some input 
devices (e.g. pressing a key on the keyboard or moving the mouse), certain values are written in 
their respective memory maps.  Likewise, if we want to manipulate some output devices (e.g. 
draw some pixels on the screen or move a robotic arm), we write some values in their respective 
memory maps. Clearly, this scheme requires that both the computer design and the design of each 
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I/O device will agree on a pre-defined interaction contract.  This contract is simply a mapping 
that specifies how each state of the I/O device is represented in binary codes.  As a side comment, 
given the huge number of available computer platforms and I/O devices, one can appreciate the 
crucial role that standards play in computer architectures. 
 

TO BE
DELIVERED

 
FIGURE X: A memory-mapped I/O device. Showing how a physical device 
like a screen is managed using both “resident logic” and “peripheral logic”. 

 
We see that memory maps enable the CPU (under the programmer’s control) to affect, or be 
affected by, the physical operation of any I/O device.  For example, a memory-mapped screen 
enables the programmer to use the CPU to probe the screen contents and draw various images on 
it.  Of course, different screens with different resolutions and color pallets will entail different 
mappings. Using the documented mapping, and knowing the memory base address of the 
device’s map, the programmer can control any connected I/O device by simply reading and 
writing values from and to the memory. 
 
Memory-mapped I/O provides a good example of how a simple idea can go a long way to 
achieve hardware simplification and scalability.  In a memory-mapped architecture, the design of 
the CPU and the overall platform can be totally independent of the number, nature, or make of 
the I/O devices that interact, or will interact, with the computer. Whenever we want to connect a 
new I/O device to the computer, all we have to do is allocate to it a new memory map and “take 
note” of its base address (these one-time configuration tasks are typically done by the operating 
system). From this point onward, any program that wants to manipulate this I/O device can do so 
-- all it needs to do is manipulate words in memory. 
 
4.2. The Hack Platform Specification 
 
4.2.1 Basic Constructs 
 
The Hack platform is a special case of the von Newman architecture.  It is a 16-bit machine, 
consisting of a CPU, two separate memory modules serving as instruction memory and data 
memory, and two memory-mapped I/O devices: a screen and a keyboard.    
 
Memory Address Spaces: The Hack programmer is aware of two distinct memory address 
spaces: an instruction memory and a data memory.  Both memories are 16-bit wide and have a 
15-bit address space, meaning that the maximum size of each memory is 32K 16-bit words.   
 
The CPU can only execute programs that reside in the instruction memory.  The instruction 
memory is a read-only device, and thus programs are loaded into it using some exogenous means.  
For example, the instruction memory can be implemented in a ROM chip which is pre-burned 

` 



Chapter 4: Computer Architecture                                                                                                           7           
 
with the required program.  Loading a new program can be done by replacing the entire ROM 
chip. In order to simulate this operation, hardware simulators of the Hack platform must provide 
means to load the instruction memory from a text file.  
 
Registers: The Hack programmer is aware of three registers called D, A, and PC.   D and A are 
general-purpose 16-bit registers that can be manipulated explicitly by arithmetic and logical 
instructions, e.g. A=D-1 or D=!A. (where “!” means “not”). While D is used solely to store data 
values, A doubles as both a data register and an address register.  That is to say, depending on the 
instruction context, the contents of A can be interpreted either as a data value, or as an address in 
the data memory, or as an address in the instruction memory, as explained below. 
 
First, the A register can be used to facilitate direct access to the data memory (which, from now 
on, will be often referred to as “memory”). As the next section will describe, the syntax of the 
Hack language is such that memory access instructions do not specify an explicit address.  
Instead, they operate on an implicit memory location labeled “M”, e.g. D=M+1. In order to resolve 
this address, the contract is such that any Hack instruction involving M should effect the memory 
word whose address equals the current value of A, i.e. Memory[A].  For example, if we set the A 
register to 516, the subsequent instruction D=M-1 would imply D=Memory[516]-1. 
 
Second, in addition to doubling as a general-purpose register and as an address register for the 
data memory, the hard working A register is also used to facilitate direct access to the instruction 
memory.   As we will see shortly, the syntax of the Hack language is such that “jump” 
instructions do not specify a particular address.  Instead, the contract is such that any “jump” 
operation effects a jump to the instruction memory word addressed by A.  For example, if we set 
A to 35, a subsequent “goto” instruction would cause the computer to fetch the instruction located 
in InstructionMemory[35]. 
 
Jump instructions also effect the program counter, or PC.  As a rule, the next instruction that the 
computer will fetch and execute is always InstructionMemory[PC]. Thus, if the current 
instruction specifies no jump, the PC is incremented by 1.  If the current instruction implies a 
jump, the PC is set to the current value of A.  Hence, the PC is also effected by the programmer, 
but only implicitly. 
 
