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A Trust and Reputation Model for Decision Making

in Supply Chain Management

Yasaman Haghpanah and Marie desJardins

University of Maryland, Baltimore County

{yasamanhj, mariedj}@umbc.ed

Abstract. Trust is a critical factor for a successful cooperative relationship in

real-world environments. Many such environments, including Supply ChainMan-

agement (SCM), can be modeled using multi-agent systems. One shortcoming of

current SCMmodels is that their trust models are ad hoc and do not have a strong

theoretical basis. As a result, they are unable to model subtleties in agent be-

havior that can be used to build a more accurate trust model. In this work, we

first propose a trust-based decision framework for SCM that considers multiple

trust factors, reported observations (reputation), and direct observations. Then,

we present a probabilistic approach for modeling reported observations, the Cog-

nitive Reputation model (CoRe), which will be incorporated into our SCM trust

model. We will use the proposed SCM trust model to simulate and study supply

chain market behavior in the future.

1 Introduction

Almost all societies need measures of trust in order for the individuals—agents or

humans—within them to establish successful relationships with their partners. In sup-

ply chain management, establishing trust improves the chances of a successful supply

chain relationship, and increases the overall benefit to the agents. Supply chain net-

works have often been modeled in the research literature with multi-agent systems in

which the agents need to cooperate with one or more partners. This collaboration be-

comes more effective when agents have the ability to choose their partners based on the

trustworthiness of the candidates. One major shortcoming in previous research on trust

in SCM is that the trust-based decision making is not grounded in a formal trust model.

In modeling trust, there are many sources of information; two of the most important

ones are direct observations and reported observations. Direct observations are beliefs

that have been gained by direct interactions with agents; reported observations are ac-

quired by asking other agents. In general, direct observations are more reliable but can

be expensive and time-consuming to obtain, while reported observations are cheaper

and more readily available but often less reliable.

Reported observations or reputation plays an important role in human societies.

Since humans (and agents) have a limited amount of time and energy to experience the

world directly, learning about other individuals by asking trustworthy third parties can

help them to be more successful in their goals and interactions. When people are asked

for their opinions about others (or for others’ specific behavior), they reply based on

their perceptions of those behaviors. Some people are realistic and honest, truthfully
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providing the requested information. Others tend to hide the defects of others because

they gain personal or economic rewards or incentives by doing so. Still others may

change the results with pessimism: for example, when someone is reporting the behav-

ior of a direct competitor and wishes to discredit them. We can also see the results of

this changing information in market applications such as Supply Chain Management

(SCM), in which organizations (e.g., producers) give incentives to other organizations

(e.g., customers) for recommending them to a third party. In this case, customers may

tend to hide some of the real flaws and defects of their collaborators in order to obtain

the promised incentive. On the other hand, organizations may underreport the work or

service of a competitor. Therefore, agents need to recognize the reporting behavior of

the reporting agent, in order to obtain more accurate information about other agents.

There are several factors or criteria at play in decision making in a supply chain.

For example, in a simple buyer/seller relationship, product delivery, product quality,

and product price can all be important criteria in the decision making of a buyer in

trading an item with that seller. Buyers may have different trust levels in each of these

factors, e.g., they may trust the product price given by the seller, but may not trust that

seller’s delivery time for that product. As we can see, trust is subjective, and can be

defined not only for one factor but for multiple context-dependent factors. This is true

also in the real world and when the supply chain is more sophisticated. A trust model

that incorporates multiple trust factors for supply chain management, and is grounded

in decision theory and probabilistic modeling, is missing from the literature.

In this paper, we first propose a trust model for SCM, that incorporates trust fac-

tors specific to SCM and a reputation mechanism. Using decision and game theory, our

model builds cooperative agents for supply chain management applications with uncer-

tainties and dynamics. Our ultimate goal is to have a complete and sound trust model

for SCM with a strong theoretical basis by combining direct and reported observations

with SCM-related trust factors in order to adapt it to real-world scenarios.

Second, we present the Cognitive Reputation (CoRe) model that will be incorpo-

rated into SCM in our future work. In the CoRe framework, agents first gather informa-

tion through reported observations, then model their trust level in reporters’ behaviors

by learning an agent’s characteristic behavior in reporting observations. Finally, a CoRe

agent interprets the given information, using it effectively even if the reporters are not

honest and their reports are based on faulty perceptions or on dishonest reporting. The

key benefit of CoRe’s interpretation is in its ability to use all of the reported informa-

tion, including biased or unfair reports. In our experimental results, we show that CoRe

identifies other agents’ behaviors faster and more accurately than other state-of-the-art

trust and reputation models, even when reported information is incorrect.

To complement our model and benefit from direct observations as well as reported

observations, we augment CoRe with one of the existing trust models from the multi-

agent literature. Harsanyi Agents Pursuing Trust in Integrity and Competence (HAP-

TIC) [12], a trust-based decision framework, is among the few existing models with a

strong theoretical basis: HAPTIC is grounded in game theory and probabilistic model-

ing. It has been proved that HAPTIC agents can learn other agents’ behaviors reliably

using direct observations. One shortcoming of HAPTIC is that it does not support re-

ported observations, which is one of the main contributions of our work.
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2 The HAPTIC Model

The HAPTIC model allows an agent to predict a partner’s actions and use these predic-

tions to decide whether or not to trust that partner. The key insight in HAPTIC is that

it separately models trust using two components of competence and integrity. Compe-

tence is modeled as the probability that a given agent will be able to execute an action in

a particular situation. Integrity is an agent’s attitude towards honoring its commitments,

and is affected by the perceived probability of future interactions. This distinction is

useful when a partner defects, because it permits the other agent to determine whether

the defection was due to the incompetence of an honest agent, or was the result of

cheating by a competent agent with low integrity. HAPTIC identifies a discrete set of

player types and maps each agent’s competence and integrity θ to a value from this set,
which is denoted byΘ. A HAPTIC agent observes the behavior of agents and estimates
their competence and integrity, then uses this learned information for decision making

in future interactions with that agent.

HAPTIC has been applied to a modified two-player Iterated Prisoner’s Dilemma

(IPD), in which the payoff matrix in each round is scaled using a random multiplier.

As a result, the payoffs differ from one round to the next. HAPTIC assumes that agents

know the current round’s multiplier before selecting their actions. With variable pay-

offs, a failure due to low competence can be distinguished from a failure that results

from low integrity. An honest but incompetent agent will defect randomly, irrespective

of the payoff. By contrast, a cheating agent will show a pattern in its defections that is

correlated with the expected payoffs. A HAPTIC agent computes expected payoffs (as

defined in the classic Prisoner’s Dilemma payoff matrix) and decides rationally whether

to cooperate or defect. The agents’ interactions are modeled using the Harsanyi trans-

formation from game theory, which converts a game with incomplete information to

a strategic game where players may have different types and are uncertain about their

opponent’s type.

3 Related Work

There has been a significant amount of work in the agent literature on models of trust

and reputation. Most of this work incorporates some aspect of direct observations [7].

Fullam and Barber [4] describe a trust decision strategy, including decision making

based on both who to trust and how trustworthy to be in reputation exchange networks.

Abdul-Rahman and Halles [1] build a system of trust degrees, weightings, and trust

operators to merge multiple recommendations. Their scheme assigns higher values to

more trustworthy agents, but is not rooted in probabilistic modeling. Sabater and Sierra

[11] propose a multi-faceted reputation model; however, their model, REGRET, is nei-

ther utility-based nor probabilistic. Instead, it uses ad hoc thresholds and weights.

Interpretation of information in reputation exchange has also been explored.Various

models have been developed to interpret the information in reputation reports, including

BRS [15] and TRAVOS [13]. Both approaches construct Bayesian models, using the

number of satisfactory and unsatisfactory interactions with the sellers as ratings, and

use outlier detection or relevance analysis to filter out unreliable ratings. A drawback of
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this approach is that a significant amount of information may be considered unreliable,

and therefore discarded or discounted. By contrast, CoRe can use biased reports by

modeling the specific biases of individual reporters.

BLADE [10] is also a Bayesian model reputation framework; in contrast to BRS and

TRAVOS, it does not discard unreliable ratings. Rather, it uses an approach for inter-

preting unfair ratings. However, this model relies heavily on reported observations, and

does not consider direct observations. Additionally, it is not decision-theoretic, and it

does not address how to improve payoffs in its interactions with other agents. Vogiatzis

et. al. [14] proposed a trust and reputation model that uses a probabilistic framework

and focuses on modeling agents whose behavior is not static with time. Their model

does not work well in the presence of biased reporters, whereas CoRe is focusing on in-

terpreting biased reputation reports, and therefore works well with different proportions

of dishonest and biased opinion providers in the population.

Supply chain markets have been simulated using multi-agent systems [3]. Several

approaches have been proposed for adding trust models specifically into SCM. Centento

proposed a reputationmechanism based on organizational concepts and personal norms,

with which agents define their preferences about potential interactions [2]. However,

this information is not sufficient for adaptively learning trust models, since agents do

not model their confidence in the information they receive from other agents. Lin et al.

build a trust model based on experienceswith suppliers [8]; trust is measured in terms of

product quality, order-cycle time, and price. They generalize these factors to the abstract

concepts of ability, integrity, and benevolence. This model does not use probabilistic

decision theory. Other SCM trust factors have been studied as well, although many

of them are focused on specific SCM industries. For example, Paterson et al. studied

twelve trust factors, identifying three factors that are critical to the horticulture supply

chain: shared values, point-of-sale information, and honesty [9].

4 The Approach for SCM

Our SCM model [5] consists of several layers in a supply network, where each layer

contains a number of agents. The layers can correspond to suppliers, producers, distrib-

utors, or retailers. Each agent in each level connects to some of the agents in neighbor-

ing levels to obtain or provide services, ultimately forming a team or “supply chain.”

In general, upstream agents provide services (or offers) to adjacent downstream agents,

and downstream agents ask for services or send requests-for-quotes (RFQs) to the ad-

jacent upstream agents, as shown in Figure 1 (a). In this model, we use variable payoffs

for different services in different environments. Agents in this framework use a utility

function to estimate the future reward that would result from working with a potential

partner. This utility function is calculated based on the amount of benefit minus the cost

of the transaction.

We consider personal criteria or preferences in the team formation process of SCM.

Each downstream agent has a list of criteria and preferences for the services or goods

that it needs. For example, one downstream agent might need a high-quality material

from an upstream agent, with three weighted criteria: quality 70%, price 20%, and time

10%. In this case, the most important factor for the agent is quality. Downstream agents
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(a) (b)

Fig. 1. (a) Example of the SCM model; C, R, D, and S stand for Customer, Retailer, Distributer,

and Supplier respectively (b) Trust components and an example of a reputation bundle

send a RFQ to upstream agents. The downstream agents will select the closest match

of possible offers based on their criteria and preferences in such a way that the selected

offer maximizes the agent’s return utility.

In our model, trust by downstream agents in upstream agents is maximized when

the latter agents provide goods and services with low prices and good quality in a timely

manner. To model trust in this case, we define the two components of competence and

integrity for each factor (e.g., quality, price, and time), as shown in Figure 1 (b). The

competence for each of these factors is the probability that the upstream agent is able

to fulfill the commitment. Integrity is modeled as the degree to which the agent keeps

the same behavior in the long term and in variable-payoff situations. For example, the

upstream agent might offer the desired service for two rounds, but after gaining the

trust of the downstream agent, the agent might betray in the third round, if they have

low integrity for that service. Similarly, the trust of an upstream agent to a downstream

agent is affected by the number of times that the downstream agent has accepted the

upstream agent’s offer, the payoff level for each interaction, and the frequency of on-

time payments. Each of these factors is also modeled using competence and integrity.

The combination of these factors will yield an overall trust level of an upstream agent

to a downstream agent. An upstream agent can give different offers (on the same trade

element) to different downstream agents, since it might have different levels of trust in

them based on their competence and integrity. Also, it might accept an RFQ from one

downstream agent and not accept the same RFQ from another downstream agent (due

to a higher level of trustworthiness in the first agent).

We propose to add another individual-level trust mechanism—namely, reputation

exchange—into our model. However, agents might have different opinions and percep-

tions about the reputation of other agents, andmay not report their original observations.

To address this complexity, we propose to use CoRe, which is a reputation model that

allows for correction of the received reports, as described in the next section.
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(a) (b)

Fig. 2. (a) Basic scenario, (b) Report generation

5 The CoRe Model

In this section, we present a scenario that will be used to define the roles of agents in our

model. We then explain how agents learn the reporters’ report-generation mechanism,

and show how agents use that learned mechanism to correctly interpret later reports.

In Figure 2 (a), RepSeeker is new to a society of agents. Reporter has been in this

society for some time and has had direct interactions with several agents (referred to as

Reportee1,Reportee2,Reportee3, etc.). RepSeeker first starts to interact with Reportee1

directly, then asks Reporter for some information about Reportee1. By comparing its

own experience to the reported observations of Reportee1, RepSeeker learns Reporter’s

reporting behavior (i.e., honest, optimistic or pessimistic). At this point, RepSeeker

can interpret the acquired reports about other agents (e.g., Reportee2) and can use this

information to interact more effectively with those agents.

