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Appendix A: Hardware Description Language (HDL)1 
 

A Hardware Description Language (HDL) is a formalism used to define and test chips: objects 
whose interfaces consist of input and output pins that carry Boolean signals, and whose bodies 
are composed of inter-connected collections of other, lower level, chips.  This appendix describes 
a typical HDL, as understood by the hardware simulator supplied with the book.  Chapter 1 
provides essential background to this appendix, and thus it is recommended to read it first. 
 
How to use this appendix: This is a technical document, and thus there is no need to read it from 
beginning to end.  Instead, it is recommended to focus on selected sections, as needed. Also, 
HDL is an intuitive and self-explanatory language, and the best way to learn it is to play with 
some HDL programs in the hardware simulator.  Therefore, we recommend to start 
experimenting with HDL programs as soon as you can, beginning with the following example. 
 
A.1 Example 
 
The following HDL program specifies a chip that accepts two 4-bit numbers and outputs whether 
they are equal or not. The chip logic uses Xor gates to compare the 4 bit-pairs, and then outputs 
true if all the comparisons are “equal”. 
 

/** Returns 1 if the two inputs are equal and 0 otherwise. */ 
CHIP EQ4 { 
   IN  a[4],b[4];   // 4-bit busses 
   OUT out;         // will be true iff a=b 
   PARTS:    
   Xor(a=a[0],b=b[0],out=c0); 
   Xor(a=a[1],b=b[1],out=c1); 
   Xor(a=a[2],b=b[2],out=c2); 
   Xor(a=a[3],b=b[3],out=c3); 
   Or(a=c0,b=c1,out=c01); 
   Or(a=c01,b=c2,out=c012); 
   Or(a=c012,b=c3,out=neq); 
   Not(in=neq,out=out); 
} 

 
Each internal part Xxx invoked by an HDL program is in itself a stand-alone chip defined in a 
separate Xxx.hdl program like the one listed above.  Thus the chip designer who wrote the 
above program assumed the existence of three other chips: Xor.hdl, Or.hdl, and Not.hdl.  
Importantly, though, the chip designer need not worry about how these chips are implemented.  
The internal parts are always viewed as black boxes, allowing the designer to focus only on their 
proper arrangement in the current chip architecture. 
 
Thanks to this modularity, all HDL programs, including those that describe high-level chips, can 
be kept short and readable.  For example, a complex chip like RAM32K can be implemented as a 
RAM32K.hdl program, consisting of only a few internal parts, each described in a single HDL 

                                                 
1 From The Digital Core, by Nisan & Schocken, forthcoming in 2003, www.idc.ac.il/csd 
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line.  When fully evaluated by the hardware simulator all the way down the recursive chip 
hierarchy, these internal parts are expanded into many thousands of inter-connected elementary 
logic gates.  Yet the chip designer need not be concerned by this complexity, and can focus 
instead only on the chip’s topmost architecture. 
 
Comment: the EQ4.hdl program is not supplied.  If you want to experiment with it, you have to 
create the EQ4.hdl text file and load it into the hardware simulator. 
 
A.2 Conventions 
 
File Extension: Each chip is defined in a separate text file.  A chip whose name is Xxx is defined 
in file Xxx.hdl. 
 
Chip structure: A chip definition consists of a header and a body.  The header provides a full 
specification of the chip interface, while the body describes the chip implementation.  The header 
acts as the chip’s API, or public documentation.  The body should not interest people who use the 
chip as internal part in other chip definitions. 
 
Identifiers: Names of chips and pins of chips may be any sequence of letters and digits not 
starting with a digit.  HDL is not case sensitive.  By convention, chip and pin names usually start 
with a capital letter and a lower-case letter, respectively. 
 
White space: Space characters, newline characters, and comments are ignored. 
 