4.2.2 Machine Language Specification 
 
The Hack machine language features two generic instructions represented by 16-bit codes, of 
which the MSB specifies which instruction it is.  A 16-bit code beginning with a "0" represents 
an address instruction, also called A-instruction.  A 16-bit code beginning with a "1" represents a 
compute-store-jump instruction, also called C-instruction.  Each instruction has a binary 
representation, a symbolic representation, and an effect on the computer, as we now turn to 
specify.  
 
The A-Instruction 
 
The A-instruction is used to set the A register to a 15-bit value: 
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0 v v v v v v v v v v v v v v v

value

Binary:

Symbolic: @value
 

 
FIGURE 4-2:  The A-Instruction syntax. 

 
The symbolic syntax of the A-instruction is such that value is the decimal representation of the 
15-bit constant vvvvvvvvvvvvvvv (each v being 0 or 1).  This instruction causes the computer 
to store the constant in the A register.  For example, the instruction @5, which is equivalent to 
0000000000000101, causes the computer to store the 2’s complement binary representation of 
5 in the A register. 
 
The A-instruction is used for three different purposes. First, it provides the only way to enter a 
constant into the computer under program control.  Second, it sets the stage for a C-instruction 
designed to manipulate a certain data memory location, by first setting A to the address of that 
location. Third, it sets the stage for a C-instruction that involves a jump, by first loading the 
address of the jump destination to the A register.  These different use patterns are illustrated 
below. 
 
The C-Instruction 
 
The C-instruction is the programming workhorse of the Hack platform -- the instruction that gets 
almost everything done.  The instruction code is a specification that answers three questions: (a) 
what to compute? (b) where to store the computed value? and (c) what to do next?   Along with 
the A-instruction, these specifications determine all the possible operations of the computer. 

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

jumpdestcomp

Binary:

Symbolic: dest=comp;jump
 

 
FIGURE 4-3:  The C-Instruction syntax. 

 
The MSB is the C-instruction code, which is 1.  The next two bits are not used.  The remaining 
bits form three fields that correspond to the three parts of the instruction’s symbolic 
representation. Taken together, the semantics of the symbolic instruction dest=comp;jump is as 
follow.  The comp field instructs the CPU what to compute.  The dest field instructs where to 
store the computed value. The jump field specifies a jump condition.   
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The computation specification: The ALU is designed to compute a fixed set of functions on 
the D, A, and M registers (where M=Memory[A]).  The computed function is specified by the a-bit 
and the six c-bits comprising the instruction’s comp field.  This 7-bit pattern can potentially code 
128 different functions, of which only the 28 listed in Table 4-4 are documented in the computer 
specification.   
 

 
a=0  

mnemonic c1 c2 c3 c4 c5 c6  

0 1 0 1 0 1 0  

1 1 1 1 1 1 1  

-1 1 1 1 0 1 0  

D 0 0 1 1 0 0  

A 1 1 0 0 0 0 M 

!D 0 0 1 1 0 1  

!A 1 1 0 0 0 1 !M 

-D 0 0 1 1 1 1  

-A 1 1 0 0 1 1 -M 

D+1 0 1 1 1 1 1  

A+1 1 1 0 1 1 1 M+1 

D-1 0 0 1 1 1 0  

A-1 1 1 0 0 1 0 M-1 

D+A 0 0 0 0 1 0 D+M 

D-A 0 1 0 0 1 1 D-M 

A-D 0 0 0 1 1 1 M-D 

D&A 0 0 0 0 0 0 D&M 

D|A 0 1 0 1 0 1 D|M 

 c1 c2 c3 c4 c5 c6 mnemonic 
 a=1 

 
TABLE 4-4:  The "compute" specification of the C-instruction.  D and A are names 
of registers.  M refers to the memory location addressed by A, i.e. to Memory[A]. The 
symbols “+” and “–“ denote 16-bit 2’s complement addition and subtraction, 
respectively, while “!”, “|”, and “&” denote the 16-bit bit-wise Boolean operators Not, 
Or, And, respectively. Note the similarity between this instruction set and the ALU 
specification given in Table 2-7.  

 
Recall that the format of the C-instruction is "111a cccc ccdd djjj".  Suppose we want to 
compute D-1, i.e. "the current value of the D register minus 1".   According to Table 4-4, this can 
be done by issuing the instruction "1110 0011 10xx xxxx" (we use "x" to label bits that are 
irrelevant to the given example). To compute the value of D|M, we issue the instruction "1111 
0101 01xx xxxx".  To compute the constant -1, we issue the instruction "1110 1110 10xx 
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xxxx", and so on. In short, the instruction set supports a selection of 28 different functions of 
interest involving unary, binary, and null operations on A, D, and M. 
 
