
Chapter 3: Sequential Logic 1

3. Sequential Logic 1
Time is the substance from which I am made. Time is a river which carries

me along, but I am the river; it is a tiger that devours me, but I am the tiger;
it is the fire that consumes me, but I am the fire.

Jorge Luis Borges (1899-1986)

All the Boolean and arithmetic chips that we built in previous chapters were combinational.
Combinational chips compute functions that depend solely on combinations of their input values.
Combinational chips provide many important processing functions (like the ALU), but they
cannot maintain state. Since computers must be able to not only compute values but also to store
and recall values, computer architectures are equipped with memory elements that can preserve
data over time. These memory elements are built from sequential chips.

The implementation of memory elements is an intricate art involving synchronization, clocking,
and feedback loops. Conveniently, most of this complexity can be embedded in the operating
logic of very low-level sequential gates called flip-flops. Using these flip-flops as building
blocks, we will specify and build all the memory elements employed by typical modern
computers, from binary cells to registers to memory banks and counters. This effort will
complete the construction of the chip-set that we need in order to build an entire computer – a
challenge that we take up in the next chapter.

Following a brief overview of sequential logic, section 3.1 introduces the notion of memory units
and the sequential chips on which they are based. Sections 3.2 and 3.3 describe the chips
specifications and implementation, respectively. As usual, all the chips mentioned in the chapter
can be built and tested on you home computer, following the instructions given in the last section.

3.1 Background

Typical computer architectures consist of two types of chips: combinational and sequential. The
outputs of combinational chips depend only on their inputs. In contrast, the outputs of sequential
chips are also functions of time. This enables sequential chips to change their state as time
progresses: at any given time, the state of a sequential chip is a function both of the chip’s inputs
and of the chip’s previous state. In order to facilitate such sequential behavior, we need to
represent the progression of time inside the computer.

Clocked chips: Physical time is continuous: there is no “atomic time unit”. Yet dealing with
changes in time becomes much easier if we can artificially make time discrete. Indeed this is
what is usually done inside computers: the passage of time is marked by a master clock that tick-
tacks continuously. The elapsed time between the beginning of a “tick” and the end of the
subsequent “tack” is called cycle, and each clock cycle is treated as a discrete time unit. Unlike
combinational chips, which respond to changes in their inputs instantaneously, sequential chips
are made to change their outputs only at the point of transition from one clock cycle to the next,
and not within the clock cycle itself. More precisely, we allow sequential chips to be in unstable

1 From The Digital Core, by Nisan & Schocken, forthcoming in 2003, www.idc.ac.il/csd

Chapter 3: Sequential Logic 2

states during clock cycles, requiring only that by the end of the cycle they will output correct
values.

Sequential chips are designed to operate on state. For example, memory chips must maintain
state, and counter chips must change it. In other words, the state of a sequential chip at time t
should be a function of the state of the chip at time t-1, and of the chip inputs at time t-1. In order
to implement such a time-dependent function, we can feed the chip output back into itself, as
input. In combinational chips, such feedback loops are problematic: the output depends on the
input, which itself depends on the output, and thus the output would depend on itself. On the
other hand, there is no difficulty in feeding the output of a sequential chip back into itself: the
discrete time-dependent behavior of the chip ensures that the output at time t would depend only
on the inputs at time t-1 and the output at time t-1. Thus the output at any given time does not
depend on itself, avoiding the uncontrolled “data races” that would occur in combinational chips
with feedback loops.

In sum, the clean dependence of the state at each time on the state at the previous time unit allows
the safe introduction of feedback loops into the architecture. This is illustrated in Fig. 3-1, where
two chips are designed to compute functions f and g using combinational circuits. The
combinational chip responds immediately to any changes in the in input; in contrast, the
sequential chip changes its output value only between clock cycles.

out = f(in)

Combinational
Chip

g
outin

f
in out

out(t) = g(in(t-1),out(t-1))

Sequential
Chip

FIGURE 3-1: Combinational versus sequential logic (in this diagram in and out stand
for potentially several input and output variables). The output of a combinational chip
changes when its inputs change, irrespective of time. In contrast, the outputs of sequential
chips change only at the beginning of the next clock cycle. The small triangle icon at the
bottom of the sequential chip represents the master clock signal.