Comments: The following three comment formats are supported:  
 

//  comment to end of line 
/*  comment until closing */ 
/** API documentation comment */ 

 
A.3 Loading Chips into the Simulator 
 
HDL programs (chip descriptions) are loaded into the simulator environment in three different 
ways.  First, the user can open an HDL file directly, via a "load file" menu or GUI icon.  Second, 
a test script (discussed below) can issue a "load Xxx" command, instructing the simulator to 
load the respective Xxx.hdl file.  Finally, whenever an HDL program is loaded and parsed (e.g. 
EQ4.hdl), every chip name Yyy listed in it as internal part (e.g. Xor) causes the simulator to 
load the respective Yyy.hdl file (e.g. Xor.hdl), all the way down the recursive chip hierarchy.  
In every one of these cases, the simulator goes through the following logic: 
 

if <chip name>.hdl exists in the current directory 
     then load it (and all its descendents) into the simulator 
else 
     if <chip name>.hdl exists in the simulator’s BuiltIn chips directory 
         then load it (and all its descendents) into the simulator 
     else 
         issue an error message. 
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The simulator’s BuiltIn directory contains executable versions of all the chips specified in the 
book, except for the highest-level chips (CPU, Memory, and Computer).  Hence, one may 
construct and test a chip before all, or even any, of its lower-level chip parts have been 
implemented: the simulator will automatically invoke their built-in versions instead. 
Alternatively, if a lower-level chip Xxx has been implemented by the user in HDL, the user can 
still force the simulator to use its built-in version instead, by simply moving the Xxx.hdl file 
out from the current directory.   Finally, in some cases the user (rather than the simulator) may 
want to load a built-in chip directly, e.g. for experimentation.  To do so, navigate to the BuiltIn 
directory – a standard part of the hardware simulator environment -- and select the desired chip 
from there. 
 
A.4 Chip Header (Interface) 
 
The header of an HDL program has the following format: 
 

CHIP <chip name> { 
   IN <input pin name>, <input pin name>, ... ; 
   OUT <output pin name>, <output pin name>, ... ; 
   // Here Comes the Body 
} 

� CHIP declaration: The CHIP keyword is followed by the chip name. The rest of the HDL 
code appears between curly brackets. 

� Input pins: The IN keyword is followed by a comma-separated list of the names of the chip 
input pins.  The list is terminated with a semi-colon. 

� Output pins: The OUT keyword is followed by a comma-separated list of the names of the 
chip output pins.  The list is terminated with a semi-colon. 

Input and output pins are assumed by default to be single-bit wide.  A multi-bit bus can be 
declared using the notation <pin name>[w]. This specifies that the pin is a bus of width w.  The 
individual bits in a bus are indexed 0 ... w-1.   
 
A.5 Chip Body (Implementation) 

Parts 
A chip typically consists of several lower-level chips, connected to each other and to the chip 
input/output pins in a certain pattern that forms the chip logic.  This logic, designed by the HDL  
programmer to deliver the chip’s desired functionality, is described in the chip body using the 
following format: 
  

PARTS: 
<internal chip part>; 
<internal chip part>; 
. . .  
<internal chip part>; 
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Each one of these statements describes one internal chip with its connections, using the following 
syntax: 

<chip name>(<connection>, ... , <connection>); 
 
Throughout this document, the presently defined chip is called chip, and the lower level chips 
listed in the PARTS section are called parts.  

Pins and Connections 
The syntax of a connection specification is: 
 

<part's pin name> = <chip's pin name> 
 

Connections describe how a part is connected to the overall chip architecture: each connection 
describes how one pin of the part is connected to another pin in the chip definition.   In the 
simplest case, one may connect the part’s pin to an input or output pin of the chip.  In other cases, 
we have to connect the part’s pin to another pin of another part.  This is done by defining an 
internal pin (a chip level object), and connecting the pins of the two parts to it.  Thus, the 
definition of an internal pin is essentially the same as creating and naming a wire that connects an 
output pin of one chip to the input pin of another. 
 
Internal pins:  In order to connect an output pin of Part1 to the input pins of other parts, the 
HDL programmer can create and use an internal pin, say v, as follows: 
 

Part1(...,out=v);     // out of Part1 is piped into v 
Part2(in=v,...);      // v is piped into in of Part2 
Part3(a=v, b=v,...);  // v is piped into a and b of Part 3 

  
An internal pin (like v above) acts like a pipe that receives a value from one part and feeds it into 
one or more other parts.  Internal pins are created as needed when they are specified the first time 
in the HDL program, and require no other definition.  Each internal pin has fan-in 1 and 
unlimited fan-out.  In other words, an internal pin can be fed from a single source only, yet it can 
feed (through multiple connections) many other parts. In the above example, the internal pin v 
simultaneously feeds both Part2 (through in) and Part3 (though a and b). 
 
