
Chapter 10: The Compiler II: Code Generation                                                                                     1     
              

 
10. The Compiler II: Code Generation1 

 
“This document describes the usage and input syntax of the Unix Vax-11 
assembler “As.”  As is designed for assembling code produced by the "C" 

compiler; certain concessions have been made to handle code written directly 
by people, but in general little sympathy has been extended.”  

Berkeley Vax/Unix Assembler Reference Manual (1983) 
 
In this chapter we complete the development of the Jack compiler.  The overall compiler is based 
on two modules: the VM backend developed in chapters 6 and 7, and the Syntax Analyzer and 
Code Generator developed in chapters 9 and 10, respectively.  Although the second module 
seems to consist of two separate sub-modules, they are usually combined into one program, as we 
will do in this chapter.  Specifically, in chapter 9 we built a Syntax Analyzer that “understands” -- 
parses -- source Jack programs.  In this chapter we extend this program into a full-scale compiler 
that converts each “understood” Jack operation and construct into equivalent series of VM 
operations.   
 
9.1 Background 
 
Symbol Table 
 
A typical high-level program contains many identifiers.  Whenever the compiler encounters any 
such identifier, it needs to know what it stands for: is it a variable name, a class name, or a 
function name?  If it’s a variable, is it a field of an object, or an argument of a function?  What 
type of variable is it -- an integer, a string, or some other type?  The compiler must resolve these 
questions in order to map the construct that the identifier represents onto a construct in the target 
language. For example, consider a C function that declares a local variable named sum as a 
double type. When we will translate this program into the machine language of some 32-bit 
computer, the sum variable will have to be mapped on a pair of two consecutive addresses, say 
RAM[3012] and RAM[3013].  Thus, whenever the compiler will encounter high-level statements 
involving this identifier, e.g. sum+=i or printf(sum), it will have to generate machine 
language instructions that operate on RAM[3012] and RAM[3013] instead.  
 
We see that in order to generate target code correctly, the compiler must keep track of all the 
identifiers introduced by the source code. For each identifier, we must record what the identifier 
stands for in the source language, and on which construct it is mapped in the target language.  
This information is usually recorded in a “housekeeping” data stricture called symbol table.  
Whenever a new identifier is encountered in the source code for the first time (e.g. in variable 
declarations), the compiler adds its description to the table.  Whenever an identifier is 
encountered elsewhere in the program, the compiler consults the symbol table to get all the 
information needed for generating the equivalent code in the target language.  An example of this 
technique is given in Prog. 10-1.  At this stage we ask the reader to ignore the code generation 
part of the example (bottom of the figure). 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
 

 



Chapter 10: The Compiler II: Code Generation                                                                                     2     
              

 
// Some common sense was sacrificed in this banking application in order 
// to create non-trivial and easy-to-follow compilation examples. 
class BankAccount { 
   // class variables 
   static int nAccounts; 
   static int bankCommission;  // as a precentage, e.g. 10 for 10 percent 
   // account properties 
   field int id; 
   field String owner; 
   field int balance; 
   ...  // the constructor is discussed later in the chapter 
   method int commission(int x) { 
      // if id<=1000 the acct owner is a bank employee so commission is 0 
      if (id>1000) {return (x*bankCommission)/100;} else {return 0;}  
   } 
   ...    
   method void transfer(int sum, bankAccount from, Date when) { 
      var int i,j,k;  // some local variables 
      var Date d1; 
      ... 
      /* add the transferred sum to the balance minus the bank commission, 
         which is inflated to make the example more interesting */ 
      let balance=(balance+sum)-commission(sum*5); 
      ... 
   } 
   ... 
} 
 

 
 

Class-scope symbol table  Method-scope (transfer) sym. table 
Name type Kind #  name Type kind # 
naccounts int Static 0  this BankAccount argument 0 
bankCommission int Static 1  sum int argument 1 
id int Field 0  from BankAccount argument 2 
Owner String Field 1  when Date argument 3 
balance int Field 2  i int var 0 
     j int var 1 
     k int var 2 
     d1 Date var 3 

 
 

// VM pseudo code 
push balance 
push sum 
add 
push this 
push sum 
push 5 
call multiply 
call commission 
sub 
pop balance 
 

 
// Hack VM code 
push this 2 
push argument 1 
add 
push argument 0 
push argument 1 
push constant 5 
call Math.multiply 2 
call BankAccount.commission 1 
sub 
pop this 2 
 

 
 

PROGRAM 10-1: Symbol table and code generation example.  We assume that the source 
language is Jack (top) and the target language is the stack-based VM developed in Ch. 6-7.  