The destination specification: The value computed by the comp part of the C-instruction can 
be simultaneously stored in several destinations, as specified by the instruction's dest part. The 
first and second d-bits code whether to store the computed value in the A register and in the D 
register, respectively.  The third d-bit codes whether to store the computed value in M (i.e. in 
Memory[A]).  One, more than one, or none of these bits may be asserted, as follows: 
  

d1 d2 d3 mnemonic destination (where to store the computed value) 

0  0 0 null the value is not stored anywhere 
0 0 1 M Memory[A]  (memory register addressed by A) 
0 1 0 D D register 
0 1 1 MD Memory[A] and D register  
1 0 0 A A register 
1 0 1 AM A register and Memory[A] 
1 1 0 AD A register and D register 
1 1 1 AMD A register, Memory[A], and D register  

 
TABLE 4-5:  The "destination" specification of the C-instruction.  

 
Recall that the format of the C-instruction is "111a cccc ccdd djjj".  Suppose we want the 
computer to increment the value of Memory[7] by 1, and also store the result in the D register.  
According to tables 4-4 and 4-5, this can be accomplished by the instructions:  
 

0000 0000 0000 0111    // @7 
1111 1101 1101 1xxx    // DM=M+1  (x=irrelevant bits) 

 
The first A-instruction causes the computer to select the memory register whose address is 7 (the 
so called "M register").  The subsequent C-instruction computes the value of M+1 and stores the 
result in both D and M.  The role of the 3 LSB bits of the second instruction are explained next.  
 
The jump specification: The jump field of the C-instruction tells the computer what to do 
next. There are two possibilities: the next instruction to execute may either be the next instruction 
in the instruction memory (implying a no-jump: PC=PC+1, where PC is the program counter) or it 
may be the instruction whose address is held in the A register (implying a jump: PC=A). In the 
latter case, we assume that the A register has been previously set to the address to which we want 
to jump. 
 
A jump is performed conditionally according to the sign of the value computed  by the ALU.  
The first j-bit specifies whether to jump in case the ALU output is negative, the second j-bit in 
case the ALU output is zero, and the third j-bit in case it is positive.  This gives 8 possible jump 
conditions, listed in Table 4-6. 
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j1 
( ) 0pout

j2 
(out ) 0=

j3 
( ) 0fout Mnemonic Effect  

0 0 0 null no jump 
0 0 1 JGT if out  jump 0f

0 1 0 JEQ if out  jump  0=
0 1 1 JGE if out  jump 0≥
1 0 0 JLT if out  jump 0p

1 0 1 JNE if out  jump 0≠
1 1 0 JLE if out  jump 0≤
1 1 1 JMP jump 

 
TABLE 4-6:  The "jump" specification of the C-instruction. In the right column, the "jump" 
directive implies "fetch the instruction addressed by the A register" (i.e. set PC=A), while out 
refers to the ALU output value.  This value results from the instruction’s comp part. 

 
For example, suppose we want to effect the following logic: if Memory[3]=5 goto 100 
else goto 200. According to the language specification, this can be accomplished by the 
following code:  
 

Desired logic Hack implementation 
if Memory[j]=5 then @3    // D=Memory[3] 
   goto 100 D=M 
else goto 200 @5    // D=D-5 
 D=D-A 
 @100  // if D=0 goto 100 
 D;JEQ 
 @200  // goto 200 
 0;JMP 

 
The last instruction (“0;JMP”) effects an unconditional jump.  Since the C-instruction syntax 
requires that we always effect some computation, we instruct to compute 0 (an arbitrary choice). 
 
Restrictions on the C-Instruction: As was illustrated in the code above, the programmer can use 
the A register in order to select a data memory location for a subsequent C-instruction involving 
M, or else A can be used to select an instruction memory location in order to set the stage for a 
subsequent C-instruction involving a jump. To prevent conflicting use of the A register, we 
require that a C-instruction that may cause a jump  (i.e. with some non-zero j bits) cannot contain 
a reference to M. Violations of this rule will cause the computer to do something unexpected.  
Problematic instructions like this one can be intercepted by an assembler program, as we will see 
in the next chapter.   
 

` 



Chapter 4: Computer Architecture                                                                                                           12           
 
Example 
 
Consider the following C code, designed to sum the numbers between 1 and 100: 
  

int i=1; 
int sum=0; 
while (i<=100){ 
   sum+=i; 
   i++; 

          } 
 
The Hack language implementation of this algorithm is given in Prog. 4-7. 
 