The exact implementation of clock cycles in hardware is usually done using an oscillator that
alternates continuously between two phases, labeled 0 and 1. A clock cycle is then composed of a
0-phase followed by a 1-phase. The current clock phase (0 or 1) is a simple digital signal which
is broadcast through the computer circuitry simultaneously to every sequential chip in the
architecture. This way, all the sequential chips in the architecture (typically, millions of them)
compute their new outputs together, at precisely the same time.

Flip-flops: The most elementary time-based sequential gate in the computer is a device whose
state consists of a single bit. Such a device is called flip-flop, and at any given time it can be in
one of two different states, labeled “flip” or “flop”. There are various types of flip-flips, differing
from each other in the exact way that their state is set and reset. The flip-flop that we describe in

Chapter 3: Sequential Logic 3

this chapter has a single input (in) and a single output (out), and the function that it computes is
out(t)=in(t-1), where t is the current clock cycle. In other words, this flip-flop simply remembers
the input value from the previous time unit. Another way to describe the flip-flop’s operation is
to observe that it simply introduces a delay of exactly 1 time unit. As the chapter unfolds, we
will show how this elementary behavior can form the basis of all the hardware devices in the
computer that have to maintain state, from binary cells to registers to arbitrarily large random
access memory units.

Memory: Once we have the basic ability to remember a single bit using a flip-flop, we can easily
construct arbitrarily large memory units. To get started, we can augment the flip-flop with an
explicit write-enable signal, implemented by a single-bit load input (in addition to the existing in
input). The resulting chip, called binary cell or single-bit register, is designed to change its
stored value to the in value only when the load bit is enabled. At all other times, the chip
maintains and outputs its previous state (see middle of Fig. 3-2).

By putting many single-bit registers in parallel to each other we can obtain a register that holds a
multi-bit value (right of Fig. 3-2). Thus the basic design parameter of a register is its width – the
number of bits it holds; in modern computers, registers are usually 32-bit or 64-bit wide. The
contents of such registers are typically referred to as words.

DFF outin

out(t) = in(t-1)

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit Bit Bit

w-bit register

out

load

binary cell (Bit)Flip-Flop

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

FIGURE 3-2: From flip-flop gates to multi-bit registers. A single-bit binary cell (also
called Bit) is essentially a DFF gate with a loading capability. A multi-bit register of
width w is an array of w Bit gates. The operating function of the register is exactly the
same as that of the binary cell, except that the "=" assignments are multi-bit rather than
single-bit. Note: Interface diagrams of sequential chips don't show their clock-regulated
output-input loops, since these loops are part of the internal chip implementation.

At this point we can stack together many registers to construct a random access memory (RAM)
– see Fig. 3-3. We need to be able to access each one of the RAM’s words at will, so each word
is assigned an address according to which it is accessed. Thus, a RAM device accepts a data
input and an address input that specifies which word is accessed in the current time unit, causing
the RAM to read from, or write into, the selected register.

The basic design parameters of a RAM device are its data width -- the width of each one of its
underlying words, and its size -- the number of words in the RAM. Modern computers typically
employ 32- or 64-bit wide RAMs whose size is up to hundreds of millions. The term "Random
Access Memory" derives from the requirement that read/write operations on individual registers

Chapter 3: Sequential Logic 4

in the RAM should be completed at the same time, irrespective of the register's location in the
memory. This requirement is implemented by the RAM's direct access logic.

address

load

outin

(0 to n-1)

Direct Access Logic

register 0

register 1

register n-1

RAM n

..

