
Chapter 11:   The Operating System                                                                                                        1     
              

 

11. The Operating System1 
 

“Civilization progresses by extending the number of operations  
that we can perform without thinking about them" 

(Alfred North Whitehead, Introduction to Mathematics, 1911) 

In previous chapters of this book we described and built the hardware architecture of a computer 
platform, called Hack, and the software hierarchy that makes it usable. In particular, we 
introduced a modern, object-based Java-like language, called Jack, and described how to write a 
compiler for it.  Other high-level programming languages can be specified on top of the Hack 
platform, each requiring its own compiler. 
 
The last major piece of software, which is missing in this puzzle, is an operating system.  The OS 
is a large and complex program, designed to close gaps between the computer's software and 
hardware systems, and to make the overall computer more accessible to programmers and users.   
For example, our computer is equipped with a bitmap screen.  In order to output the text “Hello 
World”, several hundreds pixels must be drawn on specific locations on the computer’s screen.  
To do so, we can consult the hardware specification, and write machine language commands that 
put the necessary bits in the RAM segment that controls the screen's output.  Needless to say, 
programmers in high-level languages will need a better interface with the screen.  They will want 
to use commands like print(‘Hello World’), and let someone else worry about the details.  
This someone else is the operating system.   
 
The operating system is organized as a collection of software libraries, each handling a family of 
basic services.  For example, text printing will be typically supported by a method like 
printString(String s), which will typically be part of a class called Output.  Thus, when 
the compiler will encounter a statement like print(‘Hello World’) in some high-level code, 
it will translate it into a call to Output.printString(‘Hello World’).  In a similar fashion, 
many mathematical operations, string processing functions, memory management routines, and 
so on, will be translated by the compiler into calls to respective OS routines, each dedicated to 
carry out one well-defined service. 
 
In this chapter we specify and build a simple operating system, called Sack.  The Sack OS 
features some fifty routines, organized in eight classes: 
 

�   Math: implements basic mathematical operations; 
�   String: implements the String type and basic string processing operations; 
�   Array: enables the construction and disposal of arrays; 
�   Output: handles text based output; 
�   Screen: handles graphic screen output; 
�   Keyboard: handles user input from the keyboard; 
�   Memory: handles memory operations; 
�   Sys:  provides execution-related services. 

 
                                                 

1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 

 



Chapter 11:   The Operating System                                                                                                        2     
              
The chapter starts with an expanded background section that describes major algorithms and 
programming techniques used by operating systems in general and by the Sack OS in particular.  
Next, we specify the complete Sack API, and give guidelines on how to implement it in Jack. 
 
Note the “symbiotic” relationship between Jack and Sack.  On the one hand, Sack is written in 
Jack.  On the other hand, Sack can be viewed as an extension of the Jack language.  To give a 
historical perspective, we note in passing that the C language was originally invented in order to 
write the Unix operating system, which then served – among other things -- to extend the 
capabilities of C.  This is similar to the Jack/Sack interplay. 
 
The chapter embeds two key lessons, one in software engineering and one in computer science.  
First, we describe and illustrate the important interplay between high-level languages, compilers, 
and operating systems.  Second, we present a series of elegant and efficient algorithms, each 
being a little computer science gem.  
 
The chapter is work in progress.  
 
11.1 Background 
 
11.1.1 Efficiency First 
 
The simplest way to multiply two numbers x and y is to add x to some register y times. To 
improve the performance of this naïve algorithm, we can first check which number is greater, and 
then add max(x,y) to the register, min(x,y) times.  If we denote the smaller multiplicand n and the 
time it takes to add two numbers t, the run-time of this naïve multiplication algorithm will be 

. In computer science, such a run-time function is called "O ", which reads "an order of 
magnitude of n".  This notation makes sense, since t varies greatly from one CPU to another, and 
thus is not a property of the algorithm.  By leaving t out of the picture, the notation  implies 
that irrespective of the computer platform on which this algorithm is implemented, its run-time is 
inherently a polynomial function of the input size n. 

nt ⋅ )(n

)(nO

 
When we write programs that solve real-life problems, nature often throws at us very large and 
very small numbers (which, in binary terms, have the same inflationary impact on the input size).  
Therefore, in many applications polynomial run-time is unacceptably slow.  And that’s why we 
always seek algorithms whose performance is insensitive to the input size.  For example, consider 
a multiplication algorithm whose run-time is tn ⋅)(log2  rather than tn ⋅ . What would happen to 
the algorithm's performance when the input size is doubled from 1000 to 2000? While the 
polynomial run-time will slow down proportionally from t⋅1000  to t⋅2000 , the logarithmic run-
time will hardly change, from 10  to t⋅ t⋅11 .  Indeed, logarithmic run-time algorithms possess a 
magical property: the amount of work that they do is almost independent of the size of the 
underlying job.  Fig. 11-1 provides an example of this remarkable phenomenon. 

 



Chapter 11:   The Operating System                                                                                                        3     
              
 

 

 

input size (n) polynomial: t n t log 2 n
10 10 t 3 t

100 100 t 7 t

1,000 1,000 t 10 t

100,000 100,000 t 17 t

1,000,000 1,000,000 t 20 t

1,000,000,000 1,000,000,000 t 30 t

1,000,000,000,000 1,000,000,000,000 t 40 t

1050 1050 t 166 t

10100 10100 t 332 t

 )0,0( input size (n)

)(nO

)(log 2 nO

322

t⋅32

t⋅322

run
time

(~ 4 billion)
 

 
FIGURE 11-1: Run time functions.   The run-time of a typical algorithm is a function 
of n, the input size, and t, the time it takes to add two numbers on the underlying 
hardware.  We see that polynomial run-time is dominated by n -- a variable that can 
assume very large values that we cannot control, whereas logarithmic run-time is 
dominated by t -- a predictable and tiny constant.   