Input pins: Each input pin of a part may be fed by one of the following sources: 

• An input pin of the chip; 

• An internal pin;   

• One of the constants true and false, represented by 1 and 0, respectively. 
 
Each input pin has fan-in 1, meaning that it can be fed by one source only.  Thus 
Part(a=v,b=v,...) is a valid statement (assuming that both a and b are input pins of the 
part), whereas Part(a=v,a=u,...) is not. 
 
Output pins: Each output pin of a part may feed one of the following destinations: 

• An output pin of the chip; 

• An internal pin. 
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Buses 
Each pin used in a connection -- whether input, output, or internal -- may be a multi-bit bus.  The 
widths (number of bits) of input and output pins are defined in the chip header.  The widths of 
internal pins are inferred automatically, as explained below.  
 
In order to connect individual elements of a multi-bit bus input or output pin, the pin name (say 
x) may be sub-scripted using the syntax x[n..m]=v, where v is an internal pin. This means that 
only the bits indexed n to m (inclusive) of pin x are connected to the specified internal pin.  An 
internal pin (like v above) may not be subscripted, and its width is deduced implicitly from the 
width of the bus pin to which it is connected the first time it is mentioned in the HDL program. 
 
The constants true and false may also be used as buses, in which case the required width is 
deduced implicitly from the context of the connection. 
 
Example: Consider the following chip:  
 

CHIP Foo { 
   IN in[8]       // 8-bit input 
   OUT out[8]     // 8-bit output 
   // Foo’s body (irrelevant to the example) 
} 

 
Suppose now that Foo is invoked by another chip using the part statement: 
 

Foo(in[2..4]=v, in[6..7]=true, out[0..3]=x, out[2..6]=y) 
 
Where v is a previously declared 3-bit internal pin, bound to some values.  In that case, the 
connections in[2..4]=v and in[6..7]=true will bind the in bus of the Foo chip to the 
following values: 
 

Bit:  0 1 2 3 4 5 6 7 in: 
Contents: ? ? v[0] v[1] v[2] ? 1 1 

 
Now, let us assume that following its processing, the Foo chip returns the following set of values 
(an arbitrary assumption): 
 

Bit:  0 1 2 3 4 5 6 7 out: 
Contents: 1 1 0 1 0 0 1 1 

 
In that case, the connections out[0..3]=x  and out[2..6]=y will yield: 
 

Bit:  0 1 2 3X: 
Contents: 1 1 0 1

 
 

Bit:  0 1 2 3 4y: 
Contents: 0 1 0 0 1
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A.6 Built-In Chips 
 
The hardware simulator features a library of built-in chips that can be used as internal parts by 
higher-level chips. Built-in chips are implemented in code written in a programming language 
like Java, operating behind an HDL interface. Thus, a built-in chip has a standard HDL header 
(interface), but its HDL body (implementation) declares it as built-in.  For example, consider the 
following built-in version of the EQ4 chip described in section A.1:  
 

 /** Returns 1 if the two inputs are equal and 0 otherwise. */ 
 CHIP EQ4 { 
    IN  a[4],b[4];   // 4-bit busses 
    OUT out;         // will be true iff a=b 
    BUILTIN EQ4; 
} 

 
The identifier following the keyword BUILTIN is the name of the program unit that delivers the 
chip functionality.  The present version of the hardware simulator is built in Java, and all the 
built-in chips are implemented as compiled Java classes.  Hence, the HDL body of a built-in chip 
has the following format: 
 

BUILTIN <Java class name>; 
 
Where <Java class name> is the name of the Java class that models the intended chip behavior.  
Normally, this class will have the same name as that of the chip, e.g. EQ4.class  (unlike the rest 
of HDL, the class name is case sensitive). All the built-in chips (compiled Java class files) are 
stored in a directory called BuiltIn, which is a standard part of the simulator's environment. 
 
Built-in chips provide three special services: 
 
� Foundation: Some chips are the atoms from which all other chips are built.  In particular, 

we use the Nand gate and the D-Flip-Flop gate as the building blocks of all 
combinational and sequential chips, respectively. Thus the hardware simulator features 
built-in versions of Nand.hdl and DFF.hdl. 