.
register 2

FIGURE 3-3: RAM chip (conceptual). The width of the memory has little impact on the
RAM implementation, and thus 16-bit, 32-bit, and 64-bit memories have essentially the
same structure. The RAM structure is scaleable in terms of n, meaning that its length
can be easily extended.

Counters: A counter is a sequential chip that effects the function out(t)=out(t-1)+1. Counters
play an important role in digital architectures. For example, the program counter is a control
chip that keeps track of which instruction should be executed next in the presently running
program. The state of a counter is an integer number that increases by one every time unit.
Such a device can be implemented by combining the combinatorial logic for adding 1 with a
register. In many cases some special functionality is added to a counter, such as possibilities for
resetting the count to zero, loading a new value (the counting base) from the outside, or
decrementing instead of incrementing. The basic design parameter of a counter is its width.

3.2 Specification

This section specifies a hierarchy of sequential gates:

� D-Flip-flop
� Registers (single-bit and multi-bit)
� Memory banks (based on registers)
� Counter chip (based on a register)

Chapter 3: Sequential Logic 5

D-Flip-Flop

The most elementary storage device in the computer – the basic component from which all
memory elements are designed – is the Data Flip-Flop gate. A DFF gate has a single-bit input
and a single-bit output, as follows:

Chip name: DFF
Inputs: in
Outputs: out
Function: out(t)=in(t-1)

DFF outin

Comment: This clocked gate has a built-in
implementation and thus there is
no need to implement it.

Like Nand gates, DFF gates enter our computer architecture at a very low level. Specifically, all
the sequential chips in the computer (registers, memory, and counters) are based on numerous
DFF gates. All these DFFs are connected to the same master clock, forming a huge distributed
“chorus line”. At the beginning of every new clock cycle, the outputs of all the DFFs in the
computer commit to their inputs during the previous time-unit. At all other times, the DFFs are
"latched." This remarkable conduction feat is done in parallel, many times each second
(depending on the clock frequency).

Registers

A single-bit register, which we call Bit, or binary cell, is designed to store a single bit of
information (0 or 1). The chip interface consists of an input pin which carries a data bit, a load
bit which enables the cell for writes, and an output pin which emits the current state of the cell.
The interface diagram and API of a binary cell are as follows:

Chip name: Bit
Inputs: in,load
Outputs: out

Bit outin

load

Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

Read: To read the contents of a binary cell, we simply probe its output bit.

Write: To write a new data bit d into a binary cell, we put d in the in input and assert the load

input. In the next clock cycle, the cell will commit to the new data value, and its output
will start emitting d.

The API of a register is essentially the same as that of a binary cell, except that the input and
output pins are designed to handle multi-bit values:

Chapter 3: Sequential Logic 6

Chip name: Register
Inputs: in[16],load
Outputs: out[16]
Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1) in Register

load

w bits
out

w bits

Comment: “=” in is a 16-bit operation.

Read: To read the contents of a register, we simply probe its multi-bit output.

Write: To write a new multi-bit data value d into a register, we put d in the in input and assert the

load input. In the next clock cycle, the register will commit to the new data value, and its
output will start emitting d.

Memory

A direct-access memory unit, also called RAM, is an array of n w-bit registers, equipped with
direct access circuitry. The number of registers (n) and the width of each register (w) are called
the memory’s size and width, respectively. We will build a hierarchy of such RAMs, all 16-bit
wide, but with varying sizes.

Chip name: RAMn // n is the RAM size

Inputs: in[16],address[k],load

Outputs: out[16]

Function: Out(t)=RAM[address(t)]
If load(t-1) then
 RAM[address(t-1)]=in(t-1)

Comment: “=” is a 16-bit operation.
We need 5 of these chips:

Chip name n k
 RAM8 8 3
 RAM64 64 6
 RAM512 512 9
 RAM4K 4096 12

address

load

out

in

w bits

log 2 n bits

w bits
RAMn

 RAM16K 16384 14

Read: To read the contents of register number m, we put m in the address input. The RAM's direct-

access logic will select register number m, which will then emit its output value to the RAM's
output variable. This is a combinational operation, independent of the clock.