 
Efficient algorithms hold the key to improving the performance of the computer’s operations; the 
more elementary and widely used the operation, the bigger will be the impact of a better 
algorithm.  For example, later in the chapter we present a line drawing algorithm that involves 
many multiplication operations. Clearly, the time saving gained by using an efficient 
multiplication algorithm will have a dramatic impact on any graphical application that uses this 
line drawing algorithm. 
 
We now turn to describe efficient algorithms for multiplication, division, and square root 
computations.  The run-time of all these algorithms will be O , where n is the size of the 
algorithm’s input. 

)(log2 n

 

 



Chapter 11:   The Operating System                                                                                                        4     
              
11.1.2 Mathematical Operations 
 
Almost every computer must support mathematical operations like addition, multiplication, and 
division.  Normally, addition is implemented in hardware, at the ALU level, as we have done in 
Chapter 3.  Other operations, e.g. multiplication and division, are implemented either in hardware 
or in software, depending on the computer's purpose and performance requirements.  This section 
shows how multiplication, division, and square root operations can be implemented efficiently in 
software, at the operating system level. 
 
Multiplication 
 
Consider the standard multiplication method taught in elementary school.  To compute 356 times 
27, we write the two numbers one on top of the other.  Next, we multiply each digit of 356 by 7.  
Next, we "shift to the left" one position, and multiply each digit of 356 by 2.  Finally, we sum up 
the numbers in the two rows and obtain the result.  As we show below, the binary version of this 
algorithm is exactly the same (we use smaller numbers to save clutter): 
 

the "steps"   the algorithm explained (first 4 out of 16 iterations) 
     

   1 0 1 1 = 1 1    0 0 0 1 0 1 1 x bit(y,j)
    1 0 1 =  5    0 0 0 0 1 0 1 y  
   1 0 1 1       0 0 0 1 0 1 1 shiftedx=x 1 
  0 0 0 0        0 0 1 0 1 1 0 shiftedx=2*shiftedx 0 
 1 0 1 1         0 1 0 1 1 0 0 shiftedx=2*shiftedx 1 
 1 1 0 1 1 1 = 5 5    1 0 1 1 0 0 0 shiftedx=2*shiftedx 0 
             0 1 1 0 1 1 1 sum where bit(y,j)=1  
 
 

// To multiply two n-bit numbers x and y: 
initialize sum = 0 
initialize shiftedx = x 
for j )1(0 −= nK  do { 
      if bit(y,j) then sum += shiftedx 
         shiftedx += shiftedx 

       } 

 
Algorithm 11-2:  Binary multiplication of n-bit numbers (the example ignores some of the 
leading zeroes in each number).  The right side of the example shows the first four iterations 
only, since in all the remaining iterations bit(y,j)=0, and thus the bottom line is unchanged.  

 
What is the run-time of algorithm 11-2?  If each iteration takes t time-units to complete, it is t w⋅ , 
where w is the word's width of the underlying computer.  Since w represents the number of binary 
digits of the multiplied number n, we have nw 2log= .  As it turns out, this algorithm 
is as good as we can possibly hope for.  The only way to speed up the multiplication further is to 
implement it in hardware (a nice exercise -- the chip logic can be gleaned from the example).  

)(log2 nO

 

 



Chapter 11:   The Operating System                                                                                                        5     
              
Algorithm 11-2 should work as is for both unsigned and signed 2’s complement numbers. 
 
Implementation tip: Note that in each iteration j, the algorithm has to extract the jth bit of the 
second number. To save time, the OS could benefit from a general purpose bit(x,j) function, 
as follows: 
 

bit(x,j): Returns true if the jth bit of the integer x is 1 and false otherwise. 
 
There are various ways to implement this function efficiently, e.g. using a bit-wise and operator. 
 
Division 
 
One way to compute the division of x by y is to count how many times y can be subtracted from x 
before the remainder becomes less than x.  To speed up this polynomial algorithm, we can inspect 
the magnitude of x and then subtract large chunks of y's in each iteration.  For example, if x=891 
and y=5, we can tell right away that we can deduct a hundred 5's from x and the remainder will 
still be greater than 5, thus shaving 100 iterations from the naïve approach.  This is the rationale 
behind the well-known "school method" for division – the dreaded routine that many of us were 
trained to perform without understanding why it works.  Algorithm 11-3 unveils the mystery. 
 

the "steps"      the algorithm explained 
     

1 7 8    1 7 8   initialize remainder = 891 
8 9 1 5   8 9 1 5  how many 100's of 5 fit into the remainder? 100
5      5 0 0   remainder = remainder-100*5=391 
3 9     3 9 1   how many 10's of 5 fit into the remainder?    70
3 5     3 5 0   remainder = remainder-70*5=41 
 4 1     4 1   how many 1's of 5 fit into the remainder?       8
 4 0     4 0   remainder = remainder-8*5=1 
  1      1   result: 178

 

// to divide (n-bit) x by y: 
initialize remainder = x 
initialize result = 0 
for j 0)1( K−= n  do { 

if remainder ≥ jy 2⋅  then { 

   result += j2  
         remainder -= jy 2⋅  
      } 
} 

 
Algorithm 11-3:  Decimal division example (top) and Binary division algorithm (bottom).  
The example and the algorithm are based on precisely the same strategy.  

