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2. Boolean Arithmetic1 

 
Counting is the religion of this generation, its hope and salvation.  

(Gertrude Stein, American writer, 1874-1946) 
 

In this chapter we build the Boolean circuits that represent numbers and perform arithmetic 
operations on them.  Our starting point is the set of logic gates we built in the last chapter, and 
our ending point is a fully functional Arithmetic Logical Unit.  The ALU is the centerpiece chip 
that executes all the arithmetic and logical operations performed by the computer. 
 
2.1 Background 
 
Binary Numbers: Unlike the decimal system, which is founded on base 10, the binary system is 
founded on base 2.  When we are given a certain binary pattern, say 10011, and we are told that 
this pattern is supposed to represent an integer number, the decimal value of this number is 
computed by convention as follows: 
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In general, let  be a string of n digits. The value of x in base b, denoted , is 
defined as follows: 
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The reader can verify that in the case of (  rule (2) reduces to calculation (1).    two)10011
 
The result of calculation (1) happens to be 19.  Thus, when we press the keyboard keys labeled 
“1”, “9” and ENTER while running, say, a spreadsheet program, what ends up in some register in 
the computer is the binary code 10011.  More precisely, if the computer happens to be a 32-bit 
machine, say, what gets stored in the register is the bit pattern 
00000000000000000000000000010011.   
 
Binary addition: A pair of binary numbers can be added digit-by-digit from right to left, 
according to the same elementary school method used in decimal addition.   First, we add the two 
right-most digits, also called the least significant bits of the two binary numbers.  Next, we add 
the carry bit (which is either 0 or 1) to the sum of the next pair of bits up the significance ladder. 
We continue the process until the two most significant bits are added.  If the last bit-wise addition 
generates a carry of 1, we can report overflow; otherwise, the addition completes successfully. 

                                                 
1 From The Digital Core, by Nisan & Schocken, forthcoming in 2003, www.idc.ac.il/csd 
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0 0 0 1 0 (carry) 1 1 1 1 0 
 1 0 0 1 x  1 0 1 1 
+      +     
 0 1 0 1 y  0 1 1 1 
=      =     
0 1 1 1 0 yx +  1 0 0 1 0 
   
   valid: no overflow       overflow 

 
FIGURE 2-1: Two examples of binary addition (assuming 4-bit registers).  In the 
case of overflow, the computation can be rendered invalid. 

 
We see that computer hardware for binary addition must be able to calculate the sum of three bits 
(pair of bits plus carry bit) and pass the carry bit from the addition of one pair of bits to the 
addition of the next significant pair of bits. 

Signed binary numbers: A binary system with n digits can code  different bit patterns.  Let us 
call this set of patterns the system's "code space". To represent signed numbers in binary code, a 
natural solution is to split this space into two equal subsets.  One subset of codes is assigned to 
represent positive numbers, and the other negative numbers.  The exact coding scheme should be 
chosen in such a way that, ideally, the introduction of negative numbers would complicate the 
hardware implementation as little as possible.   

n2

 
This challenge has led to the development of several coding schemes for representing signed 
numbers in binary code.  The method used today by almost all modern computers is called the 2’s 
complement method, also known as radix complement.  In a binary system with n digits, the 2’s 
complement of the number x is defined as follows: 
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(3) 

 
For example, in a 5-bit binary system, the 2’s complement representation of -2 or 
“minus ( ” is 2two)00010 tententwo )2()32()00010(5 −=− twoten )11110()30( == .  To check the calculation, 
the reader can verify that ( two)00000twotwo ()11110()00010 =+ .  Note that in the latter computation, 
the sum is actually ( , but since we are dealing with a 5-bit binary system, the left-most 
6

two)100000
th bit is lost.  As a rule, when the 2's complement method is applied to n-bit numbers, )( xx −+  

always sums up to  (i.e. 1 followed by n 0's).  This property gives the method its name.  Table 
2-2 illustrates a 4-bit binary system with the 2's complement method. 

n2
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Positive 
Numbers 

Negative 
Numbers 

0 0000   
1 0001 1111 -1 
2 0010 1110 -2 
3 0011 1101 -3 
4 0100 1100 -4 
5 0101 1011 -5 
6 0110 1010 -6 
7 0111 1001 -7 
  1000 -8 

 
TABLE 2-2: the 2’s complement representation of integer 
numbers, assuming a 4-bit binary system.   