Write: To write a new data value d into register number m, we put m in the address input, d in the

in input, and assert the load input. The RAM's direct-access logic will select register number m,
and the load bit will enable it. In the next clock cycle, the selected register will commit to the
new value (d). As a side effect, the RAM's output will emit the current value of the selected
register. The new value (d) will become available only from the next time unit.

Chapter 3: Sequential Logic 7

Counter

The counter we specify here (that will later be used as the computer’s program counter, also
called PC) is a loadable and resettable 16-bit counter. In other words, beyond its basic counting
operation, our counter is capable of loading an external value and resetting itself to zero. The
interface of the Counter chip is similar to that of a register, except that it has two additional
control bits, labeled reset and inc. When inc=1, the counter increments its state in every clock
cycle, emitting the value out(t)=out(t-1)+1. If we want to reset the counter to 0 or to initialize it
to some other counting base, we use the reset and load control bits, respectively. The details are
given in the counter API, as follows. An example of its operation is given below in Fig. 3-4.

PC (counter)
w bits

ou
tin

w bits

inc load reset

Chip name: PC // 16-bit counter
Inputs: in[16],inc,load,reset
Outputs: out[16]
Function: If reset(t-1) then out(t)=0

 else if load(t-1) then out(t)=in(t-1)
 else if inc(t-1) then out(t)=out(t-1)+1
 else out(t)=out(t-1)

Comment: “=” is a 16-bit operation.
“+” is 16-bit arithmetic addition

47 47 0 0 1 2 3 4 527 528 529 529 529

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

FIGURE 3-4: Counter Simulation. Suppose we start tracking the counter in time-unit 22, and
that at this point the counter’s out emits the value 47 and the in input holds the value 527. Finally,
assume that the 3 control bits are de-asserted (all arbitrary assumptions). At time 23 a reset
signal is issued, causing the counter to emit zero in the following time-unit. The zero persists
until an inc signal is issued at time 25, causing the counter to starts incrementing, one time-unit
later. The counting continues until at time 29 the load bit is asserted. Since the counter’s input
holds the number 527, the counter is reset to that value in the next time-unit. Since inc is still
asserted, the counter continues incrementing, until time 33, when inc is de-asserted.

Chapter 3: Sequential Logic 8

3.3 Implementation

Flip-Flop: Although a DFF gate can be built from Nand gates, and thus need not be considered
primitive, we supply a built-in DFF implementation. The reason is simulation speed. Since
memory systems are based on numerous DFFs, any improvement in the basic DFF
implementation can lead to dramatic performance gains throughout the computer operation. Thus
we treat DFF as a primitive gate and there is no need to implement it.

Binary Cell: The main difference between a DFF gate and a Bit gate is that the latter has a load
bit that enables us to reset the gate state to another value. You may obtain the functionality of
the Bit gate by feeding the input of a DFF with an appropriate function of the input, load, and
output values.

Register: The construction of a w-bit Register chip from binary cells is straightforward. All we
have to do is construct an array of w Bit gates and feed the Register load input to all of them.

8-Registers Memory (RAM8): An inspection of Fig. 3-3 may be useful here. To implement a
RAM8 chip, we line up an array of 8 registers. Next, we have to build combinational logic that,
given a certain address value, takes the RAM8's in input and channels it to the selected register.
In a similar fashion, we have to build combinational logic that, given a certain address value,
selects the right register and pipes its out value to the RAM8's out output. Tip: the
combinational logic mentioned above was already implemented in Chapter 1.

n-Registers Memory: A memory bank of an arbitrary length (a power of 2) can be built
recursively from smaller memory units, all the way down to the single register level. This view is
depicted in Fig. 3-5. Focusing on the right hand side of the figure, we note that a 64-register
RAM can be built from an array of eight 8-register RAM chips. To select a particular register
from the RAM64 memory, we use a 6-bit address, say xxxyyy. The MSB xxx bits select one of
the RAM8 chips, and the LSB yyy bits select one of the registers within the selected RAM8. The
RAM64 chip should be equipped with logic circuits that effect this hierarchical addressing
scheme.