 

 



Chapter 11:   The Operating System                                                                                                        6     
              
Note that the decimal and binary versions of the division algorithm are almost the same.  The 
only difference is that instead of progressing in leaps of 10  we progress in leaps of  

, where w is the number of digits of the divided number.  Hence, the run-
time of this algorithm is , where n is the largest number that we can be asked to divide. 

j j2 ,
0,,2,1 K−−= wwj

)(log2 nO
 
We end this section with several ways to improve this algorithm’s performance. 
 
Time efficiency improvement I: Note that in each iteration 0)1( K−= nj , the algorithm has to 
compute .   In programming terms: j2
  

twoToThe(j): Returns the integer 2  for j 0)1( K−= nj  
 
This computation does not depend on the divided numbers.  Thus we can compute it, once and 
for all, and store the values in an array twoToThe[1..n]. This can be done in the initialization 
routine of the operating system's Math library. 
 
Time efficiency improvement II: Note that in each iteration 0)1( K−= nj , the algorithm has to 
compute .  Thus it would make sense to factor this computation out of the loop, and begin 
the algorithm with something like the following code:  

jy 2⋅

// compute all values of , while trying to avoid overflow )2(0,2 −=⋅ njy j K

yTimesTwoToThe[0]=y  
for j=1...(n-2)  do { 

yTimesTwoToThe[j]=2*yTimesTwoToThe[j-1] 
 if yTimesTwoToThe[j] is overflowed then break 

} 
 

Space efficiency improvement: Consider the just-computed yTimesTwoToThe[] array.  Unlike 
twoToThe[], this array depends on one of the divided numbers.  Thus we cannot pre-compute it 
outside the division method.  At the same time, we can save memory space by implementing it as 
a global array.   This way, it will not be re-allocated memory space in every invocation of the 
division function (of course we can recycle the array's space when the function returns, but here 
we run smack into time efficiency matters).  Thus, it is recommended to create 
yTimesTwoToThe[] as a global array, and re-compute its entries each time the division method 
is entered. 
 
Square Root 
 
The square root function xy =  has two convenient properties.  First, it is monotonically 
increasing.  Second, it's inverse function  is something that we already know how to 
compute (multiplication).  Taken together, these properties imply that we have all we need to 
compute square roots using binary search. 

2yx =

 



Chapter 11:   The Operating System                                                                                                        7     
              
 

// To compute the integer part of xy = : 

find y such that 22 )1( +≤≤ yxy  

// recommended technique: binary search 

 

Algorithm 11-4:  Square root computation. 
 
Implementation tip (for the Hack platform): Since the maximal positive number in the 
Hack/Jack platform is , the binary search should be done in the range [0...181]. 152
 
11.1.3 Input/Output Management 
 
Computers use a variety of display devices to communicate with users.  The displayed images -- 
characters, pictures, and animation -- are  rendered so quickly and effortlessly, that we tend to 
take their display mechanism for granted.  In fact, computers have to work rather hard to draw 
anything on a screen -- even a single character. With that in mind, we now turn to describe what 
goes on behind the screen, so to speak. In particular, we focus on the key geometric algorithms 
used for drawing pixels, lines, and circles. 
 
The physical screen can be viewed as a two-dimensional grid of pixels (shorthand for “pictorial 
elements”).  For simplicity, let us assume a black-and-white display, in which the color status of 
each pixel can be represented by a single bit.  How can we connect such a device to the 
computer? A common method is to take a certain memory segment, which we call “screen 
memory map”, and use it to record the entire screen contents, one bit per pixel.  To synchronize 
between the logical and physical representations of the screen contents, we introduce a process 
that continuously scans the screen memory map, and, for each bit, draws the respective pixel on 
the screen. Fig. 11-5 describes the overall process. 
 

screen
memory map

program

application physical
screen

refresh
 mechanism

screen
driver

part of the
operating system

part of the
hardware

  
FIGURE 11-5: Screen management is essentially a two-stage process. The 
application “draws” the image in memory, via a screen driver interface.  The 
actual image is then rendered on the screen by an infinite refresh loop. (The 
various simulators supplied with this book emulate the refresh logic using a 
software thread that runs parallel to the executing program). 

 
We see that from a software engineering perspective, the “brain” that regulates image drawing is 
the screen driver.  This software module, which is part of the operating system, is a library of 
routines for drawing characters, lines, circles, etc. on the designated output device (each device 

 



Chapter 11:   The Operating System                                                                                                        8     
              
would normally have its own driver).  Hence, when an application program wants to write or 
draw something on the screen, all it has to do is use commands like print(‘hello world’) or 
drawLine(50,75,212,317).  The compiler will translate these high-level commands into 
calls to routines that will do the actual drawing.  These routines will be organized as methods in 
the OS’s screen driver library. 
 
We now turn to describe algorithms for drawing pixels, lines, and circles.  These primitives can 
be easily extended to the drawing of more complex geometric and free-form figures.  
 