Our trust model incorporates two components: (1) direct observations and (2) re-

ported observations from other agents. As mentioned before, in real-world scenarios,

Reporter may not always provide correct information about a Reportee. Therefore, hav-

ing a model of Reporter and how it generates the reports is needed in order to correctly

interpret and use its reports. In order to simulate a more realistic system, we let Re-

porter apply its own perception of the game, change the real report, and then give this

new information to RepSeeker.

We denote the actual result of the series of games between Reporter and Reportee1

asR (Figure 2 (b)).R is a sequence of Cooperate and Defect actions by Reportee1 in the
series of games played with Reporter. CoRe models the interactions and reporting pro-

cess as follows: Reportee1 makes its decisions based on its competence and integrity, θ,
and the payoff multiplier m of each game, as modeled in HAPTIC [12]. When Reporter

decides to submitR to RepSeeker, it will first changeR toR′ based on its Reporter type,

ω, and then deliverR′ to RepSeeker. For example, if ω is 30% optimistic, then Reporter
will change the Defects (inR) to Cooperates (in R′) with probability 0.3 (Figure 2 (b)).

5.1 Types of Reporters

In this paper, we define three types of Reporters: honest, optimistic, and pessimistic.

An honest Reporter always reports truthful information that corresponds directly to
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the experience that it has had in the past with other agents. A pessimistic Reporter

underestimates other agents’ behavior, and an optimistic Reporter overestimates other

agents’ behavior. The level of optimism (or pessimism) is modeled by an ordered pair,

ω = (ωopt, ωpess), which may be based on the Reporter’s innate characteristic or could

depend on Reporter’s incentives for honesty/dishonesty. Specifically, with probability

ωopt, Reporter will change some of the Defect actions of the reportee into Cooperates in

its reports. Similarly, ωpess defines the probability of changing Cooperate actions into

Defects. For optimistic reporters, ωopt represents the degree of optimism (probability

of a D → C “flip”), and (ωpess) is close to zero. Similarly, for pessimistic reporters,

ωpess is the degree of pessimism, and ωopt is close to zero.

A rational agent will be more likely to defect on high-multiplier games and to co-

operate on low-multiplier ones. Therefore, an optimistic reporter will preferentially

change Defects to Cooperates in rounds associated with high multipliers, conveying

a (mistaken) impression that the reportee has been cooperative even in rounds with high

multipliers, and a pessimistic agent will be more likely to change Cooperates to De-

fects in low-multiplier rounds. In our experiments, the RepSeeker first determines the

number of “flips” it will make—based on the learned Reporter type—then applies these

changes starting with the highest-multiplier rounds (for optimistic) or lowest-multiplier

rounds (for pessimistic).

In the real world, a Reporter could have various perceptions of the results of games

it plays with different agents, based on its relationship with those players, e.g., as a

collaborator or competitor. Here, however, we assume that Reporter has the same per-

ception of different plays, so its reporting behavior will be the same for various agents

(i.e., the results will be changed by Reporter in the same pattern for all Reportees). Re-

porters are also assumed to report the round’s multiplier m honestly, whether they are

honest, optimistic, or pessimistic. We intend to relax both of these assumptions in our

future work (Section 7).

5.2 Learn Reporter’s Type

RepSeeker can recognize Reporter’s type if it has itself played directly with Reportee1,

and has then received a report about Reportee1 from Reporter. Consider our basic sce-

nario, where RepSeeker and Reporter have played separately with Reportee1. Now, the

RepSeeker asks Reporter for some information about Reportee1. We denote the actual

results of the play between Reporter and Reportee1 by R, and between RepSeeker and
Reportee1 byD. Reporter changes the true results,R, based on its type, ω, to R′ for re-

porting to RepSeeker. As in the HAPTIC approach for learning player types, we apply

the Harsanyi transformation to learn the Reporter types. We first identify a set of dis-

crete reporter types, Ω.1 Each type ωi ∈ Ω is a pair of values (ωi opt, ωi pess). Honest

agents are modeled by ωh = (0, 0). The probability of a type hypothesis ωi is denoted

by P (ωi). RepSeeker has also learned a probability distribution over the possible player
types for Reportee1, denoted by θj . The probability of each player type is denoted by
P (θj). To find the probability of each type of Reporter, given the results R

′ andD, i.e.,

1 Using a discrete set of possible agent types is simpler and less computationally expensive than

modeling agent types with a continuous variable. We experimented with a continuous version,

and the results are very close to what we get with discrete sets.
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P (ωi|D
′, R) for each Reporter type, ωi, we use Bayesian Model Averaging [6] over all

possible Reportee1 types, θj :

P (ωi|R
′, D) =

∑

θj∈Θ

P (ωi|R
′, D, θj)× P (θj |R

′, D). (1)

The first term, P (ωi|R
′, D, θj), is the probability of a Reporter’s type, given Repor-

tee1’s type θj ,R
′, andD. Since ωi is conditionally independent of the results of RepSeeker

and Reportee1’s play (D) given θj and R
′, this term can be simplified to P (ωi|R

′, θj).
The second term, P (θj |R

′, D), is the probability of a Reportee1’s type, given R′ and

D. In this case,D, the direct observation, is more reliable thanR′, the reported observa-

tion. Therefore, CoRe conditions θj only onD, and this term is simplified as P (θj |D).
We can now rewrite Equation 1 as:

P (ωi|R
′, D) =

∑

θj∈Θ

P (ωi|R
′, θj)× P (θj |D). (2)

P (θj |D) is RepSeeker’s probability distribution of Reportee1’s type, learned using the
HAPTIC model [12]. Using Bayes’s rule, we can rewrite the first term of Equation 2 as:

P (ωi|R
′, θj) =

P (R′, θj |ωi)× P (ωi)

P (R′, θj)
. (3)

We assume a uniform prior on the Reporter’s type, so P (ωi) is just the reciprocal of the
number of defined types for Reporter (P (ωi) =

1
|Ω| ). Also, P (R′, θj) is a normalizing

factor, so we only need to compute P (R′, θj |ωi). Using the definition of conditional
probability, this term can be rewritten as:

P (R′, θj |ωi) = P (R′|θj , ωi)× P (θj |ωi). (4)

We know that θj and ωi are independent, so the second term in Equation 4 is P (θj).
Assuming a uniform distribution over the player types, P (θj) = 1

|Θ| . The expected

value of P (R′|θj , ωi) is defined by a weighted sum over all possible values of R:

E(P (R′|θj , ωi)) =
∑

R

P (R′|R, θj , ωi)× P (R|θj , ωi). (5)

Since computing this full expectation is computationally very expensive, one can in-

stead approximate P (R′|θj , ωi) using the maximum likelihood value for R:

E(P (R′|θj , ωi)) ∼= max
R

P (R′|R, θj , ωi). (6)

Denoting the most likely R as R∗, the term to be maximized on the right-hand side of

Equation 6 can be written and expanded as:

P (R′|R∗, θj , ωi) = P (R′
C , R

′
D|R∗, θj , ωi), (7)

where R′
C are all of the cooperates and R

′
D are all of the defects in the report. Since

each round played is assumed to be independent of the others, the probabilities of the

observed defects and cooperates in the report are independent of each other, yielding:

P (R′
C , R

′
D|R∗, θj , ωi) =P (R′

C |R
∗, θj , ωi)× P (R′

D|R∗, θj , ωi). (8)

Each term in Equation 8 represents a series of i.i.d. (independent and identically dis-

tributed) observations from a Bernoulli distribution, so a binomial distribution can be
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used to compute the overall probability of each reporter type, based on the number of

successes and failures in R′
C or R

′
D. A success in this context is a “flip”: that is, when

Reporter changes a Cooperate to a Defect, or vice versa. A success in R′
C is therefore

defined as observing a Cooperate in R′, in a round in which a Defect was expected

in R∗. Conversely, a failure in R′
C is a case where there was a Cooperate in R

∗. The

same explanation will be applied to Success and Failure in R′
D (i.e., C → D flips are

successes in this context). The expected success rate for R′
C is the number of D → C

flips that would be expected from a reporter with type ωi:

E(DC) = expected number of (R∗ = D & R′ = C);

E(CC) = expected number of (R∗ = C & R′ = C);

Psuccess−R′

C
=

E(DC)

E(DC) + E(CC)
=

P (R∗ = D|θj)× ωi opt

P (R∗ = D|θj)× ωi opt + P (R∗ = C|θj)× (1− ωi pess)
,

(9)

and the expected success rate forR′
D will be computed similarly. We calculate the prob-

ability of the reported result R′, given ωi, θj , and R
∗, using two binomial likelihoods.

The first is the probability of observing a certain number of optimistic flips (i.e., the

case where the intention R∗ of Reportee1 is Defect and the report R′ is Cooperate):

P [R′ = C|R∗, θj , ωi] = Binomial(DC, TotalR′

C
, Psuccess−R′

C
); (10)

The second binomial likelihood is the probability of seeing the observed number of

pessimistic flips in the report (when the intention R∗ is Cooperate, but is reported as a

Defect in R′). This probability is calculated analogously to Equation 10. We multiply

these two binomial likelihoods to compute P (R′|R∗, θj , ωi)in Equation 8. By averag-
ing over all possible Reportee1 types, RepSeeker can calculate the probability of each

type of Reporter (Equation 1). Note that as the number of rounds increases, the statistics

become more accurate, leading to better results, as will be shown in Section 6.

5.3 Report Interpretation

In the previous subsection, RepSeeker learned Reporter’s type. In this section, the max-

imum likelihood of the possible Reporter types will be used to interpret the reported re-

sults for new Reportees, since Bayesian model averaging is computationally expensive.

We illustrate how agents use this interpretation to learn the player types (competence

and integrity) of other agents with whom they have not previously interacted.

After learning Reporter’s type, RepSeeker asks Reporter for information about Re-

portee2, and uses its learned knowledge of Reporter’s type to interpret the reported

results (which are denoted byR′
2). RepSeeker replays the interpreted report using HAP-

TIC, providing an initial model of Reportee2’s player type before beginning direct in-

teractions with Reportee2. As a result, RepSeeker will have more information about

Reportee2 when direct interaction begins than in the first scenario, and this knowledge

will increase its overall payoffs in the game.

Without loss of generality, we explain how interpretation works when Reporter’s

type is optimistic. Recall that ωopt represents the probability of optimistic flips in the
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report and ωpess represents the probability of pessimistic flips in the report. An “In-

terpret” function estimates the total number of Cooperates, countR2C
in the actual re-

sults R2, using countR′

2C
, as the total number of reported Cooperates in the sequence

R′
2, rounds as the number of rounds in reported play, and ωopt, as shown in Equation

11. The difference between countR2C
and countR′

2C
is the number of Cooperates that

should be changed back to Defects to produce more accurate results. The reports is then

re-interpreted by changing (countR′

2C
- countR2C

) Cooperates in R′
2, and saving the

result asR∗
2. Again, RepSeeker will assume that optimistic reporters have preferentially

changed high-multiplier rounds.

Now we play back the new resultsR∗
2. RepSeeker generates an action as it would do

if it were actually playing with Reportee2. Reportee2’s action is denoted by R∗
2. Based

on this “most likely” action, HAPTIC can be used to update P [θj ] for each possible
player type. This distribution will continue to be updated in the online learning process

between RepSeeker and Reportee2, when they start their direct interactions.

count cooperations in R′
2 = count coops in R2 + ωopt × count coops in R2

countR′

2C
= countR2C

+ ωopt × (rounds− countR2C
)

countR2C
=

countR′

2C
− (ωopt × rounds)

1− ωopt

(11)

6 Experiments

In this section, we present two sets of experimental results for CoRe framework. In the

first set, we use HAPTIC as a baseline, since HAPTIC has been shown to outperform

many common strategies in the IPD literature.We also show how uninterpreted reported

observations perform, and use it as another baseline (CoRe-NoInterp) in order to show

the importance of interpretation of information. A third baseline shows the upper limit

of the benefits of reported observations when the reporter is honest (CoRe-Honest). The

primary performance metric is the payoff as a function of the number of interactions

with an opponent.We also measure the accuracy of the learned Reporter and Reportee1

player types, by looking at the probability assigned to the true player types.

In the second set of experiments, a TRAVOS RepSeeker competes with a CoRe

RepSeeker in finding Reportee1’s behavior type. We measure their mean error in find-

ing Reportee1’s type and the cumulative game payoffs. In these experiments, CoRe’s

interpretation component uses a discrete set of Reporter types (ωopt, ωpess). Five types

have been considered: (0.3, 0) and (0.7, 0) as optimistic types; (0, 0.3) and (0, 0.7) as

pessimistic types; and (0, 0) as an honest reporter.