 
 Symbolic code  addr Instruction  
0 @16  // i=1    (i is at M[16]) 0 0000 0000 0001 0000
1 M=1  1 1110 1111 1100 1000
2 @17 // sum=0  (sum is at M[17])  2 0000 0000 0001 0001
3 M=0  3 1110 1010 1000 1000
4 @16 // loop: if i-100>0 goto end 4 0000 0000 0001 0000
5 D=M  5 1111 1100 0001 0000
6 @100  6 0000 0000 0110 0100
7 D=D-A  7 1110 0100 1101 0000
8 @18  8 0000 0000 0001 0010
9 D;JGT  9 1110 0011 0000 0001
10 @16 // sum+=i                       10 0000 0000 0001 0000
11 D=M  11 1111 1100 0001 0000
12 @17  12 0000 0000 0001 0001
13 M=D+M  13 1111 0000 1000 1000
14 @16 // i++ 14 0000 0000 0001 0000
15 M=M+1  15 1111 1101 1100 1000
16 @4 // goto loop 16 0000 0000 0000 0100
17 0;JMP  17 1110 1010 1000 0111
18 @18 // end: goto end 18 0000 0000 0001 0010
19 0;JMP  19 1110 1010 1000 0111

 
PROGRAM 4-7: Symbolic and binary representations of the same program. 
The contract is such that when a program is loaded into the instruction memory, the 
binary code of the program's n-th  instruction is stored in address n, starting at 0. 

 
Explanation:  It's important to remember that in the Hack platform, the instruction memory and 
the data memory represent two separate address spaces.  Thus address 16 in the former and 
address 16 in the latter refer to two totally different registers.  Prog. 4-7 assumes that variables i 
and sum are represented by data memory registers #16 and #17, respectively.  This is a 
reasonable assumption: any other two addresses in the data memory address space will be just as 
good, as long as all references to i and sum in the program are consistent with this assumption, 
as indeed is the case.  The remaining code is self-explanatory, except perhaps for instructions 18-
19.  These instructions terminate the program by putting the computer in an infinite loop. 
 
Like all machine languages, Hack’s native code is cumbersome and hard to use.  Chapter 5 of the 
book introduces an extension of this language, called assembly.  The chapter then explains how to 
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write the Hack Assembler – a program that translates Hack assembly programs to binary 
programs written in the Hack instruction set. 
 
4.2.3 Hardware Specification 
 
Machine languages are abstractions.  In order to run programs written in a given machine 
language, we need a machine.  This section specifies a hardware platform designed to execute 
programs written in the Hack machine language.  As usual, we describe the machine at the 
interface level, dealing with implementations issues in a later section. 
 
Before we start specifying the hardware, we wish to point out that most of it can be assembled 
from previously built components. The CPU is based on the Arithmetic-Logic Unit built in 
Chapter 2.  The CPU’s registers and program counter are identical copies of the 16-bit register 
and 16-bit counter, respectively, built in chapter 3.  Likewise, the instruction memory and the 
data memory are versions of RAM units, also built in Chapter 3.  Finally, the screen and the 
keyboard devices will be represented in the architecture through memory maps, and their physical 
realizations will be implemented as built-in devices, externally available or simulated by the 
hardware simulator. 
 
Central Processing Unit 
 
The CPU of the Hack platform is designed to execute 16-bit instructions according to the Hack 
machine language.  It expects to be connected to two separate memory modules: an instruction 
memory, from which it accepts instructions for execution, and a data memory, from which it can 
read, and into which it can write, data values.  Fig. 4-8 gives the specification details. 

` 



Chapter 4: Computer Architecture                                                                                                           14           
 
 
 

instruction

inM

16

1

15

15

16 outM

16

writeM

addressM

pc
reset

1

C
PU

to data
memory

to instruction
memory

from
data

memory

from
instruction

memory

 
 
Chip Name: CPU               // Central Processing Unit 
Inputs:    inM[16],          // input from data memory (M) 

instruction[16],  // instruction from instruction memory 
reset             // signals whether to re-start the current 
                  // program (reset=1) or continue executing 
                  // the current program (reset=0) 

Outputs:   outM[16],         // output to data memory (M) 
writeM,           // write-enable the data memory  
addressM[15],     // address in data memory (of M) 
pc[15]            // address of next instruction 

Function: Executes the inputted instruction according to the Hack machine 
language specification. The D and A in the language 
specification refer to CPU-resident registers, while M refers 
to the external memory location addressed by A, i.e. to 
Memory[A]. The inM input holds the value of this location. 

If the current instruction needs to write a value to M, the 
address of the target location is placed in the addressM 
output, the value is placed in outM, and  the writeM control 
bit is asserted. (when writeM=0, any value may appear in outM). 

The outM and writeM outputs are combinational: they are 
affected instantaneously by the execution of the current 
instruction.  The addressM and pc outputs are clocked: although 
they are affected by the execution of the current instruction, 
they commit to their new values only in the next time unit. 

If reset=1 then the CPU jumps to address 0 (i.e. sets pc=0 in 
next time unit) rather than to the address resulting from 
executing the current instruction. 

 
 

INTERFACE 4-8: The Central Processing Unit. This CPU can be built from the 
ALU and the registers built in Chapters 2 and 3, respectively. 