Pixel Drawing 
 
The most elementary drawing operation performed by computers is that of drawing a single pixel.  
Pixels are specified using (column, row) coordinates.  At the same time, the corresponding bits 
that represent the pixels in the computer’s memory are arranged linearly.  Thus, when a program 
requests the operating system to draw a pixel in screen location (x,y), the OS must figure out the 
address of the corresponding bit in the screen memory map.  The general interface and mapping 
are described in Algorithm 11-6, using the Hack platform for illustration. 

 



Chapter 11:   The Operating System                                                                                                        9     
              

0
1

255

.

.

.

. . .0 1 2 3 4 5 6 7 511

Screen
0011000000000000
0000000000000000

0000000000000000

0
1

31

...
row 0

0001110000000000
0000000000000000

0000000000000000

32
33

63

...
row 1

0100100000000000
0000000000000000

0000000000000000

8129
8130

8160

...
row
255

Memory

. . .

. . .

. . .

.

.

.

refresh several times
each second

mapBase+

 
The general setting (in any computer)  Hack Platform (shown above) 
screen size = ncols by nrows   screen size = 512 by 256 

npixels = ncols * nrows  npixels = 512 * 256 = 131072 

w = width of word in memory  w = 16 

Memory map orientation: by rows or by  cols.  Memory map orientation: by rows 

blockSize = ncols / w  or  nrows / w  blockSize = 512 / 16 = 32 

address(x,y)=mapBase+blockSize*y+x/w  address(x,y) = 16384+32*y+x/16 

bit(x,y) = in address(x,y), the x%w bit  bit(x,y)=in address(x,y), the x%16 bit 
 
 

// drawPixel(x,y): sets the pixel in screen location (x,y) to value: 
address = mapBase+blockSize*y+x/w  

use the poke() method to set the (x%w)-th bit in address to value 

 
 

Algorithm 11-6:  Pixel drawing. 
 

 



Chapter 11:   The Operating System                                                                                                        10     
              
The poke() method mentioned in Algorithm 11-6 is also an operating system routine, described 
later in this chapter.  Instead of invoking poke(), one can also access the memory location 
directly, using the same technique that poke() uses.  This can yield a more efficient code. 
 
Now that we know how to draw a pixel, we turn to describe how to draw a line.   
 
Line Drawing 
 
Most computers today use raster, also called bitmap, display technologies.  The only operation 
that can be physically performed in such a screen is that of drawing a single pixel.  Hence, when 
asked to draw a line between two screen locations, the best that we can possibly do is 
approximate the line by drawing a series of pixels along the imaginary line that connects the two 
points.  Note that the "pen" that we use can move in four directions only: up, down, left, and 
right.  Thus the drawn line is bound to be jagged, and the only way to make it look good is to use 
a high-resolution screen.  Since the receptor cells in the human eye’s retina also form a grid of 
“biological pixels,” there is a limit to the image granularity that the human eye can resolve.  Thus, 
high-resolution screens and printers can fool the human eye to believe that the lines drawn by 
pixels or printed dots are actually smooth.  In fact they are always jagged. 
 
The procedure for drawing a line from location (x1,y1) to location (x2,y2) starts by drawing the 
(x1,y1) pixel, and then zigzagging in the direction of the (x2,y2) pixel, until it is reached.  See 
Algorithm 11-7 for the details. 

b
a

b
adx

dy

dx
dy

),( yx

),( dyydxx ++

),( yx

),( dyydxx ++

overshooting undershooting

),( byax ++

),( byax ++

++b
++a

 
 
// To draw a line between points ),( yx and ), dyydxx( ++   
// (assuming 0, ≥dydx ) 
initialize )0,0(),( =ba  
while dxa ≤  or dyb ≤ do { 
          drawPixel ),( byax ++  
          if dxbdya ⋅⋅ p  then a++ else b++ 
} 

 
Algorithm 11-7: Line Drawing 

 



Chapter 11:   The Operating System                                                                                                        11     
              
Algorithm 11-7 is applicable only for .  To extend it into a general-purpose line 
drawing routine, one also has to take care of the three other possibilities: , 

, and .   

0, ≥dydx
0, pdydx

0,0 pf dydx 0,0 fp dydx
 
One problem with Algorithm 11-7 is that the multiplication operation can cause overflows.  We 
present another line-drawing technique, called “Midpoint Algorithm” or “Bresenham Algorithm”, 
that uses integers only and no multiplications. 
 

// To draw a line between points ),( 00 yx and ), 11 yx(  
// assuming 01 xx f  and dxdy ≤ , i.e. 10 ≤≤ slope . 

drawLine(x0, y0, x1, y1) {   
    x = x0                    // current pixel location, initialized with (x0,y0) 
    y = y0 
    dx = x1 – x0          // horizontal and vertical distances 
    dy = y1 – y0 
    d = 2 * dy – dx      // initialize the decision variable  
    deltaE = 2 * dy      // decision variable increment for east  
    deltaNE = 2 * (dy – dx)  // decision variable increment for north-east 
    drawPixel(x,y) 
    while (x < x1) { 
       if (d < 0) {          // move east 
           d += deltaE 
           x++ 
       } 
       else {                   // move north-east 
           d += deltaNE 
           x++, y++ 
       } 
      drawPixel(x,y) 
   } 
} 

 
Algorithm 11-8: “Midpoint Algorithm” for line drawing 

 
This algorithm is very similar to Algorithm 11-7, as it also utilizes the   ratio. For each x in 
the range , a decision is made whether to move east (right) or north east (right and up). 
The decision is made according to a “decision variable” that is updated in each iteration 
according to the last decision made (the rationale is based on the implicit form of a line, 

).  

dxdy /

10 xxx ≤≤

++ cbyax 0),( ==yxf
 
Algorithm 11-8 assumes that  and 01 xx f dxdy ≤ , i.e. 10 ≤≤ slope . The algorithm should be 
extended to support different line orientations. The first assumption can be handled by swapping 
the source and destination points when needed. The second can be handled by inverting the X and 
Y axes such that the slope will be in the correct range. 
 