6.1 HAPTIC Vs. CoRe

In these experiments, we test CoRe in two phases (Figure 3). First, P1 (the RepSeeker)

plays 50 rounds and P2 (the Reporter) plays 30 rounds with P3 (the Reportee1). Then,
P1 asks P2 about P3. P2 converts the actual results R to R′ based on its type ω, and
passes the report R′ to Player1. Finally, P1 learns the P2’s type, ω, given R′ and R
using equations in Section 5.2, and uses the learned ω to interpret new reports from
P2 about another agent (P4). In the second step, P2 plays 100 rounds with P4 (results

10



Fig. 3. Step1 and Step2 of basic scenario

Fig. 4. Learned type (competence and integrity) probabilities in Exp1

= R2). Then, P1 asks P2 about P4. P2 converts the actual results R2 to R′
2 based on

its type ω, and passes the results to P1. P1 interprets R′
2 based on the learned ω, and

generates R∗
2.
2 P1 plays back R∗

2 and learns P4’s (C, I). Now, P1 plays for 20 rounds
with P4, starting with its learned values for P4’s (C, I). Using the above scenario, we
ran two experiments: Exp1 and Exp2; their settings are listed in Table 1. All results are

averaged over 100 runs.

Table 1. Experimental settings for Exp1 and Exp2

P1 P2 P3 P4 ωi

Exp1 (0.7,0.9) (1, 0.8) (1, 0.3) (0.8,0.3) Pess 0.3

Exp2 (0.9,0.9) random random random random

Figure 4 displays the averaged results of learning Player4’s type (competence and

integrity) over 100 rounds in Exp1. The possible hypotheses for Player4 are shown by

small cross signs; the correct hypothesis is (0.8, 0.35), which is the closest modeled

hypothesis to the true value of Player4 (which is (0.8,0.3), as shown in Table 1). The

circles’ sizes represent the learned probability of each hypothesis for Player4. The top

graph from left shows the results for unmodified HAPTIC. In this case, Player1 uses

only direct observations. After 20 rounds of play, the hypothesis probabilities are almost

equally spread among three values : (0.7, 0.35), (0.8, 0.35), and (0.9, 0.35). Player1 has

not yet correctly identified Player4’s true type. The CoRe-NoInterp graph shows that

using the non-interpreted reports still gives us a moderate probability of finding the

correct hypothesis. The results for CoRe are shown in the top graph from right, where it

correctly recognizes the true behavior of Player4, and the highest probability is assigned

2 Here, R∗

2 is P1’s estimation of what actually happened between P2 and P4, since this informa-

tion is not available to P1 as it was in the honest case.
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(a) (b) (c)

Fig. 5. For Exp1: (a) The probability associated with Player2’s true reported type (Opt 0.7) (b)

P [θ] growth over rounds, and (c) Cumulative payoffs

to (0.8, 0.35). If Player2 were an honest reporter instead of being 30% pessimistic in

Exp1, Player1 would have been able to perfectly identify Player4’s actual (C,I) with a

high probability, as seen in Figure 4.

Figure 5 (a) shows the results of learning Player2’s ω in Exp1. This graph clearly
shows that Player1 was able to identify Player2’s type with a high probability (close to

0.98). This result verifies the correctness of our analysis. Another interesting view of

the learning process is how the learned probabilities change over a series of rounds for

Player4’s true type. As seen in Figure 5 (b), CoRe starts with a high probability of the

true type (near 0.45) from the beginning, while HAPTIC’s probability of the true type

remains at a much lower level. The main reason for this behavior is that CoRe has some

data from the report it has received from Player2, so it has an initial estimate of Player4’s

type. The corresponding payoffs resulting from the four approaches (each for 20 rounds

and averaged over 100 runs) are shown in Figure 5 (c). As expected, CoRe with an

honest reporter has the highest payoff; CoRe with a 30% pessimistic reporter ranks

second, yielding payoffs very close to that of the honest reporter. HAPTIC is in the third

place; CoRe without any interpretation is in the fourth place, behaving very similarly to

HAPTIC. Since the reporter in this experiment alters Cooperate in the results with only

a 30% probability, using reports without interpretations can perform almost as well as

HAPTIC (the direct-observation-only approach), but is hindered slightly by its belief in

the incorrect reports. Note that the jump in round 11 of the graph is due to the multiplier

change of that round to a high-valued one.

Table 2. Payoffs over 100 runs for Exp2

HAPTIC No-Interp CoRe Honest

Avg-per-run payoff 36.68 41.18 42.67 42.82

Mean-per-round payoff 1.83 2.06 2.13 2.14

To verify the effectiveness of CoRe over different player and reporter types, we

performed a second experiment, Exp2, in which we ran a randomized scenario 100

times. In each run, Player1’s type is (0.9, 0.9), and the other players’ and the reporters’

types are selected randomly. The cumulative and mean payoffs for this experiment are

reported in Table 2. CoRe achieves 14% improvement over the HAPTIC baseline. A

t-test confirms that the mean-per-round of HAPTIC and CoRe are different; with 95%

confidence, the difference is between 0.07 and 0.53.
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(a) (b) (c)

Fig. 6. TRAVOS vs. CoRe: (a) Mean error in identifying correct Reportee’s behavior, (b) Cumu-

lative, and (c) Mean payoffs

6.2 TRAVOS Vs. CoRe

In this subsection, we compare CoRe with TRAVOS [13]. TRAVOS uses probabilistic

modeling based on a beta distribution and models both direct and reported observations

. It has been shown that TRAVOS outperforms many other trust and reputation models,

including probabilistic models like BRS [15]. TRAVOS models the behavior of each

agent by a fulfillment factor, which is equivalent to “competence” in CoRe. However,

TRAVOS does not model the integrity of an agent. To compare TRAVOS to CoRe,

therefore, we provide the integrity of an agent as an input to TRAVOS, whereas CoRe

is searching in a two-dimensional space for competence and integrity. Note that this

gives an advantage to TRAVOS.

We set up another test framework for IPD, Exp3, where a RepSeeker is gaining in-

formation from different Reporters to learn the behavior of a Reportee with a randomly

selected HAPTIC type. In this experiment, RepSeeker and Reporter’s competences and

integrities are fixed at (0.8, 0.9), and the results are averaged over 100 runs. In Exp3,

RepSeeker plays with a selected Reportee for 10 rounds. Ten Reporters play for 10

rounds with the same Reportee; the population of these Reporters consists of honest

and biased reporters (pessimistic 0.3 and 0.7, and optimistic 0.3 and 0.7). Each Re-

porter changes the outcome of its play based on its type behavior and then reports the

changed results to RepSeeker, which updates its belief about that Reportee.

Despite the fact that we have provided TRAVOS with the correct integrity, as we

can see in Figure 6 (a), CoRe outperforms TRAVOS in identifying the Reportee’s type

(competence). We show this by the mean error, which is the difference between the

identified type and the correct type averaged over 100 runs. This value for TRAVOS has

converged to 0.057 and for CoRe to 0.037 (a 35% improvement over TRAVOS). The

reason for this discrepancy is that TRAVOS heavily discounts the biased reports, while

CoRe interprets and uses that data to learn more about the behavior of the Reportee.

As a result of correctly identifying the behavior of the Reporter, the average payoff per

round is increased from 1.84 to 2.01 (a 9% improvement), as shown in Figures 6 (b)

and 6 (c). The results passed the t-test, which verifies the mean values of HAPTIC and

CoRe are different; with 95% confidence, the mean payoff difference is between 0.15

and 0.18.
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7 Conclusions and Future Work

In this paper, we presented a proposed trust model to be incorporated into a realis-

tic SCM agent-based model. This proposed work is currently under development. We

claim that our model will help to increase (or maximize) the overall profit of the sup-

ply chain over time. We also presented a model that can interpret indirect observations

provided by reporters in a multi-agent system, based on their learned behavior in previ-

ous reputation exchanges. Our experimental results show that a CoRe agent recognizes

other agents’ behavior more rapidly and accurately than a HAPTIC or TRAVOS agent,

and as a result improves its overall payoff. In future, we will investigate how different

trust factors affect the system in terms of performance and stability in realistic markets

under different conditions.We plan to merge multidimensional trust with CoRe in order

to use both direct and reported observations for SCM. We will also improve CoRe by

exploring context-dependent reporter types that can cause agents to behave differently

in different situations (e.g., when reporting to a competitor versus a collaborator).
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Abstract. In the market of global logistics, agents need to decide upon whether

to accept jobs sequentially offered to them. These jobs, which need to be ex-

ecuted in the near future, have different payments and time constraints. In the

offering process we study here, an agent (with limited capacity) needs to make an

immediate acceptance decision with little knowledge about future jobs. The goal

of the agent is to maximize its profit in such a dynamic environment. We there-

fore study the online decision problem of acceptance of unit length jobs with time

constraints. We consider the problem as a repeated take-it-or-leave-it game which

involves online scheduling; we design strategies for when to accept an offered job.

Specifically, we present theoretically optimal strategies for a fundamental case,

and develop heuristic strategies in combination with an evolutionary algorithm

for more general and complex cases. We show experimentally that in the funda-

mental case the performance of our heuristic solutions is almost the same as that

of the theoretical solutions. In various settings, we compare the results achieved

by our online solutions to those generated by the optimal offline solutions; the

average-case performance ratios are about 1.1. We also analyze the impact of

the ratio between the number of slots and the number of jobs on the difficulty

of decisions and the performance of our solutions. Although we use a relatively

simple scheduling problem to illustrate our approach, we show that it generalizes

to online acceptance of jobs in more complex scheduling scenarios as well.

1 Introduction

Consider a market of global logistics in which a large number of jobs are dispatched

day and night to many logistics companies. During a period of time, each company gets

sequential offers of jobs from the market. Given its limited capacity and time resources,

usually, a company can only accept part of the offers. Because of the competition in

the market, we suppose the selection decisions are immediate and irrevocable. The

company’s target is to maximize its profit through selecting (and executing) jobs. This

is an online decision problem, as the company makes the decision on each job offer

without prior knowledge of future jobs. To solve it, we make an agent-based model for

simulating the decision process of the company (an agent) in the market and design

acceptance strategies (algorithms) for the agent’s optimal decisions.

We first introduce our problem briefly. When job offers arrive one at a time, each

job is characterized by a time window for scheduling and a payment. The agent needs to

make a take-it-or-leave-it decision immediately. The agent must schedule and execute
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every accepted job within its time window so as to get its payment. The utility (profit)

that the agent would get is the sum of the payments of all accepted jobs. In our analysis,

we assume all jobs have the same processing time, i.e. one time slot, and the agent

can execute only one job in each time slot. In this work, we focus on the selection

decisions, so we make the scheduling part relatively easy, in which all jobs are assumed

to be future activities and no execution happens during the whole offering process.

Our problem may be categorized as a variant of online admission control for in-

terval scheduling [9, 7, 6]. In such problems, the interval between a job’s release time

and deadline equals the time window in our problem. The authors emphasize the im-

mediate notification of whether to schedule each job at its arrival, which is similar to

our selection decision. The decisions in our problem, however, are made at the jobs’

offering time, which is not their release time, i.e. the earliest available time for execu-

tion. Hence, an accepted job can be rescheduled (within its time window) during the

whole offering process. This point distinguishes our problem from almost all online in-

terval scheduling/selection problems in previous work, in which decisions are made at

the jobs’ release time. Because no job will be executed during the decisions of the jobs

that followed, the scheduling part of our problem is more flexible, which increases the

complexity of selection. The reason is that with such flexibility in scheduling, the agent

has higher expectations of future jobs, but these can also cause him to reject current

jobs with good payments that he would otherwise accept.

The agent makes the decision on each job offer in two steps, i) whether this job can

be feasibly scheduled together with all previously accepted jobs, and ii) when one or

more feasible schedules exist, whether this job is worthy of taking. The focus of this

work is on the acceptance strategies rather than the scheduling algorithms. We analyze

theoretical solutions in a fundamental case and develop heuristic solutions in general

and complex cases. We also present a general idea of using a theoretical analysis of

a simple case to determine which are the most important parameters, and then using

a machine learning method to find the optimal values of the parameters also in more

complex settings. The approach presented in this work can be used to support online

decisions in e-commerce applications related to logistics.

Typically, an online solution is evaluated by comparison with an optimal offline

solution that knows the entire sequence of jobs in advance. In our experimental analysis,

we use an average-case performance ratio, which is defined as the ratio between the

average result generated by the optimal offline solution and the average result achieved

by the online solution on a large number of instances. Our (theoretical and heuristic)

solutions generate performance ratios around 1.1 in experiments with various settings.

In the fundamental case, the performance of the heuristics is very close to that of the

theoretically optimal online solutions. We also analyze the impact of the ratio between

the number of slots and the number of jobs. The decision is most difficult when there

are two to three times as many jobs as time slots.

The rest of this paper is organized as follows. We first present the problem model

in Section 2 and then propose the solutions and acceptance strategies in Section 3.