An inspection of Table 2-2 suggests that an n-bit binary system with 2’s complement 
representation has the following properties: 

� The system can code a total of  signed numbers, of which the maximal and 
minimal numbers are  and 

n2
212 1 −−n 1−− n , respectively; 

� The codes of all positive numbers begin with a "0"; 

� The codes of all negative numbers begin with a "1"; 

� To obtain the code of –x from the code of x, leave all the trailing (least significant) 
0’s and the first least significant 1 intact, then flip all the remaining bits (convert 0’s 
to 1’s and vice versa).  An equivalent shortcut, which is easier to implement in 
hardware, is to flip all the bits of x and add 1 to the result.    

A particularly attractive feature of this representation is that addition of any two numbers in 2’s 
complement is exactly identical to addition of positive numbers.  Consider, for example, the 
addition operation (-2)+(-3): using 2’s complement (in a 4-bit representation) we have to add, in 
binary,1110+1101.  Without paying any attention to which numbers (positive or negative) these 
codes represent, bitwise addition will then yield 1011 (after throwing away the 5’th overflow bit).  
Indeed, this is the 2’s complement representation of (-5).   

In sum, we are able to perform addition of any two signed numbers without introducing any 
complexity to the underlying hardware beyond simple bitwise addition.  What about subtraction?  
Recall that in the 2’s complement method, the arithmetic negation of a signed number x, i.e. 
computing –x, is achieved by negating all the bits of x and adding 1 to the result.  Thus 
subtraction can be handled by )( yxyx −+=− . Once again, hardware complexity is kept to a 
minimum. 

The material implications of these theoretical results are quite significant: in most computer 
architectures today, a single chip, called Arithmetic Logical Unit, is used to encapsulate all the 
arithmetic and logical operators performed in hardware.  This ALU -- the centerpiece of the 
computer’s execution -- is dedicated to performing elementary operations such as adding, 
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subtracting, ANDing and ORing binary bit patterns.  We now turn to specify one such ALU, 
beginning with the specification of an adder chip. 

 
2.2 Specification 
 
Adders 
 
We present a hierarchy of three adders, leading to a multi-bit adder chip:  
 
� Half-adder: designed to add 2 bits; 
� Full-adder: designed to add 3 bits; 
� Adder: designed to add two n-bit numbers. 

 
We also present a special-purpose adder, called incrementer, designed to add 1 to a given 
number. 
 
Half Adder: The first step on our way to adding binary numbers is to be able to add two bits.  
This task requires the handling of four possible cases: 

 
0 + 0 =  00 
0 + 1 =  01 
1 + 0 =  01 
1 + 1 =  10 

 
We will now present a chip, called half-adder, that implements this addition operation.  The least 
significant bit of the addition is called sum, and the most significant bit is called carry.   
 
 

Inputs Outputs 
a b carry sum 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 
    

 

h alf
 ad d er

a sum

b carry

 

 
Chip name: HalfAdder 
Inputs:    a, b 
Outputs:   sum, carry 
Function: sum   = LSB of a+b 

carry = MSB of a+b 
 

FIGURE 2-3:  Half Adder, designed to add 2 bits. 
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Full Adder: Now that we know how to add 2 bits, we present a full-adder chip, designed to add 
3 bits. Like the half-adder case, the full-adder chip produces two outputs: the least significant bit 
of the addition, and the carry bit. 
 

  

a b c carry sum 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

 
 
 

fu ll
 ad d er

a
s um

b
carry

c

 

 
Chip name: FullAdder 
Inputs:    a, b, c 
Outputs:   sum, carry 
Function: sum = LSB of a+b+c  

carry = MSB of a+b+c 
 

FIGURE 2-4: Full Adder, designed to add 3 bits.  
 
 
Adder: Memory and register chips represent integer numbers by n-bit patterns, n being 16, 32, 
64, etc. – depending on the computer platform. The chip whose job is to add such numbers is 
called a multi-bit adder, or simply adder.  We present a 16-bit adder, noting that an n-bit adder 
for any n-bit system is a simple extension. 
 

      
… 1 0 1 1   a 
… 0 0 1 0   b 

… 1 1 0 1   out 

out
a

16

1 6 -b it
ad d e r16

16

+

 
Chip name: Add16 
Inputs:    a[16],
Outputs:   out[16
Function: out=a+
Comment: intege

overfl
 

FIGURE 2-5: 16-bit 
addition of two 4-bit n

 

 

b

 

b[16] 
] 
b 
r 2's complement addition. 
ow is neither detected nor handled.  

adder.  The example (top left) illustrates the 
umbers.  16-bit addition is “more of the same.” 
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Incrementer: It is convenient to have a special purpose chip dedicated to adding the constant 1 
to a given number.  Here is the API of a 16-bit incrementer: 
 

Chip name: Inc16 
Inputs:    in[16] 
Outputs:   out[16] 
Function: out=in+1 
Comment: integer 2's complement addition. 

overflow is neither detected nor handled.  
 