 
The basic symbol table solution is complicated slightly due to the fact that most languages allow 
different parts of the program to use the same identifiers for different purposes.  For example, two 
C functions may declare a local variable named x for two completely different purposes. The 
programmer is allowed to re-use such symbols freely in different program units, since the 

 



Chapter 10: The Compiler II: Code Generation                                                                                     3     
              
compiler is clever enough to map them on completely different objects in the target language, as 
implied by the program’s context (and consistent with the programmer’s intention).  Therefore, 
whenever the compiler encounters an identifier x in a program, it must know which x we are 
talking about, and generate the appropriate code accordingly. 
 
The common solution is to associate each identifier with its own scope, i.e. the region of the 
program in which the identifier is recognized. Thus in addition to all the relevant information that 
must be recorded about each identifier, the symbol table must also reflect in some way the 
identifier’s scope. The classic data structure for this purpose is a list of hash tables, each 
reflecting a single scope. When the compiler fails to find the identifier in the table of the current 
scope, it looks it up in the next table, from inner scopes outward.  Thus if x appears undeclared in 
a certain code segment (e.g. a method), it may be that x is declared in the code segment that owns 
the current segment (e.g. a class).  The need for a list of more than two tables arises in languages 
that feature arbitrarily deep scoping.  For example, in Java one can define local variables whose 
scope is restricted to the “{“ block “}” in which they are defined. 
 
To sum up, depending on the scoping rules of the compiled language, the symbol table is 
typically implemented as a list of two or more hash tables.  
 
Memory Allocation 
 
One of the basic challenges faced by every compiler is how to map the various types of variables 
of the source program onto the memory of the target platform.  This is not a trivial task.  First, 
different variable types require different amounts of memory, so the mapping is not one-to-one.  
Second, different kinds of variables have different life cycles.  For example, a single copy of each 
static variable should be kept “alive” as long as the entire class is being compiled.  In contrast, 
each object instance of the class should have a different copy of all its private variables (called 
fields in Jack).  Also, each time a function is being called, a new copy of its local variables must 
be created -- a need which is clearly seen in recursion.  In short, memory allocation to variables is 
a dynamic and intricate task. 
 
That’s the bad news.  The good news are that low-level memory allocation can be all but 
“outsourced” to a virtual machine implementation, operating as the compiler’s backend.  For 
example, the VM that we created in Chapters 6-7 has built-in mechanisms for representing static, 
local, argument, as well as object-, and array-type variables.  Further, the VM knows how to 
dynamically create new copies of variables, when necessary, while keeping on the stack copies of 
variables of subroutines that did not yet terminate.  Recall that this functionality was not achieved 
easily.  In fact, we had to work rather hard to create a VM implementation that maps all these 
constructs and behaviors on a flat RAM structure and a primitive instruction set, respectively.   
Yet this effort was worth our while: for any given language L, any L-to-VM compiler is now 
completely relieved from low-level memory management; all it has to do is map source 
constructs on respective VM constructs -- a rather simple translation task.  Further, any 
improvement in the way the VM implementation manages memory will immediately affect any 
compiler that depends on it.  That’s why it pays to develop efficient VM implementations and 
continue to improve them down the road. 
 
 
Expression Evaluation  

 



Chapter 10: The Compiler II: Code Generation                                                                                     4     
              
 
How should we generate code for evaluating high level expressions like x+f(2,y,-z)*5?  First, 
we must “understand” the syntactic structure of the expression, e.g. convert it into a parse tree 
like the one depicted in Fig 10-2.   Next, we can simply traverse the tree and generate the target 
code.  Clearly, the choice of the code generation algorithm will depend on the target language 
into which we are translating. 

Source code:

x+f(2,y,-z)*5

Target code:

push x
push 2
push y
push z
-   (unary)
call f
push 5

+

+

x *

f 5

2 -y

z

*

-
code
generation

(syntax
analysis)

(semantic
synthesis)

parsing

 
Figure 10-2: Code generation for expressions is based on a syntactic understanding 
of the expression, and can be easily accomplished by recursive manipulation of the 
expression tree.  Note that the parsing stage was carried out in Chapter 9. 