 



Chapter 11:   The Operating System                                                                                                        12     
              
Circle Drawing 
 
There are several ways to draw a circle on the screen.  We present an algorithm that uses three 
routines already implemented in this chapter: multiplication, square root computation, and line 
drawing. 

 

point

r dy
22 dyr −

),( yx

rdy =

2=dy

1=dy

0=dy

1−=dy

2−=dy

rdy −=

),( 22 dyydyrxa +−−= point ),( 22 dyydyrxb +−+=

a b

 
 

// To draw a filled circle of radius r around point ),( yx : 

for each rrK−∈dy do 

        drawLine from ),( 22 dyydyrx +−−  to ),22 dyydyrx +−+(  

 
Algorithm 11-9: Circle Drawing 

 
The algorithm is based on drawing a series of horizontal lines (like the typical line ab in the 
figure), one for each row in the range ry −  to ry + .  Since r is specified in pixels, the algorithm 
ends up drawing a line in every screen row along the circle’s north-south diameter, and thus the 
resulting circle is completely filled.  We avoid overflow in the computation of 2r  by placing a 
limit on r’s magnitude; see the drawCircle function API for details. 
 

 



Chapter 11:   The Operating System                                                                                                        13     
              
Keyboard Handling 
 
The interface between the computer and the keyboard can be implemented by a RAM location, 
called keyboard memory map.  Since Unicode is 16-bit, the map can be implemented as a single 
16-bit word in memory.  When a key is pressed on the keyboard, the hardware is responsible for 
setting the value of the keyboard map to the Unicode (or some other unique code) of the pressed 
key; when no key is pressed, a code like 0 can be stored. 
 
The OS routine that handles the keyboard is typically called keyPressed().  When called, this 
routine returns the current value of the keyboard memory map.  The implementation of the  
keyPressed() routine of the Sack OS can be easily done by consulting the keyboard mapping 
in the Hack hardware specification. 
 
11.1.4 Array Management 
 
Modern operating systems should enable high level languages to create and manipulate variable 
size arrays.  For example, consider a Jack program designed to implement some multi-player 
game: 

 
var Array players; 
let players=Array.new(Keyboard.readInt('how many players?'));  
... 
players.dispose; 

 
(readInt(String msg) is yet another OS method that displays msg on the screen and returns 
the user's input as an integer).   

 
In the Java language (and unlike Pascal), arrays are created in two stages.  At compile-time, the 
var statement only creates a pointer variable whose name is set to that of the declared array.  
The array itself is constructed and allocated memory at run-time, when the OS’s Array.new 
routine is called.  As the example illustrates, this flexibility allows us to allocate only as much 
memory space as necessary. 
 
In order to support this dynamic array creation protocol, the OS programmer can implement 
arrays as object instances of a class called Array.   Importantly, the Array class should not have 
a constructor, since we cannot know at compile-time how much memory to allocate to each array 
instance. Instead, the OS programmer can define an Array.new(int size) function that, 
when called, allocates to the array as much heap space as implied by the size argument.  
Similarly, one should define an Array.dispose method that, when called, de-allocates the 
memory space presently occupied by the current array object.  
 
11.1.5 String Processing 
 
A modern OS should support variable-length strings.  This can be done by creating a String 
class that provides the string abstraction and related services.  The standard data structure used in 
this context is typically designed to hold an array of characters that holds the string contents, the 
maximum length of the string, and the current length of the string. 
 

 



Chapter 11:   The Operating System                                                                                                        14     
              
The Sack OS has a String class with routines for creating instances of this data structure and 
implementing all the functionality described in the String library of the OS API. These 
operations must have O(1) run-time. 
 
11.1.6 Memory Management 
 
Memory Access 
 
Operating systems carry out low-level memory access via two methods traditionally called peek 
and poke. The peek(address) method gets the integer which is the value of the given RAM 
address.  The poke(address,value) method sets the value of the given RAM location to the 
given value.  In order to implement these methods, the language in which the OS is written must 
provide means for accessing specific RAM addresses directly. Different high level languages 
employ different tricks to facilitate such direct access to the hardware, while some languages 
attempt to prevent the programmer from doing so. 
 
A Jack implementation:  The Jack language includes a trapdoor that enables the programmer to 
gain complete control of the computer’s memory.  The trick is based on an anomalous use of 
reference variables (pointers).  Specifically, the Jack language does not prevent the programmer 
from assigning a constant to a reference variable.  This constant can then be treated as an absolute 
memory address.  In particular, when the reference variable happens to be an array, this trick can 
give convenient and direct access to the entire computer memory. 
 

// To create a Jack-level "proxy" of the RAM:              
            var Array memory; 
            let memory=0; 
 
From this point on, the base of the memory array points to the first address in the computer's 
RAM.  To set or get the value of the RAM location whose physical address is j, all we have to do 
is manipulate the array entry memory[j].  This will cause the compiler to manipulate the RAM 
location whose address is 0+j, which is precisely what we want to do.  
 