� Certification & Efficiency: In order to modularize and localize the hardware construction 
projects, almost all the chips that participate in the design of the computer platform are 
available in built-in versions.  Thus one may construct a chip before constructing its 
lower-level parts – the simulator will automatically invoke their built-in versions.  
Additionally, it makes sense to use built-in versions even for chips that were already 
constructed, since the former are typically much faster and more space-efficient than the 
latter (simulation-wise). For example, consider a RAM4K chip. When you write and debug 
the file RAM4K.hdl, the simulator creates a memory-resident data structure consisting of 
thousands of lower-level chips, all the way down to the D-Flip-Flop gates at the bottom of 
the recursive chip hierarchy.  Although this top-down drilling must be done when you 
develop and test the RAM4K chip, there is no need to repeat it each time the chip is used as 
part in higher-level chips, e.g. RAM16K.  Best practice tip: To boost performance and 
minimize errors, always use the supplied built-in versions of chips whenever they are 
available.   
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� Visualization:  Some high-level chips, e.g. memory units, are easier to understand and 

debug if their operation can be visually inspected.  To facilitate this service, the simulator 
features a set of built-in "GUI-empowered" chips.  These Java chip implementations have 
GUI side effects, which are displayed whenever the chip is loaded into the simulator or 
invoked as a lower-level part by the loaded chip.  Except for these visual side effects, 
GUI-empowered chips behave, and can be used, just like any other chip.   Section A.8 
contains more details about GUI-empowered chips. 

 
A.7 Sequential Chips 
 
Computer chips are either combinational or sequential (also called clocked).  The operation of 
combinational chips is instantaneous.  Thus, when a user or a test script changes the values of one 
or more of the input pins of a combinational chip and presses the “eval” button, the simulator 
responds by immediately setting the chip output pins to a new set of values, as computed by the 
chip logic. In contrast, the operation of sequential chips is clock-regulated. In particular, when the 
inputs of a sequential chip change, the outputs of the chip may change to new values only at the 
beginning of the next time unit, as effected by the simulated clock. 
 
In fact, sequential chips may change their output values when the time changes even if none of 
their inputs changed.  In contrast, combinational chips never change their values just because of 
the progression of time.   

The Clock 
The simulator models the progression of time by a built-in device, called clock, which is 
controlled by “Tick” and “Tack” operations.  These operations generate a series of time units, 
each consisting of two phases: a “Tick” ends the first phase of a time unit and starts its second 
phase, and a “Tack” moves to the first phase of the next time unit. The real time that elapsed 
during this period is irrelevant for simulation purposes, since we have full control over the clock.  
In other words, either the simulator’s user or a test script can issue Ticks and Tacks at will, 
causing the clock to generates a series of simulated time units.  
 
The two-phased time units regulate the operations of all the sequential chip parts in the simulated 
chip architecture, as follows.  During the first phase of the time unit, the inputs of each sequential 
chip in the architecture are read and affect the chip’s internal state, according to the chip logic.  
During the second phase of the time unit, the outputs of the chip are set to the new values.  
Hence, if we look at a sequential chip “from the outside,” we see that its output pins stabilize to 
new values only at “Tacks” – between consecutive time units.   
 
There are two ways to control the simulated clock: manual and script-based.  First, the simulator's 
GUI features a clock-shaped button called “TickTack”. A “Tick” (one click) ends the first phase 
of the clock cycle, and a “Tack” (subsequent click) ends the second phase of the cycle, bringing 
on the first phase of the next cycle, and so on. Alternatively, one can run the clock from a test 
script, e.g. using the command repeat n {tick; tack; output;}.  This script command 
instructs the simulator to advance the clock n time units, and to print some values in the process.  
Test scripts are described in detail in appendix B. 
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Clocked Chips and Pins 
 
A built-in chip can declare its dependence on the clock explicitly, using the statement:  
 

CLOCKED <pin>, <pin>, ..., <pin>; 
 

Where each pin is either an input pin or an output pin, as declared in the chip header.  The 
inclusion of an input pin x in the CLOCKED list instructs the simulator that changes to x should 
not effect any of the chip’s output pins until the beginning of the next time unit. The inclusion of 
an output pin x in the CLOCKED list instructs the simulator that changes in any of the chip’s input 
pins should not effect x until the beginning of the next time unit.  Note that it is quite possible 
that only some of the input or output pins of a chip are declared as clocked.  In that case, changes 
in the non-clocked input pins may affect the non-clocked output pins in a combinational manner, 
i.e. independent of the clock.  In fact, it is also possible to have the CLOCKED keyword with an 
empty list of pins, signifying that even though the chip may change its internal state depending 
on the clock, changes to any of its input pins may cause immediate changes to any of its output 
pins. 