 
The strategy for translating expressions into a stack-based language is based on a postfix (depth-
first) traversal of the corresponding expression tree.  One such strategy is used in Algorithm 10-3. 

 

Code(exp): 
     if exp is a number n            then    output  “push n” 
     if exp is a variable v           then    output “push v” 
     if exp = (exp1 op exp2)      then    Code(exp1); Code(exp2) ; output “op” 
     if exp = op(exp1)                then    Code(exp1) ; output “op” 
     if exp = f(exp1 … expN)    then    Code(exp1) … Code(expN); output “call f” 

 
Algorithm 10-3: A recursive postfix traversal algorithm for evaluating 
an expression tree by generating commands in a stack-based language. 

The reader can verify that  when applied to the tree in Fig 10-2, Algorithm 10-3 will yield the 
desired  stack-machine code. 

 



Chapter 10: The Compiler II: Code Generation                                                                                     5     
              
Flow Control  
 
Structured programming languages are equipped with a variety of high-level control structures 
like if, while, for, switch, and so on.   In contrast, low-level languages typically offer two 
control primitives: conditional and unconditional goto.  Therefore, one of the challenges faced by 
the compiler is to translate structured code segments into target code that includes these 
primitives only. Figure 10-4 gives two examples. 
 
 Source code   Generated code  

if (cond)     code for computing ~cond 
   s1    if-goto L1 

else    code for executing s1 

   s2    goto L2 

…  label L1 

    code for executing s2 

  label L2 

       … 
   

while (cond)  label L1 

   s1    code for computing ~cond 

…    if-goto L2 

    code for executing s1 

    goto L1 

  label L2 
        … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10-4: Compilation of control structures  
 
Two features of high-level languages make the compilation of control structures slightly more 
challenging.  First, control structures can be nested, e.g. if within while within another while 
and so on.  Second, the nesting can be arbitrarily deep.   The compiler deals with the first 
challenge by generating unique labels, as needed, e.g. by using a running index embedded in the 
label. The second challenge is met by using a recursive compilation strategy.  The best way to 
understand how these tricks work is to discover them yourself, as you will do when you will build 
the compiler implementation described below. 
 
Arrays  
 
An array is usually implemented as a sequence of consecutive memory locations.  The array 
name is usually treated as a pointer to the beginning of the array’s allocated memory block.   In 
some languages (e.g. Pascal), the entire memory space is allocated when the array is declared.  In 
other languages (e.g. Java), the array declaration results in the allocation of a single pointer only.  
The array proper is created in memory later, when the array is explicitly constructed during the 
program’s execution. This type of dynamic memory allocation is done from the heap, using the 
memory management services of the operating system.  An obvious advantage of dynamic 
memory allocation is that the size of the array does not have to be pre-determined, resulting in 

 



Chapter 10: The Compiler II: Code Generation                                                                                     6     
              
better memory utilization.  Fig. 10-5 offers a snapshot of the memory organization of a typical 
array.  

2950

3011

23

4315
4316
4317

4324

x

x array

heap 2048

...

...

4318

0
RAM

4315

...

...

...

i 2
...

int[] x;       // declare  an  array  of  integers
x=new int[10]; // allocate  a  new  10-location  array
i=2;
x[i]=23;

Java code

 
Figure 10-5: Array creation and manipulation. All the addresses in the example 
were chosen arbitrarily (except that in the Hack platform, the heap indeed begins at 
address 2048).  Note that the basic operation illustrated is *(x+i)=23. 

 
Thus storing the value 23 in the i’th location of array x can be done by the following pointer 
arithmetic:  

push x 
push i 
+                      
pop addr    // at this point addr points to x[i] 
push 23 
pop *addr   // store the topmost stack element in RAM[addr] 

 
Explanation: The fact that the first four commands make variable addr point to the desired array 
location should be evident from Figure 10-5.  In order to complete the storage operation, the 
target language must be equipped with some sort of an indirect addressing mechanism.  
Specifically, instead of storing a value in some memory location y, we need to be able to store the 
value in the memory location whose address is the current contents of y. In the example above, 
this operation is carried out by the “pop *addr” pseudo-command.  Different virtual machines 
feature different ways to accomplish this indirect addressing task.  For example, our VM handles 
indirect addressing using the pointer and that segments (see Fig. 6-13).  
 