Recall that in Jack, arrays are not allocated space on the heap at compile-time, but rather at run-
time, when the array's new method is called.  Here, however, a new initialization will defeat the 
purpose, since the whole idea is to anchor the array in a particular address rather then let the OS 
allocate it to an address in the heap that we don't control.  In short, this hacking trick works 
because we use the array variable without initializing it "properly", as we would do in normal 
usage of arrays. 
 
Memory Allocation  
 
Programs create objects. These objects must be stored and managed in memory -- a task normally 
handled by the operating system.  In particular, when a running program constructs a new object 
of a certain size, enough RAM space must be located in memory and then allocated to store the 
new object. When the program declares that the object is no longer needed, its RAM space may 
be recycled. In the computer architecture jargon, the RAM segment which is designated to storing 
objects is called heap. 
 

 



Chapter 11:   The Operating System                                                                                                        15     
              
Operating systems use various techniques for handling dynamic memory allocation and de-
allocation.  These techniques are implemented in two functions traditionally called alloc() and 
deAlloc().  We present two memory allocation algorithms: a basic one and an improved one. 
 
Basic memory allocation algorithm: The data structure that this algorithm manages is a single 
pointer, called free, that points to the beginning of the yet un-allocated part of the heap.  
Algorithm 11-10 gives the details. 
 

// objects are stored on the heap.  
Initialization: free=heapBase 

// to allocate size words in memory: 
function alloc(size):  
   pointer = free 
   free += size 
   return pointer 

// to de-allocate the memory space of a given object: 
function deAlloc(object):  
   do nothing 

 
Algorithm 11-10: Basic Memory Allocation Scheme (wasteful) 

 
Algorithm 11-10 is wasteful, as it does not reclaim the space of decommissioned objects.   
 
Improved memory allocation algorithm: This algorithm manages a linked list of available 
memory blocks, called freeList.  Each block is characterized by two “housekeeping” fields: the 
block’s length, and a pointer to the next block in the freeList.  These fields can be kept in the two 
memory locations preceding the block itself, (i.e. b.length==x[-1], and b.next==x[-2]). 
 
When asked to allocate a memory block of size n, the algorithm has to search the freeList for a 
suitable block.  Two well known options for doing this are called best-fit and first-fit.  Best-fit 
finds the block whose size is the closest (from above) to the required size, while first-fit finds the 
first block that is long enough.  Once the block has been found, the required memory segment is 
taken from it.  Next, the allocated block is updated in the freeList, becoming to be the part that 
remained after the allocation (if no memory was left in the block, it is eliminated from the 
freeList).   

 
When asked to reclaim the memory of an unused object, the algorithm inserts the de-allocated 
block into the freeList.  The details are given in Algorithm 11-11. 

 



Chapter 11:   The Operating System                                                                                                        16     
              
 

// objects are stored on the heap. 
Initialization: 
   freeList = heapBase+2 
   freeList.length = heapEnd–(heapBase+2) 
   freeList.next = null  

// to allocate size words in memory: 
function alloc(size): 
   1. use methods like best-fit or first-fit 
      to locate a free block in freeList 
   2. return the base address of that block 

// to de-allocate the memory space of a given object: 
function deAlloc(object):  
   Append the object to the freeList 

 
Algorithm 11-11: Improved Memory Allocation Scheme (with memory recycling) 

 
Dynamic memory allocation schemes like Algorithm 11-11 may create a block fragmentation 
problem.  Hence, some kind of “defrag” operation should be considered, i.e. merging memory 
segments that are physically consecutive in memory but logically split into different blocks in the 
freeList.  The defragmentation operation can be done each time an object is de-allocated, or when 
alloc() cannot find an appropriate block, or according to some intermediate or ad-hoc condition. 
 
11.1.7 Booting 
 
An application program written in Jack is a collection of classes. One class must be named main, 
and this class must include a method named main.  In order to start running the application 
program, the Main.main method should be invoked.  Now, it should be understood that the 
operating system is itself a program.  When the computer boots up, we want to start running the 
operating system program first, and then we want the OS to tell the application program to start 
running as well.  This is accomplished by an OS function called Sys.init(), which is 
automatically invoked by the VM's bootstrap code (see section 7.3.1).  The Sys.init function 
should call all the init() methods of all the OS classes (libraries), and then call the 
Main.main()method of the application program. 
 
 

 



Chapter 11:   The Operating System                                                                                                        17     
              
11.2 The Sack OS Specification 
 
Sack is a basic operating system featuring a set of basic services, implemented as a library of 
subroutines. Compilers of high level languages over the Hack platform assume that these 
subroutines exist, and invoke them in the code that they generate. 
 
Sack is organized as a collection of classes that can be used by application programs.  These 
classes run in normal user mode and are not different from the classes of the application.  The 
Sack subroutines are grouped into the following classes: 
 

�   Math:     Provides basic mathematical operations; 

�   String:    Implements the String type and basic string-related operations; 

�   Array:    Enables the construction and disposal of arrays; 

�   Output:    Handles text based output; 

�   Screen:    Handles graphic screen output; 

�   Keyboard:      Handles user input from the keyboard; 

�   Memory:    Handles memory operations; 

�   Sys:                Provides some execution-related services. 
 