Chapter 3: Sequential Logic 9

Bit Bit register

RAM8Register

RAM 8

RAM 64

8

8

register

..

.
register

..

.

RAM8

. . .Bit . . .

FIGURE 3-5: Gradual construction of memory banks by recursive ascent. A w-bit
register is an array of w binary cells, an 8-register RAM an array of eight w-bit registers, a 64-
register RAM an array of eight RAM8 chips, and so on. Only three more similar construction
steps are necessary to build a 16K RAM chip.

Counter: A w-bit counter consists of two main elements: a regular w-bit register, and
combinational logic. The combinational logic is designed to (a) compute the counting function,
and (b) put the counter in the right operating mode, as mandated by the values of its three control
bits. Tip: the necessary combinational logic was already built in the previous chapter.

3.4 Perspective

The cornerstone of all the memory systems described in this chapter is the flip-flop – a gate that
we treated here as an atomic, primitive building block. The usual approach in hardware
textbooks is to construct flip-flops from elementary combinatorial gates (e.g. Nand gates) using
appropriate feedback loops. The standard construction first uses a feedback loop to build a
simple (non-clocked) flip-flop that is bi-stable, i.e. that can be set to be in one of two states. Then
a clocked flip-flop is obtained by cascading two such simple flip-flops, the first being set when
clock=1 and the second when clock=0. This “master-slave” design endows the overall flip-flop
with the desired clocked synchronization functionality.

These constructions are rather elaborate, requiring understating of such delicate issues as the
effect of feedback loops on combinatorial circuits as well as the implementation of clock-cycles
using a two-phase binary clock signal. In this book we have chosen to abstract away these low-
level consideration by treating the flip-flop as an atomic gate. Readers who wish to drill into the
internal structure of flip-flop gates can find detailed descriptions in [Mano, chapter 6] and
[Hennessy & Patterson, appendix B].

Chapter 3: Sequential Logic 10

The other constructions in this chapter were rather standard. At the same time, we should
mention that memory devices of modern computers are usually very carefully optimized, taking
into account various physical properties of the physical storage technology used to implement
them. Many such alternative technologies are available today; as usual, which technology to use
is a cost-performance issue.

3.5 Build It

Objective: Build the chips listed below, using primitive DFF gates and already-built chips (in
this and previous chapters):

� DFF Data Flip-Flop (primitive – no need to implement)
� Bit 1-bit binary cell
� Register 16-bit
� RAM8 16-bit / 8-register memory
� RAM64 16-bit / 64-register memory
� RAM512 16-bit / 512-register memory
� RAM4K 16-bit / 4,096-register memory
� RAM16K 16-bit / 16,384-register memory
� PC 16-bit counter

Tip: When your HDL programs invoke chips built in previous chapters, it is recommended to use
the built-in versions of these chips. This will ensure correctness and speed up the simulator's
operation. The built-in chips are described in detail in Appendix A.

Also, when constructing large RAM chips from smaller ones, we recommend to use built-in
versions of the smaller RAM chips. Otherwise, the simulator may run very slowly or even out of
space, since large RAM chips contain many tens of thousands of lower level chips, and all these
chips must be simulated as software objects by the simulator.

Thus, we suggest that after you complete the HDL implementation of the largest RAM chips
(RAM512, RAM4K, RAM16K), you will move the respective programs RAM512.hdl, RAM4K.hdl
and RAM16K.hdl to a separate folder on your home computer. This way, when you run the
simulator on a chip that uses these chips but resides in another folder, the simulator will load the
built-in versions of these chips instead of the HDL programs that you wrote.

The remaining instructions for this project are identical to those of Project 1 (section 1.5), except
that every occurrence of the text "project1" should be replaced with the text "project3".