Objects 
 
Object-oriented languages allow the programmer to encapsulate data and the code that operates 
on the data within programming units called objects.  This level of abstraction does not exist in 
low-level languages.  Thus, when we translate code that handles objects into a primitive target 
language, we must “flatten” the object structure and handle its underlying data and code 
explicitly.  This will be illustrated in the context of Prog. 10-6. 

 



Chapter 10: The Compiler II: Code Generation                                                                                     7     
              
 

 
class BankAccount { 
   ... 
   field int id; 
   field String owner; 
   field int balance; 
   ... 
   constructor BankAccount new(int a, String b, int c) { 
      let id=a;  let owner=b, let balance=c; 
   } 
   ...   
   method void main() { 
      var BankAccount joeAcct,janeAcct;  // some accounts 
      var Date d; 
      // to save clutter we skip the construction of d 
      ... 
      let joeAcct=BankAccount.new(1,”joe”,5000);  // create Joe’s acct 
      let janeAcct=BankAccount.new(2,”jane”,2000); // create Jane’s acct 
      ... 
      do janeAcct.transfer(3000,joeAcct,d); // move $ from Joe to Jane 
      ... 
   } 
   ... 
} 
 

 
Program 10-6: Some additional code segments of the BankAccount 
class presented in Prog. 10-1. 

 
Object data (construction): The data kept by each object instance is essentially a list of fields.  
As with array variables, when an object-type variable is declared, the compiler only allocates a 
reference (pointer) variable.  The object proper is allocated memory later, when the object is 
created via a call to the class constructor.  To explain this better, we note that the operating 
system that you will build in the next chapter has a method called alloc(int size).  This 
method is designed to find an available memory block of size size on the heap, and return a 
pointer to the block’s base address. When compiling a constructor like BankAccount new(int 
a, String b, int c), the compiler generates code that (i) requests the operating system to 
find a memory block to store the new object, and (ii) sets the this pointer to the base of the 
allocated block.  From this point onward, the object’s fields can be accessed linearly, using an 
index relative to its base.  Thus statements like let id=a  and let owner=b can be easily 
compiled, as we now turn to explain. 
 
Object data (usage): The previous paragraph focused on how the compiler generates code that 
creates new objects.  We now describe how the compiler handles commands that manipulate the 
data encapsulated in existing objects. For example, consider the handling of a statement like let 
owner=b.  First, an inspection of the symbol table will tell the compiler that (i) this is a 
variable of type BankAccount, and (ii) owner is the 2nd field of the BankAccounts class. 
Using this information, the compiler can generate code effecting the operation *(this+2)=b.  
Of course the generated code will have to accomplish this operation using the target language. 
 
Object code: The encapsulation of methods within object instances is a convenient abstraction 
which is not implemented for real.  Unlike the fields data, of which different copies are indeed 
kept for each object instance, only one copy of each method is actually kept at the target code 
level.  Thus the trick that stages the code encapsulation abstraction is to have the compiler force 

 



Chapter 10: The Compiler II: Code Generation                                                                                     8     
              
the method to always operate on the desired object.  We have chosen to handle this convention as 
follows: at the VM level, each method assumes that a reference (pointer) to the object on which it 
has to operate is available in its 0th argument.  With that in mind, when compiling a method call 
like do a.b(x), we generate the code push a, push x, call b.  Thus, when the compiler 
translates the method call do janeAcct.transfer(3000,joeAcct,d), it generates the code 
push janeAcct, push 3000, push joeAcct, push d, call transfer.  As a result, the 
transfer method will end up operating on the joeAcct object, since this is its 0th argument. 
 
Finally, let us go back to Prog. 10-1 and consider the method call commission(sum*5) which 
is part of the bold statement in the figure.  When the commission method is invoked, how does 
it “know” that it has to operate on the this object? The answer lies at the code generated at the 
bottom of Fig. 10-1, where we see that the compiler preceded the method call with a “push 
this” command.  Thus when the commission code starts running, “id” ends up being 
this.id, and so on.  More precisely, when the commission code has been compiled, the 
compiler has used the symbol table to learn that (i) this is of type BankAccount, and (ii) id is 
the 0th field of this class. Using these information the compiler has generated code in which 
references to id were replaced with references to the *(this+0) memory location. 
 