 
The Arithmetic Logic Unit (ALU) 
 
This section presents a 16-bit ALU.  This chip is designed to compute a fixed set of functions 
out= (x,y) where x and y are the chip's two 16-bit inputs, out is the chip's 16-bit output, and if if  

is an arithmetic or logical function selected from a fixed repertoire of possible functions.  We 
instruct the ALU which function to compute by setting a set of six input bits, called control bits, 
to certain binary values.  The exact specification of which function the ALU computes given each 
setting of the control bits is given in figure 2-6, using pseudo-code. 
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zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

  
Chip name: ALU 
Inputs:    x[16],y[16],    // data inputs 

zx,             // zero the x input 
nx,             // negate the x input 
zy,             // zero the y input 
ny,             // negate the y input 
f,              // function code: 1 for Add, 0 for And 
no              // negate the out output 

Outputs:   out[16],        // data output 
zr,             // status flag, true when the ALU output=0  
ng              // status flag, true when the ALU output<0 

Function: if zx then x=0        // 16-bit zero constant 
if nx then x=~x       // bit-wise negation 
if zy then y=0        // 16-bit zero constant 
if ny then y=~y       // bit-wise negation 
if f then out=x+y     // integer 2's complement addition 
     else out=x&y     // bit-wise And 
if no then out=~out   // bit-wise negation 
if out=0 then zr=1 else zr=0  // 16-bit equality comparison 
if out<0 then ng=1 else ng=0  // 2's-complement comparison  

Comment: overflow is neither detected nor handled. 
 
 

FIGURE 2-6:  The ALU interface diagram and API.  The ALU operation (the function 
computed on x and y) is determined by the six control bits.  The ALU sets the output bits zr 
and ng to 1 when the output out is zero or negative, respectively. 

 
Note that each one of the six control bits instructs the ALU to carry out a certain operation.  
Taken together, the combined effects of these operations cause the ALU to compute a variety of 
useful functions.  Since the ALU is controlled by six control bits, it can compute  
different functions.  These include all the 18 useful functions documented in Table 2-7.  

6426 =
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instructs how to 
 pre-set the x input 

instructs how to 
 pre-set the y input 

operation 
code 

instructs how 
to post-set out 

resulting 
ALU output 

zx nx zy ny f no out= 

If zx then 
x=0 

If nx then 
x=~x 

If zy then 
y=0 

If ny then 
y=~y 

If f then 
out=x+y else 
out=x And y 

If no then  
out=~out f(x,y)=  

1 0 1 0 1 0 0 
1 1 1 1 1 1 1 
1 1 1 0 1 0 -1 
0 0 1 1 0 0 x 
1 1 0 0 0 0 y 
0 0 1 1 0 1 ~x 
1 1 0 0 0 1 ~y 
0 0 1 1 1 1 -x 
1 1 0 0 1 1 -y 
0 1 1 1 1 1 x+1 
1 1 0 1 1 1 y+1 
0 0 1 1 1 0 x-1 
1 1 0 0 1 0 y-1 
0 0 0 0 1 0 x+y 
0 1 0 0 1 1 x-y 
0 0 0 1 1 1 y-x 
0 0 0 0 0 0 x&y 
0 1 0 1 0 1 x|y 

 
TABLE 2-7:  The ALU truth table (only 18 out of the 64 rows are shown).  Taken 
together, the binary operations coded by the first six columns in each row affect the 
overall function listed in the right column of that row. (We use the symbols ~, &, and 
| to represent the operators Not, And, and Or, respectively, performed bit-wise.) 

 
We see that programming the ALU to compute a certain function f(x,y) is done by setting the x 
and y inputs to the two 16-bit data values and selecting the function f by setting the six control 
bits to the code of the desired function.  From this point on, the internal ALU logic specified in 
Figure 2-6 should cause the ALU to output the value f(x,y), as specified in Table 2-7. 
 
Let us demonstrate this property on the 12th row of table 2-7, which instructs the ALU to compute 
the function x-1.  The zx and nx bits are 0, so the x input is neither zeroed nor negated.  The zy 
and ny bits are 1, so the y input is first zeroed, and then negated bitwise.  Bitwise negation of 
zero, 000...00, gives 111…11, which is the 2’s complement code of -1.  Thus the ALU is 
instructed to perform the operation on x and on the constant -1.   Since the f bit is 1, the operation 
is arithmetic addition, causing the ALU to calculate x+(-1).  Finally, since the no bit is 0, the 
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output is not negated but rather left as is.  To conclude, the ALU ends up computing x-1, which 
was our goal.   
 