` 



Chapter 4: Computer Architecture                                                                                                           15           
 
Instruction Memory 
 
The Hack instruction memory is implemented in a read-only direct-access memory device, and 
thus we will sometimes refer to it as the “ROM”.  The Hack ROM is a read-only vector of 32K 
addressable 16-bit registers:   
 

out

15 16

address
ROM32K

 
 

Chip Name: ROM               // 16-bit read-only 32K memory 
Input:     address[15]       // Address in the ROM 
Output:    out[16]           // Value of ROM[address] 
Function: out=ROM[address]  // 16-bit assignment 
Comment: The ROM is pre-loaded with a machine language 

program.  Simulators must supply a mechanism for 
loading a program into the ROM. 

 
INTERFACE 4-9: Read-Only Memory. This ROM chip serves as the instruction 
memory of the Hack platform. 

 
Data Memory  
 
Hack's data memory chip has the interface of a typical RAM device, like those built in Chapter 3 
(see for example Fig. 3-3).  To read the contents of register n, we put n in the memory’s address 
input and probe the memory’s out output. This is a combinational operation, independent of the 
clock.  To write a value v into register n, we put v in the in input, n in the address input, and 
assert the memory’s load bit.  This is a sequential operation, and so register n will commit to the 
new value v in the next clock cycle. 
 
In addition to serving as the computer’s general-purpose data store, the data memory also 
interfaces between the CPU and the computer’s input/output devices, as we now turn to explain. 
 
Memory Maps:  In order to facilitate interaction with a user, the Hack platform is connected to 
two peripheral devices: screen and keyboard.  Both devices interact with the computer platform 
through memory-mapped buffers. Specifically, screen images can be drawn and probed by 
writing and reading, respectively, words in a designated memory segment called screen memory 
map.  Similarly, one can ascertain which key is presently pressed on the keyboard by probing a 
designated memory word called keyboard memory map.  The memory maps interact with their 
respective I/O devices via peripheral logic that resides outside the computer.  The contract is as 

` 



Chapter 4: Computer Architecture                                                                                                           16           
 
follows: whenever a bit is changed in the screen's memory map, a respective pixel is drawn on the 
physical screen.  Whenever a key is pressed on the physical keyboard, the respective code of this 
key is stored in the keyboard's memory map.   
 
We specify first the built-in chips that provide the hardware interface to the I/O devices and then 
specify the complete memory module that embeds them. 
 
Screen:  The Hack computer can be connected to a black-and-white screen organized as 256 
rows of 512 pixels per row.  The computer interfaces with the physical screen via a memory map, 
implemented by a chip called Screen.  This chip behaves like regular memory, meaning that it 
can be read and written to.  In addition, it features the side effect that any bit written to it is 
reflected as a pixel on the physical screen (1=black, 0=white).   The exact mapping between the 
memory map and the physical screen coordinates is given in the chip API. 
 

Chip Name: Screen       // memory-map of the physical screen 
Inputs:    in[16],      // what to write 

load,        // write-enable bit 
address[13]  // where to write 

Output:    out[16]      // screen value at the given address 
Function: Functions exactly like a 16-bit 8K RAM: 

1. out=Screen[address] 
2. If load(t-1) then Screen[address]=in(t-1) 
(t is the current time-unit, or cycle) 

Comment: Has the side effect of refreshing a 256 by 512 black-
and-white screen (simulators must simulate the screen).  
Each row in the physical screen is represented by 32 
consecutive 16-bit words, starting with the top left 
corner of the screen.  Thus the pixel at row r from the 
top and column c from the left (0<=r<=255, 0<=c<=511) 
reflects the c%16 bit (counting from LSB to MSB) of the 
word found in Screen[r*32+c/16].  

 
INTERFACE 4-10: Screen chip (memory map) 

 
Keyboard: The Hack computer can be connected to a standard keyboard, like that of a personal 
computer. The computer interfaces with the physical keyboard via a memory map, implemented 
by a chip called Keyboard. Whenever a letter or a digit key is pressed on the physical keyboard, 
its 16-bit Unicode appears as the output of the Keyboard chip.  Whenever  a control key is 
pressed, the Keyboard chip emits one of the following codes:  

 
Key  
pressed 

Keyboard 
output 

new line 128 
backspace 129 
left arrow 130 
right arrow 131 
up Arrow 132 
down arrow 133 
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home 134 
end 135 
page up 136 
page down 137 
insert 138 
delete 139 
esc 140 
f1-f12 141-152 

 
TABLE 4-11:  Special keyboard keys  

 
 

Chip Name: Keyboard     // Memory map of the physical keyboard. 
             // Outputs the code of the currently 
             // pressed key. 

Output:    out[16]      // If the currently pressed key is a 
             // letter or a digit, the Unicode of that 
             // key.  If it’s a control key, one of 
             // the codes listed in table 4-11. 

Function: Outputs the code of the currently pressed key. If no 
key is currently pressed then out=0. 

Comment: Has the side effect of being refreshed from a physical 
keyboard unit (simulators must simulate this service). 