Following the descriptions, in Section 4, the performance of the strategies is evaluated

and compared through experiments. Next, we give a brief summary of related work.

Finally, conclusion and future work are given.
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2 Problem Model

Suppose an agent is offered a finite set N of n ∈ N independent jobs sequentially. Each

job j ∈ N is characterized by a time window [xj , yj ] (xj , yj ∈ N) and a payment

zj ∈ [0, 1], which are independent of each other. Notice that the approach proposed by

us works for any given range of payments, but we use the normalized values for ease

of presentation. Every job’s processing time is one time slot; it must be executed within

the given time window. The agent has a set T of t ∈ N time slots available for all jobs

in N . We let L denote the maximum length of all time windows where 1 ≤ L ≤ t, so

all jobs’ time windows are in T . Given any subset of jobs A ⊆ N , we let S(A, T ) = 1
denote the existence of one (or more) feasible schedule such that every job j ∈ A can

be uniquely paired with a slot i ∈ T where xj ≤ i ≤ yj . When a new job j is offered,

the agent needs to judge whether the set of jobs Aj∪{j} can be feasibly scheduled first,

where Aj denotes the set of jobs previously accepted before job j and S(Aj , T ) = 1.

If S(Aj ∪ {j}, T ) = 1, then the agent needs to make a decision to accept it or not,

otherwise the agent can only reject it. Given the set of all accepted jobs A ⊆ N (with

S(A, T ) = 1), the utility U that the agent would get equals the sum of the payments of

all accepted jobs, i.e. U =
∑

j∈A zj .

3 Acceptance Strategies

A solution to the problem above is composed of two parts: a scheduling algorithm and

an acceptance strategy. For each new job j ∈ N , we consider the scheduling problem

of Aj ∪ {j} as a variant of the Bipartite Matching Problem. All slots T are on one side

and all jobs in Aj ∪ {j} are on the other side; each job only connects to the slots of

its time window. A feasible schedule is an one-sided matching in which every job is

matched with one slot connected to it. We use the Ford-Fulkerson algorithm [5] to find

this kind of matching between jobs in Aj ∪ {j} and slots in T . If S(Aj ∪ {j}) = 1, the

agent then decides whether to take job j by using acceptance strategies.

We first present two theoretical strategies for a fundamental case in which all jobs

have unit time windows; we analyze how to calculate the optimal values of strategy

parameters, which maximize the agent’s expected utility. Next, we study a general case

in which the maximum length of time windows is larger than one: it is very difficult to

give analytic solutions for such a setting. Therefore, we develop heuristic strategies for

the general case. At last, we give extensions of our strategies for a more complex case

in which the precise number of jobs is unknown.

Notice that in the rest of this paper, when we discuss the acceptance decision on

a new job j, this is always based on the premise that job j can be feasibly scheduled

together with previously accepted jobs in Aj .

3.1 Theoretical Strategies for Unit Time Windows

In this section, we study a fundamental case of the problem, in which every job j’s

time window is a single slot denoted by xj . For theoretical analysis, we assume that

the positions of all unit time windows are uniformly distributed on all slots T . We also

assume that all jobs’ payments are uniformly distributed on the range of [0, 1].
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Single Threshold Perhaps the simplest acceptance strategy is setting a single threshold

for the payments. If the new job j’s payment is no less than a threshold α ∈ [0, 1], the

agent will accept it. We let Dj = 1 and Dj = 0 denote the agent’s acceptance and

rejection of job j respectively. The single threshold strategy is given by

D(j) =

{
1 if zj ≥ α and S(Aj ∪ {j}) = 1
0 otherwise

(1)

We call this the Theoretical Single Threshold strategy (T1T ). Next, we present how to

determine the theoretically optimal value of α, given the uniform distributions.

We let Ei denote the initially expected utility that the agent would get on each slot

i ∈ T ; the expected utility on all t slots is E = t·Ei. Because t is a constant, the optimal

value of α maximizing Ei also maximizes E. As we know, only if at least one job j
with (xj = i) ∧ (zj ≥ α) exists, slot i will finally be occupied by a job; the expected

payment of the slot (and the job) is (1 + α)/2. The probability of the existence of such

job j equals 1 minus the probability that no job has a time window including slot i and

a payment of at least α. Reasoning in this way, Ei is given by

Ei =P (∃ j, xj = i ∧ zj ≥ α) ·

(
1 + α

2

)

= {1− [P (j ∈ N, xj �= i ∨ zj < α)]
n
} ·

(
1 + α

2

)

=

[
1−

(
1−

1− α

t

)n]
·

(
1 + α

2

)
(2)

We can get the optimal value of α by solving formula dEi

dα
= 1

2 − 1
2

(
1− 1−α

t

)n
−

n
2t (1 + α)

(
1− 1−α

t

)n−1
= 0. In our experiments presented later, we solve it in an

approximate way by searching α in [0, 1] with step size of 0.001.

n Thresholds During the whole offering process, the agents may need to make a total

of (at most) n decisions: one for each job. In this section, we present a strategy with n
thresholds instead of a single threshold for all jobs. If the new job j’s payment is no less

than the jth threshold αj ∈ [0, 1], the agent will accept it. The strategy is given by

D(j) =

{
1 if zj ≥ αj and S(Aj ∪ {j}) = 1
0 otherwise

(3)

We call this the Theoretical n Thresholds strategy (TnT ). Notice that the jth threshold

αj is independent of the jth job exactly offered.

We let Ei
j denote the expected utility that the agent would get on an available slot i

when the jth job is offered. There are three possibilities. If job j’s slot is slot i and its

payment is no less than αj , which happens with probability 1/t · (1 − αj), the agent

will accept it and get an expected payment (1 + αj)/2. Otherwise, if job j’s payment

is less than αj (happening with probability 1/t · αj) or its slot is not slot i (happening
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Table 1. Simple example

(xj , zj) (2, 0.12) (1, 0.83) (3, 0.29) (3, 0.41) (2, 0.23)

T1T N(< 0.295) Y(> 0.295) N(< 0.295) Y(> 0.295) N(< 0.295) U = 1.24

TnT N(< 0.435) Y(> 0.368) Y(> 0.282) N(occupied) Y(> 0) U = 1.35

Offline N Y N Y Y U = 1.47

with probability (t − 1)/t), the agent will reject it in the expectation of slot i for the

next job j + 1. Therefore, the expected utility Ei
j is given by

Ei
j =

1

t
· (1− αj) ·

1 + αj

2
+

1

t
· αj · E

i
j+1 +

t− 1

t
· Ei

j+1 (4)

We calculate the optimal value of αj by solving formula
dEi

j

dαj
=

Ei
j+1−αj

t
= 0 and

get αj = Ei
j+1. So if job j’s payment is no less than the agent’s expectation of job j+1,

given any available slot, the agent will accept it. Otherwise, the agent should leave the

slot to job j + 1 to get a possibly higher payment. As the expectation of job n + 1 is

zero, αn = 0. Replacing Ei
j and Ei

j+1 with αj−1 and αj in Eq. (4) respectively, we get

a recursive function f(j, n, t) to calculate threshold αj where 1 ≤ j ≤ n.

αj = f(j, n, t) =

{
1
2t · (f(j + 1, n, t))

2
+ t−1

t
· f(j + 1, n, t) + 1

2t j < n
0 j ≥ n

(5)

Given a fixed t and a sequence of n, we find that i) for each setting of t and n,

threshold αj is non-linear decreasing; ii) the smaller the n is, the faster the decreasing

is; iii) the smaller the n is, the lower the first threshold α1 is. These match with the

intuition that given the same number of slots, the expectations and thus the thresholds

decline faster when there are less (future) jobs.

Simple Example Given their definitions, strategy T1T is theoretically optimal (in ex-

pectation) among single-threshold strategies and strategy TnT is theoretically optimal

(in expectation) among n-threshold strategies in the fundamental case. We use a simple

example with five jobs and three slots to illustrate the differences. In Table 1, the pairs

of (xj , zj) in the first row represent the jobs in order of arrival (from left to right) where

1 ≤ j ≤ 5. In the subsequent rows, the decisions are followed by the thresholds for

both of the strategies. Although TnT loses some utility on the fourth job by accepting

the third one, the advantage of the adaptive thresholds of TnT shows in accepting the

last job in spite of its relatively low payment.

3.2 Heuristic Strategies

In the fundamental case above, once a job is accepted, its schedule is fixed. However,

the length of time windows is generally not unit. The flexibility of (re)scheduling ben-

efits applicability while increasing the difficulty of decisions. In this general case, even

if all distributions are sill uniform, it is hard to get the optimal values of thresholds in
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the above way, given the multiple possibilities of time windows and tremendous pos-

sibilities of (re)scheduling. Hence, it is necessary to consider approximate solutions.

In this section, we therefore develop heuristic strategies. The basic idea is using mul-

tiple parameters to define a decision function; their optimal values are learned by an

evolutionary algorithm (EA) [3] through a large number of training sessions.

Single Threshold The first heuristic strategy proposed by us is similar to the theoretical

single threshold strategy defined by Eq. (1) except that the optimal value of α ∈ [0, 1]
is determined by the EA. We call this the Heuristic Single Threshold strategy (H1T );

its performance is expected to be very close to that of T1T in the fundamental case.

n Thresholds Analogously, we also try a heuristic strategy of a different threshold

for each job similar to the theoretical one defined by Eq. (3), but let the EA search the

optimal combination of the values of those n thresholds αj ∈ [0, 1] where 1 ≤ j ≤ n.

We call this the Heuristic n Thresholds strategy (HnT ).

Three Thresholds This strategy divides the whole offering process into three stages by

using two parameters β1, β2 ∈ [0, 1] (β1 < β2) and sets a single threshold αk ∈ [0, 1]
(1 ≤ k ≤ 3) for jobs’ payments per stage. The agent will accept job j which is offered

in the kth stage only if its payment is no less than αk. The whole strategy is given by

D(j) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if j ≤ β1 · n, zj ≥ α1, and S(Aj ∪ {j}) = 1
1 if β1 · n < j ≤ β2 · n, zj ≥ α2, and S(Aj ∪ {j}) = 1
1 if j > β2 · n, zj ≥ α3, and S(Aj ∪ {j}) = 1
0 otherwise

(6)

We call this the Heuristic 3 Thresholds strategy (H3T ).

Linear Function To be more precise than the strategies with one or three thresholds

for payments, we propose heuristic strategies based on Piecewise Linear Functions

(PLF). As they have fewer parameters to be learned by the EA, it will be easier and

faster to find the optimal solutions than the n threshold strategies. The simplest one is

a linear function (PLF1). We set one parameter α as the slope of the linear function

which generates the thresholds for payments, and also set a parameter γ to determine

the constant. The agent will accept job j, if its payment is no less than the threshold

given by function p(j). The whole strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) = α · j + γ (7)

To find the global optimum of parameters α and γ for the PLF-based heuristics, we

use the EA to learn these within a reasonable range. Any threshold is only reasonable

within the range of [0, 1], so γ ∈ [0, 1]. Next, given that j ∈ N and zj ∈ [0, 1], we can

derive the range for α as follows.

0 ≤ α · j + γ ≤ 1 and γ ∈ [0, 1] =⇒ α · j ∈ [−1, 1] =⇒ α ∈ [−1, 1].
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Two-piece Piecewise Linear Function The second PLF-based strategy is a two-piece

piecewise linear function (PLF2). One parameter β ∈ [0, 1] cuts the whole offering

process into two stages. The slopes of these two pieces are α1, α2 ∈ [−1, 1] and the

constant of the first piece is γ ∈ [0, 1]. The agent will accept job j, if its payment is no

less than the threshold given by function p(j). The strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) =

{
α1 · j + γ if j ≤ β · n

α2 · j + (α1 − α2) · β · n+ γ if j > β · n
(8)

Three-piece Piecewise Linear Function The last one is a three-piece piecewise linear

function (PLF3). The whole process is divided into three stages by two parameters

β1, β2 ∈ [0, 1] where β1 < β2. The slopes of the three pieces are α1, α2, α3 ∈ [−1, 1].
The constant of the first piece is γ ∈ [0, 1]. Similarly, the thresholds are still given by

function p(j) and the strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) =

⎧
⎪⎪⎨
⎪⎪⎩

α1 · j + γ if j ≤ β1 · n
α2 · j + (α1 − α2) · β1 · n+ γ if β1 · n < j ≤ β2 · n

α3 · j + (α1 − α2) · β1 · n
+(α2 − α3) · β2 · n+ γ if j > β2 · n

(9)

3.3 Dealing with Uncertainty over the Number of Jobs

For the strategies presented above, the number of jobs n is required as an input. We

extend the model to a more general case where the total number of jobs is unknown

until the whole offering process finishes. Instead of the precise number of jobs n, the

agent is only given a range of [nmin, nmax] and a random distribution. In this work, we

assume that n is always uniformly distributed on the range.