Does the ALU logic described in Table 2-6 compute every one of the other 17 functions listed in 
the right column of Table 2-7? To verify that this is indeed the case, the reader is advised to pick 
up some other rows in the table and prove their respective ALU operation. We note in passing 
that some of these computations, beginning with the function f(x,y)=1, are not trivial.  We also 
note that there are some other useful functions computed by the ALU but not listed in the table. 
  
It may be instructive to describe the thought process that led to the design of this particular ALU.  
First, we made a list of all the primitive operations that we wanted our computer to be able to 
execute (right column in Table 2-7).  Next, we used backward reasoning to figure out how x, y, 
and out can be manipulated in binary fashion in order to carry out the desired operations.  These 
processing requirements, along with our objective to keep the ALU logic as simple as possible, 
led to the design decision to use six control bits, each associated with a certain binary operation.  
 
2.3 Implementation 
 
As we have done in Chapter 1, our implementation guidelines are intentionally partial, since we 
want you to discover the actual chip architectures yourself.  As usual, each gate can be 
implemented in more than one way; the simpler the implementation, the better. 
 
Half Adder: An inspection of Figure 2-3 reveals that the functions sum(a,b) and carry(a,b) 
happen to be identical to the standard Xor(a,b) and And(a,b) functions.  Thus, the implementation 
of this adder is rather trivial, using previously built gates. 
 
Full Adder: A Full-Adder chip can be implemented from two Half-Adder chips and a single 
simple gate.  Other implementation options are also possible, without using half-adder chips. 
 
Adder: The addition of two signed numbers represented by the 2's complement method as two 
n-bit busses can be done bit-wise, from right to left, in n steps.  In step 0, the least significant pair 
of bits is added, and the carry bit is fed into the addition of the next significant pair of bits.  The 
process continues until in step n-1 the most significant pair of bits is added.  Note that each step 
involves the addition of 3 bits.  Hence, an n-bit adder can be implemented by creating an array of 
n Full-Adder chips, and chaining them in such a way that the carry bit of each adder is fed into 
one of the inputs of the next adder up the significance ladder. 
 
Incrementer: An n-bit incrementer can be implemented trivially from an n-bit adder. 
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ALU: Note that the ALU was carefully planned to effect all the desired ALU operations 
logically, using simple Boolean operations.  Therefore, the physical implementation of the ALU 
is a matter of implementing these simple Boolean operations, following their pseudo-code 
specifications.  Your first step will likely be to create a logic circuit that manipulates a 16-bit 
input according to nx and zx control bits (i.e. the circuit should conditionally zero and negate the 
16-bit input).   This logic can be used to manipulate the x and y inputs, as well as the out output.  
Chips for addition and for bit-wise And-ing have already been built.  Thus, what remains is to 
build logic that chooses between them according to the f control bit.  Finally, you will need some 
logic that integrates all the other chips into the overall ALU. 
 
2.4 Perspective 
 
The construction of the multi-bit adder presented in this chapter was standard, although no 
attention was paid to efficiency considerations.  In particular, our suggested adder 
implementation is rather inefficient, due to the long delays incurred while the carry propagates 
from the least significant bit to the most significant bit.  This problem can be alleviated using 
logic circuits that effect so-called "carry look-ahead" techniques. Since addition is one of the 
most prevalent operations in any given computer architecture, such low-level improvements can 
result in dramatic and global performance gains throughout the computer. 
 
In any given computer, the overall functionality of the hardware/software platform is delivered 
jointly by the ALU and the operating system that runs on top of it. Thus, when designing a new 
computer system, the question of how much functionality the ALU should deliver is essentially a 
cost/performance issue. The general rule is that hardware implementations of arithmetic and 
logical operations are usually more costly, but achieve better performance.  The design tradeoff 
that we have chosen in this book is to specify an ALU hardware with a limited functionality and 
then implement as many operations as possible in software.  For example, our ALU features 
neither multiplication and division operations, nor floating point arithmetic.  Some of these 
operations (as well as many more mathematical functions) will be implemented at the operating 
system level, as described in Chapter 11. 
 
Detailed treatments of Boolean arithmetic and ALU design can be found in standard 
undergraduate textbooks such as [Hennessy & Patterson, chapter 4].  
 
2.5 Build It 
 
Objective: Implement all the chips presented in this chapter, using previously built chips. 
 
Tip: When your HDL programs invoke chips from Chapter 1, it is recommended to use the built-
in versions of these chips.  This will ensure correctness and speed up the operation of the 
hardware simulator. 
 
The remaining instructions for this project are identical to those of Project 1 (section 1.5), except 
that every occurrence of the text "project1" should be replaced with the text "project2". 
 