 
 
 
9.2 Specification 
 
Usage: The Jack compiler accepts a single command line argument that specifies either a file 
name or a directory name: 
 

prompt> JackCompiler source 
 
If source is a file name of the form xxx.jack, the compiler compiles it into a file named 
xxx.vm, created in the same folder in which the input xxx.jack is located. If source is a 
directory name, all the .jack files located in this directory are compiled. For each xxx.jack 
file in the directory, a corresponding xxx.vm file is created in the same directory. 
 
 

 



Chapter 10: The Compiler II: Code Generation                                                                                     9     
              
Standard mapping over the Virtual Machine 
 
This section lists a set of conventions that must be followed by every Jack-to-VM compiler. 

File and function naming:  Each Jack class is compiled into a separate .vm file.  The Jack 
subroutines (functions, methods, and constructors) are compiled into VM functions as follows: 

� A Jack subroutine x() in a Jack class Y is compiled into a VM function called Y.x. 

� A Jack function or constructor with k arguments is compiled into a VM function with k 
arguments. 

� A Jack method with k arguments is compiled into a VM function with k+1 arguments.  
The first argument (argument number 0) always refers to the this object.   

Returning from void methods and functions: 
� VM functions corresponding to void Jack methods and functions must return the constant 

0 as their return value. 

� By definition, a “do subName” statement always invokes a void function or method.  
Therefore, when translating such statements, the caller of the corresponding VM function 
must remember to pop the returned value (which is always the constant 0). 

Memory allocation and access: 
� The static variables of a Jack class are allocated to, and accessed via, the VM’s static 

segment of the corresponding .vm file. 

� The local variables of a Jack subroutine are allocated to, and accessed via, the VM’s 
local segment. 

� Before calling a VM function, the caller must push the function’s arguments onto the 
stack.  If the VM function corresponds to a Jack method, the first pushed argument must 
be the object on which the method is supposed to operate. 

� Within a VM function, arguments are accessed via the VM’s argument segment. 

� Within a VM function corresponding to a method or a constructor, access to the fields of 
this object is obtained by first pointing the VM’s this segment to this object and then 
accessing individual fields via “THIS index” references. 

� Within a VM function, access to array entries is obtained by pointing the VM’s that 
segment to the address of the desired array location. 

Operating system functions: 
When needed, the compiler should use the following built-in functions, provided by the 
operating system: 

� Multiplication and division is handled using the OS functions Math.multiply() and 
Math.divide(). 

� String constants are handled using the OS constructor String.new(length) and the 
OS method String.appendChar(nextChar).  

� Constructors allocate space for constructed objects using the OS function 
Memory.alloc(size). 

 
 



Chapter 10: The Compiler II: Code Generation                                                                                     10     
              
9.3 Implementation 
 
We now turn to describe a software architecture for the compiler.  The proposed architecture 
builds upon the Syntax Analyzer described in chapter 9.  In fact, the current architecture is based 
on gradually evolving the Syntax Analyzer into a full-scale compiler.  The overall compiler can 
thus be constructed using five modules: 
 

� A main driver that organizes and invokes everything (class JackCompiler); 

� A tokenizer  (class JackTokenizer); 

� A symbol table (class SymbolTable); 

� An output module for generating VM commands (class VMWriter); 

� A recursive top-down compilation engine (class CompilationEngine). 

 
Class JackCompiler 
 
The program receives a name of a directory, and compiles all the Jack files in this directory.  For 
each xxx.jack file, it creates a xxx.vm file in the same directory.  The logic is as follows: 
 

For each xxx.jack file in the directory: 
 

1. Create a tokenizer from the xxx.jack file 
2. Create a VM-output stream into the xxx.vm file 
3. Compile(INPUT: tokenizer, OUTPUT: VM-output stream) 

 
Class JackTokenizer 
 
The API of the tokenizer is given in chapter 9. 
 