For the theoretical strategy T1T , it is straightforward to use the expected value of

n to calculate the optimal value of the single threshold. This variant of T1T is still

theoretically optimal. However, we cannot immediately use the expected value of n in

the theoretical strategy TnT , because the expected value changes after job j > nmin.

We propose an approximate solution based on TnT . We let n̄ denote the initially

expected value of n, i.e. n̄ = (nmin + nmax)/2, which is consistent with the offering

process until job nmin is offered. The agent can calculate threshold αj by Eq. (5) with

input n̄ until j = nmin. After that j > nmin, the agent’s expectation of n is changed

by each new offer. We treat the distributions on the range of [j, nmax] approximately

as uniform distributions. We let n̂ denote the average of j and nmax, i.e. n̂ = (j +
nmax)/2. For jobs still coming after job nmin, the agent calculates αj based on n̂
instead of n̄. The formal definition is given by

D(j) =

{
1 if zj ≥ αj and S(Aj ∪ {j}) = 1
0 otherwise
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where

αj =

{
f(j, n̄, t) if j ≤ nmin

f(j, n̂, t) if nmin < j ≤ nmax

n̄ = ⌊
nmin + nmax

2
⌋, n̂ = ⌊

j + nmax

2
⌋ (10)

where f(j, n, t) is defined in Eq. (5).

To ensure that the heuristics define a threshold for any possible time slot, we replace

n by nmax in their definitions. By using a representative training set for the EA, the

found parameters then incorporate the distribution of n over the range of [nmin, nmax].

4 Experiments

In the previous sections, we presented two theoretical strategies: T1T , TnT and six

heuristic strategies: H1T , HnT , H3T , PLF1, PLF2 and PLF3. In order to evalu-

ate and compare their performance, we set up various experiments. The experimental

setting includes the number of jobs n, the number of slots t, the maximum length of

time windows L, the random distribution of the starts of time windows xj , the random

distribution of the length of time windows, and the random distribution of payments

zj where j ∈ N . The length of all jobs’ time windows is uniformly distributed on the

range of [1, L], unless the randomly generated start of the time window plus the maxi-

mum length exceeds the slots, i.e. xj + L− 1 > t. In this case, the range is reduced to

[1, t − xj + 1] and the length is uniformly distributed on this new range. The variable

settings will be specified when we present the experiments one by one below.

Typically, the performance of online solutions is evaluated by the comparison with

the problem’s optimal offline solutions. The offline version of our problem is a variant of

the Rectangular Assignment Problem, which can be solved by the Hungarian Algorithm

[12]. In this work, we use an implementation in MATLAB [4].

Figure 1 illustrates the experimental flow that we follow for each experiment in this

work. For instance, given an experimental setting, a theoretical strategy and a heuristic

strategy, the experiment will be performed in two stages. First, for the heuristic strat-

egy, use the EA to search the optimal combination of the values of its parameters, given

100 sets of n jobs. Each evaluation of the EA includes 100 simulations based on the

100 instances and the evaluation fitness is defined by the average of the 100 simulation

outcomes. As the result, we get an optimal combination of the parameters’ values. The

heuristic strategy and the optimal values of its parameters form a heuristic solution.

Repeat this part 10 times with different sets of 100 instances; 10 heuristic solutions

are achieved. Second, cross-evaluate the 10 heuristic solutions by simulations with new

2000 sets of n jobs. The theoretical strategy is also evaluated on the same 2000 in-

stances. To generate benchmarks, we also let the optimal offline solution work on the

same 2000 instances in this step.

In this way, for each setting, we get 2000 results of each theoretical strategy and

10 × 2000 results of every heuristic strategy. We define the performance of a theoreti-

cal strategy by the average of the 2000 results. For a heuristic, the average of the 2000
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Fig. 1. Experimental flow

results of each solution indicates the solution’s performance. We then define the perfor-

mance of a heuristic strategy by the average of the 10 averages of different solutions.

We also have 2000 results of the optimal offline solution. We define the ratio between

the average of the 2000 results achieved by the optimal offline solution and the perfor-

mance of an online strategy to be the average-case performance ratio, which is no less

than 1. The smaller the performance ratio is, the better the online solution performs.

A guideline for the EA’s population size is given as at least 17 + 3 · m1.5 where

m is the number of parameters [3]. The number of parameters of HnT is the same as

the number of jobs; the maximum n that we plan to experiment is 110. The numbers of

parameters of all the other heuristics are constants: the maximum one is 6. Therefore,

we set the population size as 3000 for HnT and set it as 1000 for other heuristics,

which are quite sufficient. We also set the EA’s evaluation limit as one million. These

settings guarantee that the convergence happens before the evaluation limit is reached,

so the (near) optimal results can be found.

4.1 Known Number of Jobs

First, we evaluate all strategies in two cases, unit time windows (L = 1) and general

time windows (L ≥ 1), under the environment that the number of jobs n is known. Both

cases use the same 7 settings (Table 2); all distributions are uniform distributions.

Unit Time Windows We first compare these strategies in the case of unit time win-

dows, in which strategies T1T and TnT are theoretically optimal. Besides them, the n
thresholds strategy is regarded as a more precise one. Therefore, we expect that strate-

gies TnT and HnT will perform best in this case.
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Table 2. Experimental settings I

t n t/n L

30 90, 75, 50, 35 0.33, 0.4, 0.6, 0.86 1

15, 50, 70 75 0.2, 0.67, 0.93 1

0.2 0.33 0.4 0.6 0.67 0.86 0.93
1.1
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Unit time window (L=1)

1: T1T

2: TnT

3: H1T

4: HnT

5: H3T

6: PLF1

7: PLF2

8: PLF3

0.2 0.33 0.4 0.6 0.67 0.86 0.93
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General time window (L>=1)

1: T1T

2: TnT

3: H1T

4: HnT

5: H3T

6: PLF1

7: PLF2

8: PLF3

Fig. 2. Strategy performance in settings I

Figure 2 (left) illustrates the experimental results. As we expected, the performance

of TnT is best in all settings. All PLF-based strategies perform very close to the bench-

marks of the online solutions set by TnT ; the three-piece one, i.e. PLF3, is the best

among them. As the three thresholds of H3T are constants, its performance is slightly

worse than that of the PLF-based strategies. Because of the n thresholds, the perfor-

mance of HnT was expected to be close to that of TnT , but it actually performs worse

than the PLF-based strategies and H3T here. One reason is that the size of training

sets, i.e. 100 instances per evaluation, is sufficient for other heuristics but is not big

enough to prevent over-fitting of the n parameters of HnT . Hence, the results are not

optimal in general. By increasing the size of training sets for HnT , the problem can be

resolved but the searching time will be significantly extended. The two single threshold

strategies perform worst but the largest performance ratio is still small. When the single

parameter of heuristic H1T is learned by the EA sufficiently, its performance is almost

the same as that of the theoretical strategy T1T .

In Figure 2 (left), we notice that the worst performance of all strategies is generated

at the point of t/n = 0.33; the performance at its right point t/n = 0.4 is also low. On

one side, when ratio t/n is very close to 1, as the distribution of positions is uniform,

each slot is expected to assign one job. The agent’s decisions are relatively easy without

considering future jobs too much. On the other side, when ratio t/n is very close to

0, each slot is expected to assign many jobs. Because of the uniform distribution of

payments, the decisions are also relatively easy: the agent only accepts jobs with very

high payments. When the decision problem is easier, the performance of all strategies

will be better. The middle area is the most difficult part, in which the agent is indeed in a

dilemma between the current job and the expectation/uncertainty of future jobs. Even in

this part, however, TnT and PLF3 can still generate performance ratios around 1.14.
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Table 3. Experimental settings II

t n t/n̄ L

30 [70, 110], [70, 80], [35, 65], [30, 40] 0.33, 0.4, 0.6, 0.86 5

15, 50, 60 [60, 90] 0.2, 0.67, 0.8 5

General Time Windows We extend to the case of general time windows. This in-

creases the flexibility of scheduling and also the difficulty of decisions. As our theoreti-

cal strategies are derived from the case of unit time windows, their threshold values are

no longer optimal in this general case. We still evaluate them here to show the change.

Figure 2 (right) illustrates the experimental results. We notice that when ratio t/n ≥
0.6, the performance ratios of all strategies are very close. The reason is, as we men-

tioned, the decision problem becomes easier in this part as the agent knows that there is

a little choice on every slot. On the side of t/n < 0.6, the performance of strategies is

clearly distinguished. Compared to T1T , we find that H1T performs much better, al-

though both of them use a single threshold. This indicates the advantage of the heuristic.

By using the EA, the strategy can learn to find the good solutions in various settings.

Compared to the results of unit time windows shown in Figure 2 (left), we find that the

performance ratios are decreased (so the results are better). We will study the impact

of the length of time windows on the performance of the heuristics in our future work.

As we expected, the theoretical strategies (derived from the case of unit time windows)

perform significantly worse than other heuristics here, because they cannot adapt to the

change of the length of time windows.

4.2 Unknown Number of Jobs

The previous experiments evaluated the strategies where the number of jobs n is known.

Next, we study the performance of our solutions where n is unknown but uniformly dis-

tributed over a given range . Table 3 shows a new set of 7 settings. The expectations of

n in all settings correspond to the values of n in Table 2. Although strategy HnT pro-

vides good solutions in previous experiments, we omit it in the following experiments

with consideration of the cost of experimental time.

Unit Time Windows We compare the strategies under settings with unit time windows

and unknown n. As we described, when we use the expectation of n instead of n for

T1T , the resulting α is still theoretically optimal. Although the approximate variant of

TnT is no longer strictly optimal in the theoretical analysis, we think the difference

between the approximate solution and the theoretical solution is very small.

Figure 3 (left) illustrates the experimental results. Apparently, TnT still performs

best as we expected. The value of the threshold of T1T is still theoretically optimal and

the performance of H1T is very close to that of T1T . Totally, the performance ratios of

all strategies in this case are very similar to those generated in the same settings (except

for the issue of n) shown in Figure 2 (left). Considering the increased complexity of the

problem, our solutions are robust under dynamic environments.
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Fig. 3. Strategy performance in settings II

General Time Windows Analogously, we also evaluate the strategies in the case of

general time windows and unknown n. Figure 3 (right) illustrates the experimental re-

sults, which are quite similar to those shown in Figure 2 (right), except for the results

where t/n = 0.2. This indicates the robust and adaptive properties of our approach of

defining key parameters and using the EA to learn their optimal values.

4.3 Non-uniform Distributions

Further, we evaluate the strategies in more general and complex settings where the

random distributions of the starts of time windows and the payments are non-uniform

distributions. We experiment various settings, e.g. all payments being exponentially

distributed or all starts being normally distributed around a slot close to one end of T ;

the resulting average-case performance ratios are between 1.09 to 1.22.

5 Related Work

Our problem relates to the online weighted bipartite matching problem, which is to

assign each of sequentially arriving requests to one of the servers given in advance to

maximize/minimize the total weight of the matching being produced [10, 11]. Instead of

accepting all requests, we focus on selecting a subset of requests to maximize the utility.

Thus, our problem is also similar to the multiple secretary problem, which is to select

the best m items out of the total n > m items in an online fashion [1]. Instead of the

ordinal criterion, Babaioff et al. present generalized secretary problems as a framework

for online auctions which defines the objective in terms of the numerical values of

items [2]. Different from these models, the selection problem studied by us involves a

special assignment, i.e. interval scheduling [8]; this combination is also known as an

online problem of admission control [9, 6]. Given that jobs arrive online, a scheduler

needs to choose whether to schedule each job to maximize the gain. An acceptance

notification can either be given when the job really starts or be given once it can be

feasibly scheduled. The latter is the same as the requirement of our problem, but our
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model permits all accepted jobs to be rescheduled. The scheduling part in our work

may be relatively easy, but the online acceptance decision becomes more complex. The

reason is that the decision on the current job may influence the decisions about all future

jobs in our problem rather than the next few jobs in the problem of interval scheduling.

The problem in [7] is more similar to our work, but the goal is different. They use

greedy algorithms, e.g. accepting any job which can be feasibly scheduled (with com-

mitment), and analyze competitive-ratios of these algorithms. We focus on the develop-

ment of acceptance strategies to maximize the profit rather than the server’s utilization

and provide exact solutions. Their algorithm called GREEDY can indeed be used for

our problem as well and is actually very similar to our single-threshold strategy with

a low value. Comparing the resulting average-case performance ratios, on average our

other threshold-algorithms perform much better than the GREEDY algorithm.

Summarizing, our model’s uniqueness lies in the combination of scheduling and

selection, which are influenced by each other during the whole decision process. Our

approach also provides a new direction of solving this kind of online decision problem

and we evaluate the performance of online solutions by the average-case performance

ratio instead of the worst-case competitive ratio.

6 Conclusion and Future Work

In this paper, we have introduced and studied an online decision problem which requires

an agent to make acceptance decisions on sequential job offers. The objective is to

maximize the utility, the sum of the payments of all accepted jobs. During the whole

offering process, the agent’s concern is the limited time resources and the expectation

of high-payment jobs in the future.