The “clocked” property of chips: A primitive (built-in) chip is said to be explicitly clocked 
when it includes a CLOCKED statement.  A composite (not built-in) chip is said to be implicitly 
clocked when one or more of its lower-level chip parts are clocked.  This property is checked 
recursively, all the way down the chip hierarchy, where a built-in chip may be explicitly clocked.  
If such a chip is found, it renders every chip that depends on it (up the hierarchy) implicitly 
clocked.   It follows that nothing in the HDL code of a composite chips suggest that they may be 
clocked – the user can know that only from the chip documentation. 

Example: The built-in D-Flip-Flop chip is defined as follows:  
 

/** Clocked D-Flip-Flop. out[t+1]=in[t] */ 
CHIP DFF { 
  IN in; 
  OUT out; 
  BUILTIN DFF; // implemented by a DFF.class Java program. 
  CLOCKED in,out;   
} 

 
Every sequential chip in our computer architecture depends in one way or another on (typically 
numerous) DFF chips.  For example, the RAM64 chip is made up from eight RAM8 chips.  Each 
one of these chips is made from eight lower-level Register chips.  Each one of these registers is 
made from many Bit chips.  And each one of these chips contains a DFF part.  It follows that 
Bit, Register, RAM8, RAM64 (and all the memory units above them) are also clocked, or 
sequential, chips.  It’s important to remember though that a sequential chip may well contain 
combinational logic which is not effected by the clock.  For example, the structure of every 
sequential RAM chip includes combinational circuits that manage its addressing logic (section 
3.2). 
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Feedback Loops  
We say that the use of a chip entails a feedback loop when the output of one of its parts affects 
the input of the same part, either directly or through some (possibly long) path of dependencies.  
For example, consider the following two examples of direct feedback dependencies: 

Not(in=loop1, out=loop1)  // invalid 

DFF(in=loop2, out=loop2)  // valid 
 
In both examples, an internal pin (loop1 and loop2) attempts to feed the chip’s input from its 
output, creating a cycle.  The difference between the two examples is that Not is a combinational 
chip whereas DFF is sequential, or clocked.  Thus, loop1 creates an instantaneous and 
uncontrolled dependency, whereas the dependency that loop2 creates is delayed by the clock 
dependency of the underlying pins (as defined in the DFF logic).  In general, we have the 
following:   
 
Valid/invalid Feedback loops: When the simulator loads a chip, it checks recursively if its 
various connections entail feedback loops.  For each loop, the simulator checks if the loop goes 
through a clocked pin, somewhere along the loop.  If so, the loop is allowed. Otherwise, the 
simulator stops processing and issues an error message.  This is done in order to avoid the 
uncontrolled “data races” that occur in combinational feedback loops from outputs to inputs.  The 
only way to fix a chip with a combinational feedback loop is to redesign its logic.  
 
A.8 Visualizing Chip Operations 
 
As was mentioned in section A.6, “GUI-empowered” chips are built-in chips that feature visual 
side effects, designed to illustrate its internal operation using graphics and animation.  Like any 
other chip, GUI-empowered chips come to play in two possible ways.  The user can either load 
them directly into the simulator, or, more typically, they are invoked by the simulator whenever 
they are used as parts in more complex chips.  In both cases, the simulator displays their 
graphical images on the screen.  Using this image, which is actually an executable GUI 
component, the user may inspect the current contents of the chip as well as change its internal 
state, when this operation is supported by the chip implementation.  The present version of the 
simulator features the following set of GUI-empowered chips: 

ALU: Displays the ALU’s inputs and output as well as the presently computed function. 

Registers (Aregister -- address register, Dregister -- data register, and PC -- program 
counter): Displays the contents of the registers and allows to modify them. 