Class SymbolTable 
 
This class provides services for creating, populating, and using a symbol table.  Recall that each 
symbol has a scope from which it is visible in the source code. In the symbol table, each symbol 
is given a running number (index) within the scope, where the index starts at 0 and is reset when 
starting a new scope. The following kinds of identifiers appear in the symbol table: 
 

Static:            Scope: class. 
Field:             Scope: class. 
Argument:     Scope: subroutine (method/function/constructor). 
Var:               Scope: subroutine (method/function/constructor). 

 
When compiling code, any identifier not found in the symbol table may be assumed to be a 
subroutine name or a class name.  Since the Jack language syntax rules suffice for distinguishing 
between these two possibilities, and since no “linking” needs to be done by the compiler, these 
identifiers do not have to be kept in the symbol table.  Here is the class API: 

 



Chapter 10: The Compiler II: Code Generation                                                                                     11     
              
� SymbolTable():  create a new empty symbol table. 

� void startSubroutine(String name):  start the scope of a new method or function 
or constructor (ends the scope of the previous subroutine). 

� String getSubroutineName():  returns the name of the current method, function, or 
constructor. 

� Void define(String name, String type, int kind):  defines a new identifier of 
a given name, type, and kind and assigns it a number.   kind must be one of the class 
constants KIND_STATIC, KIND_FIELD, KIND_ARG, KIND_VAR.  type should be either a 
primitive Jack type (boolean, int, char) or a class name. 

� int varCount(int kind): returns the number of variables of the given kind that are 
already defined in the current scope. 

� int kindOf(String name):  returns the kind of the named identifier.  The kind should 
be one of the class constants KIND_STATIC, KIND_FIELD, KIND_arg, KIND_VAR, or the 
class constant KIND_NONE, if the identifier is unknown in the current scope. 

� String typeOf(String name):  returns the type of the named identifier. 

� int indexOf(String name):  returns the number assigned to the named identifier. 
 
Comment: you will probably need to use two separate hash tables to implement the symbol 
table: one for the class-scope and another one for the subroutine-scope.  When a new subroutine 
is started, the subroutine-scope table should be cleared. 
 
class VMWriter 
 
This class writes VM commands into a file.   The API is as follows: 
 
� VMWriter(Writer w): A constructor that accepts a Writer object (output stream) into 

which VM commands will be written. 
 

� close():finishes the writing and closes the file. 
 

� Code writing methods: The remainder of this class is a series of code writing methods, one 
for each command in the target VM language.  Each method is designed to write the 
necessary VM command to the output.  

 
class CompilationEngine 
 
This class does the compilation itself.  It reads its input from a JackTokenizer and writes its 
output into a VMWriter.  It is organized as a series of compilexxx() methods, where xxx is a 
syntactic element of the Jack language.  The contract between these methods is that each 
compilexxx() method should read the syntactic construct xxx from the input, advance() the 
tokenizer exactly beyond xxx, and emit to the output VM code effecting the semantics of xxx.  
Thus compilexxx() may only be called if indeed xxx is the next syntactic element of the input.  
If xxx is a part of an expression and thus has a value, then the emitted code should compute this 
value and leave it at the top of the VM stack.   

 



Chapter 10: The Compiler II: Code Generation                                                                                     12     
              

 

The API of this module is identical to the API of the Syntax Analyzer’s compilation engine, 
specified in chapter 9.  Changing this compilation engine into one that emits VM code instead of 
XML code should be rather straightforward.  You may use the hints in the section 9.5. 

 
9.4 Perspective 
 
The simplicity of the Jack language permitted us to side-step several compilation issues.  In 
particular we did not handle virtual methods which are required in object-oriented languages that 
support inheritance.   This section is work in progress. 
 
9.5 Build it 
 
We suggest to start by first building the symbol table and using it to extend the Syntax Analyzer 
created in project 9.  In particular, whenever an identifier is encountered in the program, output 
the following information as well: 
 

• Identifier category (var, argument, static, field, class, subroutine). 

• Whether the identifier is presently being defined (e.g. the identifier stands for a variable 
declared in a “var” statement) or rather being used (e.g. the identifier stands for a 
variable in an expression).   

• If the identifier represents a variable of one of the four kinds, the running number 
assigned to the identifier by the symbol table. 

At this point you can make the switch to a real compiler, and start generating real VM code.  This 
can be done incrementally. 


	The reader can verify that  when applied to the tree in Fig 10-2, Algorithm 10-3 will yield the desired  stack-machine code.