We have presented both theoretical and heuristic solutions. In a fundamental case

with unit time windows and uniform distributions, when it is necessary to use the sim-

plest one, our theoretical single threshold strategy T1T can provide the optimal value

of the threshold. Our theoretical n threshold strategy TnT can generate the theoreti-

cally optimal outcomes in expectation when the number of jobs n is known and still

has the best performance amongst all proposed strategies when n is unknown. From

fundamental settings to complex settings, compared to the optimal offline solutions, the

average-case performance ratios achieved by our online solutions are around 1.1. Over-

all, the strategy of three-piece piecewise linear function PLF3 performs very close to

the theoretically optimal online solution in the fundamental case and shows the best

performance in all complex settings. As it only has 6 parameters determined by the EA,

we say it is a high performance solution which can be specified in a short time. Other

heuristics, e.g. H1T,H3T, PLF, PLF2, are also very good online solutions requir-

ing even less EA searching time. Even without sufficient training, strategy HnT also

generates good results and its performance can be improved if time permits.

Through the experimental analysis, we have pointed out the impact of one key fac-

tor, i.e. the ratio between the number of slots and the number of jobs t/n, on the strat-

egy performance. When t/n is at the middle part of [0, 1], the online decision is most

difficult. Although the performance of our solutions is a little lower in this part, the per-

formance ratios between 1.09 and 1.22 illustrate the advantage of our solutions for this
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dynamic problem. Given various settings, in which it is difficult to find any analytical

clue, our solutions show their generality, robustness and adaptivity. Although we make

an assumption of unit processing time for all jobs, this work provides an approach that

also applies to more generic problems involving both acceptance decisions and com-

plex scheduling. For instance, the heuristic strategies proposed by us could be used in

settings with arbitrary length jobs.

Through this work, we have learned that EAs can be used to tune the relevant pa-

rameters for settings that are hard to analyze theoretically; this thus gives a general

approach, which also works for new settings (although we don’t know how good it is in

new settings). We answered questions such as i) how to deal with acceptance decisions

and scheduling separately, ii) how to find good acceptance strategies, even if it is very

hard or impossible to derive an optimal strategy (in expectation) analytically, and iii)

which heuristic strategy works best (PLF3), and why (a good balance between accuracy

and number of parameters).

In our future work, we would like to derive theoretically optimal solutions for gen-

eral time windows in addition to our heuristic solutions. Another interesting topic is to

extend the problem to a model where the processing time of jobs can vary. We may

still use the approach presented in this work but need to add other key factors espe-

cially related to scheduling to achieve good results in complex environments. Analysis

of competitive-ratios of our algorithms will also be included in our next work.
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Abstract. In search-based markets with noisy signals, like the market
for used cars, experts can play an important role. These experts act as
information brokers, revealing the true value of a good in exchange for
the payment of a fee. Sometimes these experts may choose to sell only
bundles of their services (three car inspections for a fixed price, e.g.). We
analyze bundling of services in a model of expert-mediated (one-sided)
search, and derive optimal strategies for experts and buyers. Our analysis
reveals some surprising results. In particular, there are situations where
offering only non-unit-size bundles of services can be pareto-improving
for the expert and the buyer. Further, in markets with low search costs,
the optimal strategy for the expert may well be to offer unlimited services
for a single flat fee.

Keywords: One-sided search, Product/service bundling, Agent-mediated
search

1 Introduction

Autonomous agents, acting on behalf of their users are commonly required to
engage in costly search [5, 8, 13]. The search process is characterized by the need
to sequentially evaluate opportunities in order to select one of them. The process
of evaluating an opportunity commonly incurs a cost [1], and the searcher’s goal
is to maximize the value of the opportunity eventually exploited minus the costs
accumulated along the search process. The searcher thus trades off, on each step
of its search, the possible marginal gain from revealing the values of further
opportunities and the cost associated with doing so [15, 11, 14].

Consider a consumer looking to buy a used car. Typically she will visit poten-
tial sellers (or car dealers) in order to estimate the value of the car/s they offer.
Visiting sellers and looking at cars incurs a cost (accumulated along the search
process), either monetary or in terms of resources that need to be consumed.
The search continues until the searcher eventually buys one of the cars seen.
While traditional models of sequential search in costly settings assume that the
searcher obtains the true value of an opportunity, in many realistic settings she
only sees a noisy signal. For example, a non-expert consumer cannot evaluate
the mechanical condition of a car. This uncertainty presents an opportunity for
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2 Bundling in Expert Mediated Search

the emergence of knowledge brokers or experts in both traditional and Internet
marketplaces. In exchange for the payment of a fee, an expert can disambiguate
the noisy signal, providing a better estimate of the true value than the noisy sig-
nal available to the non-expert consumer. For example, Carfax.com is a service
offering car buyers the history records of any used car, thus enabling a better as-
sessment of its true worth, for a fee. The existence of an expert can theoretically
lead to substantially better overall outcomes for buyers [4].

This paper considers what happens when an expert can bundle its services.
Bundling of goods and services is a common practice in the real world, ranging
from daily necessities at supermarkets to digital information goods and services
available online. There is a vast literature on bundling and its advantages and
disadvantages from many perspectives [7, 2, 3]. However, research has typically
focused on the bundling of complementary and substitute goods. Many studies
have looked at profitability and discounts offered in bundling services that use
common infrastructure, like phone, cable and internet service, or complementary
services like flights, hotels and rental cars.

Bundling has a somewhat different meaning in the context of expert-mediated
search. In such markets bundling means that, for a predefined fee, the searcher
can use the expert services some fixed number of times. Such schemes are com-
mon in physical and virtual markets. For example, Carfax offers a bundle of five
reports for $44.99 (alongside the option to buy a single report for $34.99). The
bundle-based model presented and analyzed in this paper generalizes both the
classic sequential search model [11, 10] and its extension to noisy environments.
The problem can be formulated as a Stackelberg game, where the expert makes
the first move by setting the bundle size and price and the searcher responds. We
characterize the searcher’s optimal search strategy, and use that to find the opti-
mal strategy for the expert in terms of bundle size and price. It is not surprising
that bundling often leads to an increase in the expected profit of a monopolist
expert, but we also find that bundling can be pareto-improving, simultaneously
increasing the expected utility of the buyer. While the expert sells bundles at
higher prices, the buyer benefits because the extra amount she pays is more than
made up for by the higher value of the opportunity eventually picked. We also
find that, especially when search costs are low, the profit maximizing strategy
for the expert can be to offer unlimited services for a fixed price.

2 The Model

The classic sequential model of one-sided search [15, 11, 14] considers a searcher
facing an infinite stream of opportunities from which she needs to choose one.
The true values of the different opportunities are initially unknown to the searcher.
The searcher is acquainted, however, with the probability density function from
which the true values are drawn, denoted fv(x). The searcher can reveal the
true value of an opportunity for a cost cs. Having no a priori information about
any specific opportunity, the searcher reviews the opportunities she encounters
sequentially. The problem of the searcher is thus to find a strategy S that maps
the best value found so far to the decision {terminate, resume}, given cs and
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Bundling in Expert Mediated Search 3

fv(x), in a way that the expected value of opportunity eventually obtained minus
the accumulated costs along the search is maximized.

The assumption that the value received is the true value of the opportunity
encountered is sometimes relaxed by considering the value obtained to be a
noisy signal s, correlated to the true value by a known probability distribution
function fs(y|v) [4, 6, 9]. In these model variants, the searcher usually can obtain,
for some additional cost, denoted ce (e.g., using the services of an expert [4], or
an interviewing [9] or dating [6] process), the true value (or at least a better
estimate) of the opportunity for which signal s is received. In the expert case,
which we consider here, we assume the expert can produce its valuation at a
cost de ≥ 0, and that the value revealed by the expert is the true value of
the opportunity, rather than just a less noisy signal. Here, again, the goal of
the searcher is to find a strategy that maps the best signal received so far to
the decision {terminate, resume, query}, where “terminate” means stopping the
search, “resume” means evaluating an additional opportunity (without the help
of the expert) and “query” means asking the expert to reveal the true value.
We consider the case with no recall: if the searcher rejects one opportunity,
she cannot go back to it later.1 Denoting the expected number of times the
expert’s services are used by ηq, the expert’s expected profit, π, is given by:
π = ηq(ce − de). The goal of the expert is to find c∗e that maximizes π(c∗e).

We generalize the model above by introducing the option that experts may
offer their services in packages (“bundles”). For a cost cke , the searcher ob-
tains, upon purchasing the bundle, the right to use the expert’s service k times
along its search path with no additional cost. The searcher does not neces-
sarily need to make use of all the k queries, and similarly, if she uses them
all she can purchase additional bundles as required. The goal of the searcher
is to find an optimal strategy as before (mapping from a signal received to
{terminate, resume, query}). When choosing to query the expert the agent
needs to pay a cost cke if she has not purchased a bundle yet or if she has already
used the expert’s services k times since the last bundle was purchased. When con-
sidering the expert’s profit, we need to distinguish between the expected number
of bundles purchased by the searcher, denoted ηb, and the expected number of
queries used by the searcher, denoted ηq (ηq ≤ ηbk). The expert’s expected profit
is now given by: π = ckeηb − ηqde. The goal of the expert is to find the optimal
pair (k, cke) that maximizes its overall expected profit π.

3 Analysis and Optimal Policies

We begin by characterizing the optimal strategy of the searcher. Based on the
analysis we prove that for a very reasonable assumption on signal structure,
namely that “higher signals are good news” as formalized below, the optimal
strategy can be represented by a set of reservation values. We then turn to
analyzing the expert’s revenue given the bundle characteristics she sets.

1 This is often the case in real-life settings, e.g., a used car or an apartment seen
cannot be guaranteed to remain in the market for long.
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4 Bundling in Expert Mediated Search

3.1 Optimal Search Strategy

Since the searcher cannot recall previous opportunities, her state depends only
on the number of remaining pre-paid queries, denoted γ. The system can thus be
modeled as a Markov Decision Process with k search states (γ = 0, 1, 2, . . . , k−1)
and one termination state, as illustrated in Figure 1. Upon receiving a signal s
when in state γ > 0, the searcher can either: (a) reject the current opportunity
and continue search, starting from the same state γ; (b) accept the current
opportunity and terminate search; (c) query the expert for the true value of
the current opportunity and, based on the value received, either accept the
current opportunity (terminating the search) or reject the current opportunity
and continue search from state γ − 1. When in state γ = 0, the searcher has the
same options when receiving a signal s, except that querying the expert incurs a
cost cke and if the searcher chooses to resume search, based on the value received,
she continues from state γ = k − 1.

Fig. 1. MDP representation of the searcher’s problem (state variable is the number of
remaining queries that can be used).

Let Vγ denote the expected value of following the optimal search strategy
starting from state γ (the value-to-go). For simplicity, we work with the un-
conditional distribution of signals received, fs(x), and the distribution of true
values conditional on the signals received, fv(y|s).

2 First, observe that when the
searcher is in state γ > 0, the only two applicable alternatives are querying the
expert and resuming the search without querying the expert.

Proposition 1. When in state γ > 0, querying the expert dominates terminat-
ing search without querying the expert.

Proof. For any strategy that terminates search upon obtaining a signal s when
in state γ > 0, consider instead a modification of that strategy which queries the
expert, and terminates only if the true value, revealed by the expert, is greater
than Vγ−1. This new strategy clearly dominates, since if the true value is less
than Vγ−1 the searcher is better off resuming search, and she pays no marginal
cost to obtain the expert’s service in this instance. �

For any signal s received in state γ > 0, the expected benefit if querying the
expert, denoted byM(s, Vγ−1), is given by:M(s, Vγ−1) =

∫∞

−∞
max(x, Vγ−1)fv(x|s) dx.

2 These are interchangeable with the prior distribution of values, fv(y), and the dis-
tribution of signals conditional on values, fs(x|v), by Bayes’ Law.
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Therefore, the optimal strategy is to query the expert if M(s, Vγ−1) > Vγ . The
expected benefit of using the optimal strategy, when starting from state γ > 0,
is thus given by:

Vγ>0 = −cs + Vγ

∫

M(s,Vγ−1)<Vγ

fs(s) ds+

∫

M(s,Vγ−1)>Vγ

fs(s)M(s, Vγ−1) ds (1)

Similarly, when in state γ = 0, the expected benefit of obtaining a signal
s is: (a) E[x|s] if terminating the search without querying; (b) V0 if resuming
the search without querying the expert; and (c) M(s, Vk−1) − cke on querying
the expert. For any signal s, the choice which yields the maximum among the
three should be made. Let MAX = max(E[x|s], V0,M(s, Vk−1)− cke), Let ζ1, ζ2
and ζ3 define the sets of signal support such that MAX equals V0, E[x|s], and
M(s, Vk−1)− cke , respectively. The expected benefit is then:

V0 = −cs + V0

∫

ζ1

fs(s) ds+

∫

ζ2

E[x|s]fs(s) ds+

∫

ζ3

fs(s)
(
M(s, Vk−1)− cke

)
ds

(2)

The optimal strategy can be obtained by solving the set of k − 1 equation
instances of Equation 1 (for 1 ≤ γ < k) in addition to Equation 2. An important
property of the optimal strategy is given in the following Lemma.