In terms of implementation, the Sack API is partitioned into 4 levels.  Level-0 subroutines are 
needed for any compiler; Level-1 subroutines provide very basic services; Level-2 subroutines are 
needed for programs of reasonable functionality; Level-3 includes all the remaining subroutines.  
Each Sack implementation must specify the level that it supports. 
 
Math 
 
This class enables various mathematical operations.  The implementation level of each function is 
listed at the end of the function’s description. 
� Function void init().  Level-0. 

� Function int abs(int x): Returns the absolute value of x.  Level-1. 

� Function int multiply(int x, int y): Returns the product of x and y. Level-0. 

� Function int divide(int x, int y): Returns the integer part of the x/y. Level-0. 

� Function int min(int x, int y): Returns the minimum of x and y.  Level-1. 

� Function int max(int x, int y): Returns the maximum of x and y.  Level-1. 

� Function int sqrt(int x): Returns the integer part of the square root of x.  Level-2. 
 
String 
 
This class implements the String data type and various string-related operations. The 
implementation level of each function is listed at the end of the function’s description. 
� Function void init().  Level-0. 

 



Chapter 11:   The Operating System                                                                                                        18     
              
� Constructor String new(int maxLength): Constructs a new empty string (of length zero) that 

can contain at most maxLength characters.  Level-0. 

� Method void dispose(): Disposes this string.  Level-0. 

� Method int length(): Returns the length of this string.  Level-1. 

� Method char charAt(int j): Returns the character at location j of this string.  Level-1. 

� Method void setCharAt(int j, char c): Sets the j’th element of this string to c.  Level-1. 

� Method String appendChar(char c): Appends c to this string and returns this string.  Level-0. 

� Method void eraseLastChar(): Erases the last character from this string.  Level-1. 

� Method int intValue(): Returns the integer value of this string (or at least the prefix part, i.e. 
until a non numeric character is found).  Level-3. 

� Method void setInt(int j): Sets this string to hold a representation of j.  Level-3. 

� Function char backSpace(): Returns the backspace character.  Level-1. 

� Function char doubleQuote(): Returns the double quote (“) character.  Level-1. 

� Function char newLine(): Returns the newline character.  Level-1. 

 
Array 
 
This class enables the construction and disposal of arrays.  Both routines in this class are level-0. 
� Function Array new(int size): Constructs a new array of the given size. 

� Method void dispose(): Disposes this array.  
 
Output 
 
This class allows writing text on the screen.  All the functions in this class except for init() are 
level-3. 
� Function void init().  Level-0. 

� Function void moveCursor(int i, int j): Moves the cursor to the j’th column of the i’th row, 
and erases the character located there. 

� Function void printChar(char c): Prints c at the cursor location and advances the cursor 
one column forward. 

� Function void printString(String s): Prints s starting at the cursor location, and advances 
the cursor appropriately. 

� Function void printInt(int i): Prints i starting at the cursor location, and advances the 
cursor appropriately. 

� Function void println(): Advances the cursor to the beginning of the next line. 

� Function void backSpace(): Moves the cursor one column back. 
 

 



Chapter 11:   The Operating System                                                                                                        19     
              
Screen 
 
This class allows drawing graphics on the screen.  It accesses the screen directly, using the 
screen’s memory-mapped address as defined by the hardware.  All the functions in this class are 
level-2. 

� Function void init() 

� Function void clearScreen(): Erases the entire screen. 

� Function void setColor(boolean b): Sets the screen color (white=false, black=true) to be 
used for all further drawXXX commands. 

� Function void drawPixel(int x, int y): Draws the (x,y) pixel. 

� Function void drawLine(int x1, int y1, int x2, int y2): Draws a line from pixel (x1,y1) to 
pixel (x2,y2). 

� Function void drawRectangle(int x1, int y1, int x2, int y2): Draws a filled rectangle where 
the top left corner is (x1, y1) and the bottom right corner is (x2,y2). 

� Function void drawCircle(int x, int y, int r): Draws a filled circle of radius r around (x,y).  
The radius r must be 181 or less. 

 
Keyboard 
 
This class allows reading inputs from the keyboard. 

� Function void init().  Level-0. 

� Function char keyPressed(): Returns the character of the currently pressed key on the 
keyboard; if no key is currently pressed, returns 0.  Level-1. 

� Function char readChar(): Waits until a key is pressed on the keyboard and released, and 
then echoes the key to the screen and returns the character of the pressed key.  Level-3. 

� Function String readLine(String message): Prints the message on the screen, reads the next 
line (until a newline character) from the keyboard, echoes the line to the screen, and returns 
its value.  This method handles user backspaces.  Level-3. 

� Function int readInt(String message): Prints the message on the screen, reads the next line 
(until a newline character) from the keyboard, echoes the line to the screen, and returns the 
integer until the first non numeric character in the line.  This method handles user 
backspaces.  Level-3. 

 
Memory 
 
This class allows direct access to the main memory.  All the functions in this class are level-0, 
except for peek() and poke(), which are level-1 
� Function void init(). 

� Function int peek(int address): Returns the value of the main memory at this address. 

� Function void poke(int address, int value): Sets the value of the main memory at this address 
to the given value. 

 



Chapter 11:   The Operating System                                                                                                        20     
              
� Function Array alloc(int size): Allocates the specified space on the heap and returns a 

reference to it. 

� Function void deAlloc(Array o): De-allocates the given object and frees its memory space. 
 