 
INTERFACE 4-12: Keyboard chip (memory map) 

 
Now that we’ve described the internal parts of the data memory, we are in a position to specify 
the entire data memory address space. 
 
Overall Memory: The overall address space of the Hack platform (i.e. its data memory) is 
provided by a chip called Memory.  The memory chip includes interfaces to the RAM (for regular 
data storage), to the screen, and to the keyboard.  These interfaces reside in a single address space 
that is partitioned into four sections (the last section is unused): 
 

• Memory addresses  0x0000 – 0x3FFF:     regular RAM (16K); 
• Memory addresses  0x4000 – 0x5FFF:     memory map of the screen  (8K); 
• Memory address                      0x6000:     memory map of the keyboard  (1 word); 
• Memory address      0x6001 – 0x7FFF:    unused segment. 
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Chip Name: Memory       // complete memory address space 
Inputs:    in[16],      // what to write 

load,        // write-enable bit 
address[15]  // where to write 

Output:    out[16]      // Memory value at the given address 
Function: 1. out=Memory[address] 

2. if load(t-1) then Memory[address]=in(t-1) 
   (t is the current time-unit, or cycle) 

Comment: Access to address>0x6000 is invalid.  Access to any 
address in the range 0x4000–0x5FFF results in 
accessing the screen memory map.  Access to address 
0x6000 results in accessing the keyboard memory map.  
The behavior in these addresses is described in the 
Screen and Keyboard specifications. 

 
INTREFACE 4-13: Data Memory. 
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Computer  
 
The top-most chip in the Hack hardware hierarchy -- called Computer -- is a complete computer 
system designed to execute programs written in the Hack machine language.  The Computer 
chip contains all the hardware devices necessary to operate the computer, including a CPU, a data 
memory, an instruction memory (ROM), a screen, and a keyboard, all implemented as internal 
parts.  In order to execute a program, the program’s code must be pre-loaded into the ROM. 
Programmer control of the screen and the keyboard is via their memory maps, as described in the 
specifications. 
 

Computer
reset

Keyboard

screen

 
 

Chip Name: Computer  // top-most chip in the Hack platform 
Input:     reset  
Function: When reset is 0, the program stored in the 

computer's ROM executes.  When reset is 1, the 
execution of the program restarts. Thus, to start 
a program’s execution, reset must by pushed “up” 
(1) and “down” (0). 

Depending on the program's code, the screen will 
show some output and the user will be able to 
interact with the computer via the keyboard. 

From this point onward the user is at the mercy 
of the person or company who wrote the software. 

 
INTERFACE 4-14: Computer. Top-most chip of the Hack hardware platform.  The first 
program that the computer runs is typically a ROM-resident bootstrapping code that 
invokes another program, e.g. the operating system. 
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4.3 Implementation 
 
This section gives general guidelines on how the Hack platform can be built to deliver the various 
services described in its specification (Section 4.2).  As usual, we don't give exact building 
instructions, since we expect readers to come up with their own designs.  All the chips can be 
built in HDL and simulated on a personal computer using the hardware simulator that comes with 
the book.  As usual, technical details are given in the final "Build It" section (4.4). 
 
Since most of the action in the Hack platform occurs in its Central Processing Unit, the main 
implementation challenge  is to build the CPU.  The construction of the rest of the computer is 
straightforward. 
 
The Central Processing Unit 
 
The CPU implementation objective is to create a logic gate architecture that effects the CPU 
specification, i.e. is capable of executing a given Hack instruction and fetching the next 
instruction to be executed.  Naturally, the CPU will include an ALU capable of executing the 
Hack instruction set, a set of registers, and some control logic designed to fetch and decode 
instructions.  Since almost all these hardware elements were already built in previous chapters, 
the key question here is how to inter-connect them in order to effect the desired CPU operation.  
One possible solution is illustrated in Fig. 4-15.  
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FIGURE 4-15: Proposed CPU Implementation. The diagram shows only data and 
address paths, i.e. wires that carry data and addresses from one place to another.  The 
diagram does not show the CPU’s control logic, except for inputs and outputs of control 
information.  Thus it should be viewed as an incomplete chip diagram. 
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The key element missing in Fig. 4-15 is the CPU’s control logic.  The control logic is a rather 
simple set of gates and wires designed to perform three tasks:  

� Instruction decoding: Figure out what the instruction means 
(a function of the instruction); 

� Instruction execution: Signal the various parts of the computer what they  
should do in order to execute the instruction (a function of the instruction); 

� Next Instruction fetching: Figure out which instruction to execute next 
(a function of the instruction and the ALU output).  

 
(in what follows, the term "proposed CPU implementation" refers to Fig. 4-15).   
 