Lemma 1. When using the optimal strategy, Vγ ≤ Vγ+1 ∀ 0 ≤ γ < k − 1.

Proof. Suppose Vγ > Vγ+1. A searcher starting from state γ + 1 can follow
the optimal strategy as if starting from γ. In this case it will end up with the
same value v while the accumulated cost will be at worst equal and possibly less
(in the case where search terminates after the last bundle purchase) than the
accumulated cost when starting the search from state γ; therefore the original
strategy could not have been optimal. �

3.2 The HSGN case

While the structure of the optimal strategy tightly depends on fs(x|v), for some
cases, the optimal strategy can have a simple representation in the form of
reservation values. For example, suppose the standard assumption that “higher
signals are ‘good news’ ” (HSGN) holds.3 This means that for any s1 > s2, the
conditional distribution of v given s1 first-order stochastically dominates that of
v given s2, i.e., ∀ y Fv(y|s1) < Fv(y|s2), ∀y.

Theorem 1. For fv(y|s) satisfying the HSGN assumption, for any signal s, the
optimal strategy for the searcher in state γ can be described as (see Figure 2):
(1) a tuple (tl, tu, Vk−1), corresponding to state γ = 0, such that for any signal
obtained: (a) the search should resume if s < tl; (b) the opportunity should be
accepted if s > tu; and (c) the expert should be queried if tl < s < tu and

3 This innocuous assumption loosely means that a higher signal implies a higher prob-
ability of a higher true value and is widely used in the literature [12, 16, 4].
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6 Bundling in Expert Mediated Search

Fig. 2. Characterization of the optimal strategy for noisy search with an expert offering
bundles. For state 0 (left figure), the searcher queries the expert if s ∈ [tl, tu] and
terminates search if the worth is greater than the value of resuming the search Vk−1.
The searcher resumes search if s < tl and terminates without querying the expert if
s > tu. However, for any state γ > 0 (right figure), the searcher rejects the opportunity
(terminating search) if s < tγ and otherwise queries the expert before deciding.

the opportunity accepted (and search terminated) if the value obtained from the
expert is above the expected value of resuming the search, Vk−1, otherwise search
should resume; and
(2) a set of (k − 1) tuples (tγ , Vγ−1) corresponding to states γ ∈ 1, 2 . . . , k − 1
such that: (a) the search should resume if s < tγ ; and (b) the expert should be
queried if s > tγ and the opportunity accepted if the value obtained from the
expert is above the expected value of resuming the search, Vγ−1, otherwise search
should resume.

Proof. (a) The proof augments the one given in [4] regarding the strategy struc-
ture in cases where queries are sold only one at a time. We first show that if it
is optimal for the searcher to resume search given a signal s, then it must also
be optimal for her to do so given any other signal s′ < s. Then, we show that if
it is optimal for the searcher to terminate search given a signal s, then it must
also necessarily be optimal for her to do so given any other signal s′′ > s.

If the optimal strategy given signal s is to resume search then
V0 > max(E[x|s],M(s, Vk−1) − cke). From the HSGN assumption, E[x|s] >
E[x|s′] (since s′ < s). Similarly:

M(s, Vk−1) =

∫ ∞

x=Vk−1

xfv(x|s) dx+ Vk−1

∫ Vk−1

x=−∞

fv(x|s) dx

= Vk−1 +

∫ ∞

x=Vk−1

(x− Vk−1)fv(x|s) dx

> Vk−1 +

∫ ∞

x=Vk−1

(x− Vk−1)fv(x|s
′) dx

=

∫ ∞

x=Vk−1

xfv(x|s
′) dx+ Vk−1

∫ Vk−1

x=−∞

fv(x|s
′) dx

=

∫
max(x, Vk−1)fv(x|s

′) dx = M(s′, Vk−1)

The proof for s′′ > s is similar: the expected cost of accepting the current
opportunity can be shown to dominate both resuming the search and querying
the expert. We omit the details because of space considerations. The optimal
strategy can thus be described by the tuple (tl, tu, Vk−1) as stated in the theorem.
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Bundling in Expert Mediated Search 7

(b) Given Proposition 1, we only need to prove that if, according to the
optimal search strategy the searcher should resume her search given a signal s,
then she must also do so given any other signal s′ < s. The proof is similar to
(a), ignoring the option to terminate the search without querying the expert,
and substituting Vk−1 with Vγ−1 whenever applicable. �

Based on Theorem 1, we can construct the appropriate modifications of Equa-
tions 1 and 2 for the HSGN case:

V0 =− cs + V0Fs(tl) ds+

∫ ∞

s=tu

fs(s)E[v|s] ds− cke

∫ tu

s=tl

fs(s) ds+

Vk−1

∫ tu

s=tl

fs(s)Fv(Vk−1|s) ds+

∫ tu

s=tl

fs(s)

∫ ∞

x=Vk−1

xfv(x|s) dx ds

(3)

Vγ>0 =− cs + Vγ

∫ tγ

0

fs(s) ds+

∫ ∞

tγ

fs(s)

∫ ∞

Vγ−1

xfv(x|s) dx ds+

∫ ∞

tγ

fs(s)Vγ−1Fv(Vγ−1|s) ds (4)

where Fv(x|s) and Fs(s) are the appropriate cumulative distribution functions
of fv(x|s) and fs(s), respectively.

The values (tl, tu) and tγ ∀γ > 0 to be used in the optimal strategy are
obtained by deriving Equation 3 with respect to tl and tu (separately) and
Equation 4 with respect to tγ ∀γ > 0, resulting in (after integration by parts):

cke =

∫ ∞

y=Vk−1

(x− Vk−1)fv(x|tl) dx (5)

cke =

∫ Vk−1

−∞

(Vk−1 − x)fv(x|tu) dx (6)

Vγ = Vγ−1Fv(γ − 1|tγ) +

∫ ∞

Vγ−1

xfv(x|tγ) dx (7)

Equations 5-7 can intuitively be interpreted as describing the indifference
values of the searcher. Equation 5 characterizes the intuition that, at s = tl, the
searcher is indifferent between either resuming the search or querying the expert.
From equation 6 we see that at s = tu, the searcher is indifferent between either
terminating the search or querying the expert. Finally, s = tγ in Equation 7 is
the signal where the expected gain from rejecting the opportunity with which it
is associated is equal to the expected gain received by deciding after querying
the expert.

Based on Equations 3-7 we can construct a set of 2k + 1 equations from
which the optimal search strategy can be extracted. These are Equations 3,5-6
for state γ = 0 and the 2k − 2 equations resulting from Equations 4 and 7 for
γ = 1, 2 · · · k − 1. We can solve the above system of equations to calculate the
equilibrium of the Stackelberg game. The searcher’s utility in this case is given
by V0 because the searcher starts from state 0, i.e., with no queries in hand.
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8 Bundling in Expert Mediated Search

3.3 Expert’s Perspective

We now turn to formulating the expert’s revenue as a function of the bundle
characteristics (k, cke) she sets. The expert’s revenue is derived in Section 2 by
π = ckeηb − ηqde. Therefore we need to formulate ηb and ηq.

Expected number of bundles purchased The expected number of bundles
purchased by the searcher is the expected number of times the searcher queries
the expert when in state γ = 0 (either transitioning to state γ = k − 1 or
terminating the search) (see Figure 1). In order to calculate ηb, we compute the
following probabilities:

Represents General formulation
HSGN formulation

Pγ→γ−1 Pr (querying and resuming,
∫
M(s,Vγ−1)>Vγ

fs(s)Fv(Vγ−1|s) ds

moving from state γ > 0 to γ − 1) Pr(s > tγ and v < Vγ−1)
Pγ→γ Pr (resuming without querying,

∫
M(s,Vγ−1)<Vγ

fs(s) ds

staying in state γ > 0) Pr(s < tγ)
Pγ→ter Pr (querying and then

∫
M(s,Vγ−1)>Vγ

fs(s)(1− Fv(Vγ−1|s)) ds

terminating from state γ) Pr(s ≥ tγ and v ≥ Vγ−1)
P0→k−1 Pr (querying and resuming,

∫
ζ3
fs(s)Fv(Vk−1|s) ds

moving from state γ = 0 to k− 1) Pr(tl ≤ s ≤ tu and v < Vγ−1)
P0→0 Pr (resuming without querying

∫
ζ1
fs(s) ds

when γ = 0) Pr(s < tl)
P¬query
0→ter Pr (terminating without querying

∫
ζ2
fs(s) ds

when γ = 0) Pr(s > tu)
P query
0→ter Pr (querying and terminating

∫
ζ3
fs(s)(1− Fv(Vγ−1|s)) ds

when γ = 0) Pr(tl ≤ s ≤ tu and v ≥ Vγ−1)

Notice that Pγ→γ−1 + Pγ→γ + Pγ→ter = 1, and similarly P0→k−1 + P0→0 +
P¬query
0→ter + P query

0→ter = 1.
Let Pγ(T ) denote the eventual probability of transitioning, when in state γ,

to state γ − 1 (for γ = 0 it is the probability of transition to state k − 1). Let
Pcycle be the probability of starting at a given state and getting back to it after
going through all other states (excluding search termination state). The values
of Pγ(T ) and Pcycle can be calculated as:

Pγ(T ) =

∞∑

j=0

(Pγ→γ)
jPγ→γ−1 =

Pγ→γ−1

1− Pγ→γ

; Pcycle =

k−1∏

i=0

Pi(T )

Now let Pγ(Term), denote the probability of terminating the search in current
state γ without transitioning to another state and P0(Term|Buy) denote the
probability of eventually purchasing the bundle and terminating the search in
state γ = 0. These two probabilities are given by:

Pγ(Term) = 1− Pγ(T ) =
Pγ→ter

1− Pγ→γ
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Bundling in Expert Mediated Search 9

P0(Term|Buy) =
P query
0→ter

1− P0→0
; P0(Term|¬ Buy) =

P¬query
0→ter

1− P0→0

Using the above notation, ηb is given by:

ηb =
∞∑

j=1

j Pr(j bundles are purchased)

=
∞∑

j=1

j Pr(j transitions from state 0 to k − 1)

=
∞∑

j=1

jPcycle
j−1(P0(Term|Buy) + P0(T ))(1− Pcycle)

=
∞∑

j=1

j

(
k−1∏

i=0

Pi(T )

)j−1

(P0(Term|Buy) + P0(T ))(1− (
k−1∏

i=0

Pi(T )))

Expected number of queries used The searcher may terminate the search
before exhausting all the remaining queries purchased. This situation is unique to
settings where the buyer (searcher in our case) is buying the right to use a service
rather than actually receiving the service (or a product) upon purchase. For an
expert offering a bundle (k, cke), the question of how many queries purchased
are actually used is important when de > 0. In order to calculate the expected
number of queries used, ηq, we first calculate the probability that exactly m
queries are eventually used, denoted by Pm(Q):

Pm(Q) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P0(Term|¬Buy) m = 0

P0(Term|Buy) m = 1

P0(T )(
∏j=k−1

j=k−m+2 Pj(T ))Pk−m+1(Term) 1 < m < k

P0(T )(
∏j=k−1

j=2 Pj(T ))P1(Term) + PcycleP0(Term|¬Buy) m = k

For m > k, we represent m as jk+ i where j = ⌈m
k
⌉−1 and i = m−jk. Here,

j is one less than the number of bundles purchased and i represents the number
of queries used from the last bundle. This cyclic nature gives us the following
recurrence:

Pm=jk+i(Q) = PcycleP((j−1)k+i)(Q) = · · · = P j
cyclePi(Q) =

(
k−1∏

i=0

Pi(T )

)j

Pi(Q)

Therefore the expected number of queries is given by:

ηq = E(Number of queries used) =

∞∑

m=0

mPm(Q)

=

∞∑

j=0

k∑

i=1

(jk + i)P j
cyclePi(Q) =

∞∑

j=0

k∑

i=1

(jk + i)

(
k−1∏

l=0

Pl(T )

)j

Pi(Q)

Once we have calculated ηq and ηb, we can calculate the profit of an expert
and find out the optimal strategy for an expert: π = maxcke ,k(ηbc

k
e − ηqde).
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10 Bundling in Expert Mediated Search

Expected worth of an opportunity received This quantity helps us analyze
how much a searcher loses in search cost and query cost. It is also interesting
to note how the search cost and query cost affects the expected worth of an op-
portunity received. Let W be the random variable representing the worth of an
opportunity received, then Ei(W ) represents the expected worth of the oppor-
tunity if the search terminates in state i and Pi(W ) represents the probability
of terminating at that state.