Sys 
 
This class supports some execution-related services.  All the functions in this class are level-1, 
except for init(), which is level-0. 
� Function void init(): Makes all initializations required and then calls the users’ 

Main.main() method. 

� Function void halt(): Halts the program execution. 

� Function void error(int errorCode): Prints the error code on the screen and halts. 

� Function void wait(int duration): Waits approximately duration milliseconds and returns.  
Implementation note: this can be implemented by a loop that runs approximately n 
milliseconds before it (and the method) returns. You will have to time your specific computer 
to obtain a one millisecond wait (this constant varies from one CPU to another).  As a result, 
your Sys.wait function will not be portable, but that's life. 

 
11.3 Perspective 
 
Work in progress. 
 

 



Chapter 11:   The Operating System                                                                                                        21     
              
11.4 Build It 

Sack is a simple operating system, similar to early versions of DOS.  

Objective: Develop the Sack “kernel”, which includes key parts of its Memory, Math, Screen, 
Array, String, and System libraries. 

Contract: Implement (in the Jack programming language) the level-0, level-1, and level-2 
services of the operating system libraries, as defined in the Sack OS API (Section 11.2). Test 
your OS implementation by compiling and running the test programs supplied below. 

Guidelines 

The source code of the Sack operating system is written in Jack (just like Unix is written in C).  
The executable OS is a collection of .vm files (just like Windows is a collection of .exe and 
.dll files).  The OS routines are implemented as VM functions, stored in these files. One of 
these functions is Sys.init(), stored in Sys.vm.  

In a similar fashion, a Jack application is also a collection of .vm files (just like Word is a 
collection of .exe and .dll files).  One of these files must be Main.vm., and this file must 
contain a VM function called Main.main.  This function is invoked automatically by 
Sys.int() when the computer is reset. 

Thus, a natural way to test a newly developed OS routine is to compile and execute an application 
that uses this routine.  For example, to test the OS's multiplication method, we can write a Jack 
program that includes commands like "let b=5; let x=b*12;".  If the OS is implemented 
properly, this code should put the number 60 in the memory location that was allocated for x. 
Hence, to complete the testing, we can compile both the OS and the application, run the resulting 
(overall) code, and inspect the memory. 
 
Incremental testing: The following strategy can help you manage your tests.  Recall that an 
executable version of the OS is already available in the book software suite.  This OS is a 
collection of several VM files, one for each OS library (e.g. Memory.vm, Screen.vm, etc., each 
being the compiled version of corresponding Memory.jack, Screen.jack, etc. classes -- these 
are the classes that you have to develop and test in this project). 
 
Now, in each part of the present  project you have to develop routines in one of these libraries.  
For example, let us assume that you are now working on the Memory.jack class. To help 
"localize" your testing, you can put all the supplied OS .vm files in your working directory, and 
then replace the supplied Memory.vm file with your own version of this library, i.e. the 
Memory.vm file that you obtained by compiling your version of Memory.jack.  This strategy 
makes sense, since the test programs that we supply below call other OS routines that you have 
not yet developed, and if these routines will not be present in the working directory you will get 
run-time errors. 
 

 



Chapter 11:   The Operating System                                                                                                        22     
              
Implementing the OS level-0 and level-1 services 
 
This part of the project deals with implementing all the OS routines labeled as level-0 and level-1 
in the Sack OS API (Section 11.2).  The test program consists of three classes:  

• Person.jack: this class represents a person with a name and an age.  
Contains a variety of text manipulation operations on the person's name. 

• List.jack: this class creates an array and executes various multiplication and 
division operations on its entries. 

• Main.jack: this class creates a person object and a list object and then tests 
various OS methods.    

Guidelines: Implement all the level-0 and level-1 routines of the operating system.  Use the Jack 
compiler to compile your OS .jack files.  The result will be a set of “OS .vm files.” Compile 
the supplied test program (3 classes above).  The result will be a set of “application .vm files.” 
Put both sets of .vm files in the same directory. Use the VM Emulator to execute the resulting 
code.  Important: before you do so, disable the emulator's animation. 

If the OS was implemented correctly, RAM locations 10000…10008 should contain the 
following values:  

Address Value
10000 1
10001 20
10002 2
10003 68
10004 76
10005 65
10006 66
10007 69
10008 3

 
 

 



Chapter 11:   The Operating System                                                                                                        23     
              

 

Implementing the OS level-2 services 
 
This part of the project deals with implementing all the OS routines labeled as level-0 and level-1 
in the Sack OS API (Section 11.2).  The test program is a simple game consisting of three classes:  

• Square.jack: this class represents a graphical square.  Contains a variety of 
graphical operations that use the OS screen drawing services.   

• SquareGame.jack: this class starts a "game" in which a square is created and 
manipulated by the user.    

• Main.jack: this class starts a new game.  

Guidelines: Same as in “Implementing the OS level-0 and level-1” section. If the OS was 
implemented correctly, a square should appear on the screen, as follows:  

 

The user should then be able to control the square movement by pressing the following keyboard 
keys: 

right arrow: move the square to the right; 
left arrow: move the square to the left; 
up arrow: move the square up; 
down arrow: move the square down; 
x:   increment the square size by 2 pixels; 
z:   decrement the square size by 2 pixels; 
q:  quit the game.  

To control the animation speed, you can change the delay constant in the moveSquare method in 
SquareGame class.  

 