Instruction decoding: The 16-bit word located in the CPU’s instruction input can represent 
either an A-instruction or a C-instruction.  In order to figure out what this 16-bit word means, it 
can be broken into the fields "i 11 a cccccc ddd jjj".  The i-bit codes the instruction type, 
which is “0” for an A-instruction and “1” for a C-instruction. In case of a C-instruction, the a-bit 
and the c-bits represent the comp part, the d-bits represent the dest part, and the j-bits 
represent the jump part of the instruction.   In case of an A-instruction, the 15 bits other than the 
i-bit should be interpreted as a 15-bit constant.  The (rather trivial) control logic that effects all 
these decoding tasks is not shown in the proposed CPU implementation. 
 
Instruction execution: The various fields of the instruction (i-, a-, c-, d-, and j-bits) are routed 
simultaneously to various parts of the architecture, where they cause different chips to do what 
they are supposed to do in order to execute either the A-instruction or the C-instruction, as 
mandated by the machine language specification.  In particular, the a-bit determines whether the 
ALU will operate on the A register or on the Memory, the c-bits determine which function the 
ALU will compute, and the d-bits enable various locations to accept the ALU result.  The (rather 
trivial) control logic that routes these control signals to their various destinations is not shown in 
the proposed CPU implementation. 
 
Next instruction fetching: As a side effect of executing the current instruction, the CPU also 
determines the address of the next instruction and emits it via its pc output.  The “seat of control” 
of this task is the program counter -- an internal part of the CPU whose output is fed directly to 
the CPU’s pc output.  This is precisely the PC chip built in chapter 3 (see Fig. 3-4). 
 
Normally, the PC is incremented by 1 each clock cycle.  Thus if we reset the PC to 0 and let the 
computer clock run, the PC will yield the outputs 0,1,2,3, ... and so on.   In order to commence a 
new counting series, say 12,13,14, ..., we have to set the PC input to 12.  This simple logic holds 
the key to the hardware implementation of the software notion of "flow of control", as we now 
turn to explain.   
 
Most of the time, the programmer wants the computer to fetch and execute the next instruction in 
the program.  Thus if t is the current time-unit, the default program counter operation should be 
PC(t)=PC(t-1)+1. When we want to effect a "goto n" operation, the machine language 
specification requires to first set the A register to n and then issue a jump directive (coded by the 
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j-bits of the C-instruction).  Hence, our challenge is to come up with a hardware implementation 
of the following logic: 
  

if jump(t) then PC(t)=A(t-1) 

else PC(t)=PC(t-1)+1 
 
Conveniently, and actually by careful design, this jump control logic can be easily effected by the 
proposed CPU implementation.  First, recall the that ALU chip interface (Fig. 2-6) has two output 
bits that signal its output status (ALU output is ,0,0,0,0 fp =≤  or ).  Second, recall that the 
PC chip interface (Fig. 3-4) has a “load“ control bit that enables it to accept a new value via its 
“in“ input.  Thus, to effect the desired jump control logic, we start by connecting the output of 
the A register to the input of the PC.  The only remaining question is when to enable the PC to 
accept this value (rather the continuing its steadfast counting). 

0≥

 
The answer is that the PC has to be reset to a new counting base only when a jump needs to occur.  
And the “jump needs to occur” event is a function of two signals: (a) the j-bits of the current 
instruction, specifying on which condition we are supposed to jump, and (b) the ALU output 
status, informing whether or not the condition is satisfied. Taken together, the j-bits and the ALU 
output status determine whether a jump needs to occur.  If we have a jump, the PC must be loaded 
with A’s output.  If we don’t have a jump, the PC should increment by 1. The former behavior 
will cause the computer to fetch the instruction addressed by the A register, while the latter 
behavior will cause the computer to fetch the next instruction in the program’s code. 
 
It follows that if we want the computer to re-start the program’s execution, all we have to do is 
reset the program counter to 0.  That’s why the proposed CPU implementation feeds the CPU’s 
reset input directly into the reset input of the PC chip. 
 
Memory  
 
According to its specification, the Memory chip of the Hack platform is essentially a package of 
three lower-level chips: RAM16K, Screen, and Keyboard.  At the same time, users of the 
Memory chip must see a single logical address space, spanning from location 0x0000 to 0x6000 
(see Fig 4-13).  The implementation of the Memory chip should create this continuum effect.  
This can be done by the same technique used to combine small RAM units into larger RAM 
units, as we have done in Chapter 3 (end of Section 3-3). 
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Computer 
 
Once the Memory and the CPU chips have been implemented and tested, the construction of the 
overall computer is straightforward.  Fig. 4-17 depicts a possible implementation. 
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FIGURE 4-17: Proposed implementation of the top-most Computer chip. As documented 
in interface 4-14, the Computer chip has one input only: reset.  Note that the implementation 
is simply a matter of connecting three chips to each other – a rather simple affair.  