Memory chips (RAM and ROM): Displays a scrollable array-like image that shows the contents 
of all the memory locations (addressable registers).  If the contents of a memory location 
change during the simulation, the respective entry in the GUI changes as well.  The GUI also 
allows the user to change values in any memory location. In the case of the ROM chip (which 
serves as the instruction memory of our computer platform), the GUI also features a button 
that enables the user to load into it a machine language program from an external text file. 
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I/O chips (Screen and Keyboard): If the HDL code of a loaded chip invokes the built-in 
Screen chip, the hardware simulator displays a 256 rows by 512 columns window that 
simulates the physical screen.  When the RAM-resident memory-map of the screen changes 
during the simulation, the respective pixels in the screen GUI change as well, via a “refresh 
logic” embedded in the simulator implementation.  If the HDL code of a loaded chip invokes 
the built-in Keyboard chip, the hardware simulator displays a clickable keyboard icon.  
Clicking this button connects the real keyboard of your computer to the simulated chip.  From 
this point on, every key pressed on the real keyboard is intercepted by the simulated chip.  If 
the user moves the mouse focus to another area in the simulator GUI, the control of the 
keyboard is restored to the real computer. 

 
Example: To illustrate how the simulator deals with GUI-empowered chips, consider the 
following (meaningless) HDL program, which uses the built-in chips RAM16K, Screen, and 
Keyboard: 
 

// Demo of GUI-empowered chips. 
// The logic of this chip is meaningless, and is used merely to  
// force the simulator to display some GUI-empowered chips. 
CHIP GUIDemo { 
  IN in[16],load, address[15]; 
  OUT out[16]; 
  PARTS: 
  RAM16K(in=in,load=load,address=address[0..13],out=a); 
  Screen(in=in,load=load,address=address[0..12],out=b); 
  Keyboard(out=c); 
} 

 
The chip logic feeds the input value (in) into two destinations: register number address in the 
RAM16K chip and register number address in the Screen chip (the programmer can figure out 
the widths of these address pins from the API's of these chips).  In addition, the chip logic routes 
the value of the currently pressed keyboard key to the internal pin c.  These meaningless 
operations are designed for one purpose only: illustrating how the simulator deals with built-in 
GUI-empowered chips.  The actual impact is shown in Figure A.1. 
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FIGURE A.1: GUI-empowered Chips. Since the loaded HDL program uses GUI-empowered 
chips as internal parts (step 1), the simulator draws their respective GUI images (step 2).  When 
the user changes the values of the chip input pins (step 3), the simulator reflects these changes in 
the respective GUIs (step 4).  The tiny horizontal line (circled) is the visual side effect of storing 
–1 in memory location 5012.  Explanation: since the 16-bit 2's complement binary code of –1 is 
1111111111111111, the computer draws 16 pixels starting at the 320th column of row 156, which 
happen to be the screen coordinates associated with address 5012 of the memory map (the exact 
memory-to-screen mapping is given in Section 4.2.3). 

 

 



Appendix A: HDL                                                                                                                                                12    
              

 

A.9 List of Built-In Chips 
 

Name Specified  
in chapter 

Has 
GUI Comment 

Nand  1  Foundation of all combinational chips 
Not  1   
And  1   
Or  1   
Xor 1   
Mux  1   
Dmux  1   
Not16 1   
And16 1   
Or16 1   
Mux16 1   
Or8way 1   
Mux4way16 1   
Mux8way16 1   
Dmux4way 1   
Dmux8way 1   
HalfAdder 2   
FullAdder 2   
Add16 2   
ALU 2   
Inc16 2   
DFF 3  Foundation for all sequential chips 
Bit 3   
Register 3   
ARegister 3  Identical operation to Register, but with GUI 
DRegister 3  Identical operation to Register, but with GUI 
RAM8 3   
RAM64 3   
RAM512 3   
RAM4K 3   
RAM16K 3   
PC 3  Program counter 
ROM32K 4  GUI allows loading a program from a text file 
Screen 4  GUI connects to a window on the actual screen 
Keyboard 4  GUI connects to the actual keyboard  

 
TABLE A.2: All the built-in chips supplied with the Hardware Simulator. A built-in chip 
has an HDL interface but is implemented as an executable Java class.  We expect future 
versions of the simulator to permit users to write additional built-in chip implementations, 
but the present version supports the fixed set listed above.  

 
 

We expect future versions of the simulator to permit users to write additional built-in chip 
implementations, but the present version supports only the fixed set listed in Table A-2. 


	Parts
	Pins and Connections
	Buses
	The Clock
	Clocked Chips and Pins
	Feedback Loops