 
 
4.4 Perspective 
 
Following the general spirit of the book, the architecture of the Hack computer is rather simple 
and minimal. Typical computer platforms have more registers, more data types (rather than 16-bit 
integers only), more powerful ALU’s, and more elaborate instruction sets.  However, these 
differences are mainly quantitative.  From a qualitative standpoint, Hack is quite similar to most 
digital computers, as they all follow the same design paradigm: the von Neumann architecture. 
 
From a functional standpoint, computers can be classified into two categories: general-purpose 
computers and dedicated computers, which are typically embedded in other systems like 
automobiles and airplanes. General-purpose computers store data and instructions in a single 
address space, and are able to load programs dynamically into memory from an external storage 
device like a disk.  In contrast, embedded computers typically employ separate data and 
instruction memories, and the latter is typically implemented in ROM. In any particular 
application, a single program is burned into the embedded computer’s ROM, and is the only one 
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executed by the embedded computer.  Incidentally, this is also the operational model of many 
game computers, where the game software resides in an external cartridge which is simply a 
ROM chip encased in some fancy package.   Clearly, Hack is more similar to embedded 
computers than to general-purpose computers.  At the same time, note that the key characteristics 
of all these computers are very much alike: stored programs, fetch-decode-execute logic, and so 
on. 
 
Finally, it should be stressed that most of the effort and creativity in designing computer 
hardware is aimed at achieving better performance.  Thus, hardware architecture courses evolve 
around memory hierarchies (cache), better access to I/O devices, pipelines, parallelism, 
instruction pre-fetching, and other optimization techniques.  Historically, the attempts to enhance 
the processor’s performance have led to two main schools of hardware design.  Advocates of the 
CISC (Complex Instruction Set Computer) approach argue for providing as rich and powerful 
instruction sets as possible, while the RISC (Reduced Instruction Set Computer) camp uses 
simpler instruction sets in order to promote as fast hardware implementations as possible.  The 
Hack computer does not enter this debate, featuring neither a  strong instruction set nor special 
hardware acceleration techniques.   
 
4.5 Build It 
 
Objective: Build the Hack computer platform, using already-built chips (in this and previous 
chapters), culminating in the construction of the top-most Computer chip.  The designed 
computer platform should be capable of executing programs written in the Hack machine 
language. 
 
Tips: Build the computer in the following order: 
 
� Memory: This chip should be composed from three chips: RAM16K, Screen, and 

Keyboard.  The Screen and the Keyboard are available as built-in chips and 
there is no need to build them.  The RAM16K chip was built in chapter 3.  We 
recommend using its built-in version, though, as it provides a debugging-friendly 
GUI. 

 
� CPU: This chip can be composed according to the proposed implementation given 

in Fig. 4-15, using the ALU and Register chips built in Chapters 2 and 3, 
respectively.  We recommend using the built-in versions of these chips, in order to 
benefit from their GUI.  In particular, the hardware simulator features two built-in 
chips called ARegister and DRegister, each having exactly the same 
functionality of the Register chip designed in chapter 3, but providing GUI side-
effects. 

 
In the course of implementing the CPU, it is allowed to specify and build some 
internal chips of your own, in order to make the design more elegant and 
manageable.  This is up to you.  If you choose to create new chips not mentioned in 
the book, be sure to document and test them carefully before you plug them into 
the architecture.  
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` 

� Instruction Memory: Use the built-in ROM32K chip. 
 
� Computer: The top-most Computer chip can be composed from the chips 

mentioned above, using Fig. 4-17 as a blueprint. 
 
Testing:  We supply test scripts and compare files for each one of the specified chips.  It's 
important to complete the testing of your Memory and CPU chips before you set out to build the 
overall Computer chip. 
 
One natural way to test your overall Computer chip implementation is to have it execute some 
sample programs written in the Hack language.  In order to run such a test, one can write a test 
script that loads the Computer chip into the simulator, loads a program from an external text file 
into its ROM32K chip, and then runs the clock enough cycles to execute the program. We supply 
all the files necessary to run three such tests, as follows: 
 
� add.bin: this program adds the two constants 2 and 3 and writes the result in 

RAM[0]. Test scripts: ComputerAdd.tst, ComputerAdd.cmp. 

� max.bin: this program computes the maximum of RAM[0] and RAM[1] and 
writes the result in RAM[2]. Test scripts: ComputerMax.tst, ComputerMax.cmp. 

� rect.bin:  this program draws a rectangle of width 16 pixels and length RAM[0] 
at the top left of the screen.  Test scripts: ComputerRect.tst, 
ComputerRect.cmp.    

Before testing your Computer chip on the above programs, read the respective Xxx.tst file and 
make sure that you understand the instructions given to the simulator.  It may be helpful to 
consult section B.8 in Appendix B in order to understand the commands syntax. 
 
The remaining instructions for this project are identical to those of Project 1 (section 1.6), except 
that every occurrence of the text "project1" should be replaced with the text "project4". 