Ei(W ) =

{
E(v|v > Vi−1, s > ti) i > 0
E(v|v>Vk−1,tl<s<tu) Pr(v>Vk−1∧tl<s<tu)+E(v|s>tu) Pr(s>tu)

Pr(v>Vk−1∧tl<s<tu)+Pr(s>tu)
i = 0

Pi(W ) =

{∑j=∞
j=0 P j

cycleP0(T )
(∏h=k−1

h=i+1 Ph(T )
)
Pi(Term) i > 0

∑j=∞
j=0 P j

cycle(1− P0(T )) i = 0

E(W ) = E(Expected worth of opportunity) =

k−1∑

i=0

Ei(W )Pi(W )

Expected number of searches Let ηs be the expected number of searches
(opportunities examined by the searcher, ηs ≥ ηq). We know the searcher’s
utility, V0, is the value of opportunity received minus the total search and query
cost paid in the process (V0 = E(W )− ηscs − ηbc

k
e). Therefore

ηs =
E(W )− ηbc

k
e − V0

cs

3.4 Infinite Bundle Size

A specific interesting case to look at is whether the expert would ever want to sell
an unlimited supply of services at a fixed price. This is equivalent to an infinite-
sized bundle. In this case the model reduces to two states. The searcher starts
with state γ = 0 and continues in this state until she either terminates search or
transitions to state γ = ∞. In the latter case the searcher can keep querying the
expert for any reasonable opportunity until she finally finds a sufficiently good
opportunity and terminates search (the existence of a search cost ensures that
this querying process does not go on forever). Being in state γ = ∞ is equivalent
to being in the world of perfect signals. The optimal reservation value when in
state γ = ∞ can thus be extracted from (e.g., [11]):

V∞ = −cs + V∞

∫ V∞

0

fv(x) dx+

∫ ∞

V∞

xfv(x) dx (8)

For state γ = 0, we can use appropriate modifications of Equations 3 and 5-6,
replacing Vk−1 with V∞ (realizing that the searcher transitions to state γ = ∞).
The optimal strategy can be extracted from solving this set of the four equations.

4 Example

As can be observed from the analysis given in the former section, equilibrium in
expert-mediated search with bundling derives from a complex set of dynamics
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in the system. The number of parameters affecting the equilibrium is substan-
tial: the distribution of values, the correlation between signals and values, search
frictions, the cost of querying the expert, and bundle size, all affect the overall
outcome of the process. A static analysis, uncovering phenomenological prop-
erties of the model is therefore difficult and restricted. Instead, we turn to a
specific example to outline some interesting effects of bundling in this domain.

We illustrate the optimal strategies for the searcher and the expert, assuming
some specific distributions of the true values and signals. We consider a case
where the signal is an upper bound on the true value. Going back to the used
car example, sellers and dealers, offering cars for sale, usually make cosmetic
improvements to the cars in question, and proceed to advertise them in the most
appealing manner possible, hiding defects using temporary fixes. Specifically,
following [4], we assume signals s are uniformly distributed on [0, 1], and the
conditional density of true values is linear on [0, s]. Then

fs(s) =

{
1 if 0 < s < 1

0 otherwise
fv(y|s) =

{
2y
s2

for 0 ≤ y ≤ s

0 Otherwise

We can use these distributions to solve the systems of equations as described
in detail in the previous section. Solving these leads to several interesting in-
sights on the effects of bundling. Surprisingly, we find that forced bundling can
be pareto improving. It can lead to improvement not only in the profit of the mo-
nopolist expert, which is to be expected, but simultaneously to improvement in
the expected utility of the searcher from engaging in the search process. Figure 3
shows the effect and the intuition. The figure depicts the expected utility to the
buyer and the expert’s expected net profit (alongside the bundle and per-query
costs) as a function of the bundle size4 for cs = 0.01 and different de values.
When the marginal cost of producing an expert report is zero (as in the “digital
services” case: an extra Carfax report can be produced essentially for free), there
is no significant added cost to the expert. The search overall is becoming more
efficient, and the expert and the buyer can split the additional utility. On the
other hand, for non-zero marginal cost of producing an extra expert report, the
benefit to the expert of selling higher bundle sizes rapidly declines after bundle
sizes of two and three, because there is a real cost incurred in producing the
additional reports that the searcher may demand.

Another interesting observation concerns the correlation between bundling
and search cost (the cost of seeing each opportunity initially, cs) faced by the
user. In a world of high search costs, users do not expect to keep searching for
more than a few opportunities, so they are unlikely to be willing to purchase
a bundle of high size. Interestingly, when the search costs become very low, we
find that it can be optimal for the expert to sell an unlimited subscription to
her services for a fixed fee. Figure 4 shows an example of this phenomena in the
zero marginal cost scenario. A search cost cs = 0.001 yields a setting where it
is optimal for the expert to offer infinite-size bundles, but increasing the search
cost slightly to 0.003 leads to high (but far from infinite) bundle sizes being

4 For each bundle size, the appropriate optimal cke is used.
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Fig. 3. Effect of bundling on the price charged by the expert and its impact on the
searcher’s utility and the expert’s profit. In this case, the searcher’s utility increases as
the bundle size increases. We see that although the overall bundle price, cke , increases
with the increase in bundle size, the cost per query decreases rapidly.

preferred. Looking back at Figure 3 we observe that when cs = 0.01, the optimal
bundle size is actually very small (in fact it is around 2-4 for several examples).

Both these observations, that increasing either the marginal cost of produc-
ing expert services and/or the cost incurred by the buyer in searching lead to
smaller bundle sizes being preferred, correspond well to the real world. Unlim-
ited subscription models are usually available in online services, where vanishing
marginal costs and low search costs dominate (like autocheck.com), whereas
traditional marketplaces have smaller bundle sizes.

5 Discussion

Experts can play a significant role in search-based marketplaces where there
is a niche for information brokers – this is the premise of mechanics who in-
spect used cars to make sure they are not lemons and financial experts for due
diligence of companies at the service of investors, and more. The ubiquity of
electronic markets has changed the nature of many markets not just by lowering
the cost of search to the consumer, but also by making it possible for experts
to produce additional expert reports and communicate them to the consumer at
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Fig. 4. Expert’s profit for different bundle size for cs = 0.001 with de = 0. Here, selling
infinite size bundle is most profitable i.e., it is optimal for an expert to offer unlimited
subscription to her service for a fixed fee.

little to no extra cost. Expert services like Carfax have emerged naturally. An
interesting observation is that these agencies have experimented with several dif-
ferent bundling and subscription models. In this paper we provide a model that
helps us make sense of these different bundling strategies. While bundling has
been studied in similar domains, e.g., Bakos and Brynjolfsson have shown that
bundling is particularly useful for digital information goods because of the low
marginal cost [2], prior research has not considered the interactions of bundling
and search.

Surprisingly, we find that constraining experts to sell only bundles of their
services can improve outcomes for both experts (who make higher profits) and
searchers (who gain in expected utility of the search process). The intuition is
that, by purchasing a bundle, the searcher is less constrained by the marginal cost
of expert services and can exploit the search process to find a better opportunity.
Another surprising result is that in some circumstances the expert may in fact
maximize profit by selling an unlimited subscription to its service, compared
with any finite bundle size. These circumstances are characterized by very low
search costs and close-to-zero marginal costs of producing an extra unit of the
expert’s service, a case which is highly applicable in electronic marketplaces.

Similar to the general bundling literature, we also observe negative correla-
tion between marginal cost and optimal bundle size. In addition, we show that
search cost can also affect optimal bundling significantly. Bundling is discour-
aged if the search cost is high, even if the marginal cost is zero, because buyers
will typically not want to sample many opportunities, so the marginal benefit to
them of extra expert reports that are essentially “free” is minimized.

There are three major directions for future work. First, our model only al-
lows for bundles of fixed size. Mixed bundling, where the expert sells bundles
of different possible sizes, has been shown to perform better in the theory of
product bundling, and would be an interesting extension in our domain. Second,
our model assumes a monopolistic expert. Bakos and Brynjolfsson have shown
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14 Bundling in Expert Mediated Search

that bundling, even in inferior digital “information” goods, with close to zero
marginal cost has the potential to drive away superior quality sellers [3]. How-
ever, their analysis does not take search into consideration. Incorporating experts
of different quality and cost who compete with each other in our model could
reveal new insights. Third, in our relatively simple model, the improvement in
utilities is essentially free and social-welfare maximizing, as it is a product of
improving the efficiency of search. This is not unrealistic, and such “one-sided”
search models have been show to have great applicability. However, in many
real markets, it is also important to consider the utility of the seller, which in-
volves modeling search as a two-sided process. Even in two-sided markets search
frictions can play a major role, thus it is important to investigate whether the
presence of experts can improve outcomes in such markets.
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Abstract. Recommender systems are now an integral part of many e-commerce

websites, providing people relevant products they should consider purchasing. To

date, many types of recommender systems have been proposed, with major cat-

egories belonging to item-based, user-based (collaborative) or knowledge-based

algorithms. In this paper, we present a hybrid system that combines a knowledge

based (KB) recommendation approach with a learning component that constantly

assesses and updates the system’s recommendations based on a collaborative and

item based components. This combination facilitated creating a commercial sys-

tem that was originally deployed as a KB system with only limited user data,

but grew into a progressively more accurate system by using accumulated user

data to augment the KB weights through item based and collaborative elements.

This paper details the algorithms used to create the hybrid recommender, and de-

tails its initial pilot in recommending alternative products in an online shopping

environment.

1 Introduction

Recommender systems have become an integral part of many e-commerce websites,

giving consumers suggestions for additional or alternative products to purchase. These

systems are part of well known websites such as Amazon.com, Pandora, Yahoo!, and

Netflix [2–4, 7]. In fact, Netflix recently offered a Million Dollar Prize [2] for signif-

icantly increasing the quality of its recommendations, highlighting the importance of

this field to e-commerce websites.

For commercial companies, recommendations are important to both directly and

indirectly generate sales. Direct sales can be generated in two ways. First, a person

may wish to buy a specific product from a website, but not be able to complete the

transaction due to the product no longer being in stock. The recommender system can

then provide alternate products, still completing a sale. In a second scenario, even if the

product is in stock, the recommendation system may be able to provide additional items

that the user may wish to buy, even furthering the revenue from the website. Even if the

recommender system does not directly produce sales, they can be critical in providing

an improved shopping experience thus attracting more shoppers to the website and in-

directly producing more sales. In these types of scenarios, the recommender system can

provide additional information about related products or services that might aid the user

in better using a product they just purchased. In these types of cases, the recommender
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system can provide an after sales support system, ensuring the buyer is satisfied with

the purchase.

In this paper, we describe the recommender system we built for the e-commerce

website, mysupermarket.co.uk. MySupermarket is a relatively small private e-commerce

company that makes its revenues by providing recommendations of grocery products to

buy. All revenues are generated as a percentage of the total order places, so it is critical

that the shopping experiences be as pleasant as possible, and recommendations be as

relevant as possible, to boost sales. One of the key features of MySupermarket is its five

ways it helps users save money1. The first and most important mechanism is a “swap

and save” feature where the recommender system provides alternate (swap), yet similar,

items to the user that are cheaper (save). This paper focuses on the algorithms involved

with the recommender agent in this system.

The novelty of MySupermarket’s swap and save agent lies in its combination of

knowledge based, collaborative filtering and item based algorithms. In the next sec-

tion, we details the background of the recommender algorithms upon which our hybrid

system is based, and stress the contribution of this work. In Section 3, we describe My-

Supermarket’s current recommender agent, which integrates the expert’s knowledge

exclusively to produce recommendations. Unique to our system is a learning agent that

creates recommendations based on the current expert recommendations, but also au-

tonomously updates the expert’s recommendation with item based and collaborative

information. This approach is novel in that it presents the first hybrid of all major types

of recommender technologies: knowledge, item based and collaborative. We detail this

approach in Section 4. Section 5 concludes and provides directions for how this work

can be generally applied to other systems as well.

2 Related Work

To date, two major groups of algorithms have been proposed for use in recommender

systems, collaborative and item based approaches [1, 3, 5, 7, 10]. The term collaborative

filtering was coined by the designers of one of the first of these systems, Tapestry [6], to

capture that people often obtain information through collaborating with one another to

obtain information. Systems based on collaborative approaches (also called user based)

have been widely used in many commercial applications [2, 6, 5, 4, 7] and facilitate giv-

ing a given user recommendations based on the past behavior of a known group of

similar users. A second popular group of recommenders are item based (often called

content based) approaches and focus on similarities between items to produce recom-

mendations, typically based on the type of content of the item that is being search for

[1, 4, 7, 10]. These approaches assume a generality between all types of users, and fo-

cus on shared characteristics between all members of the system. For example, assume

preset categories exists for types of genre for books or movies (e.g. comedy, mystery,

documentary, and classic). Once we have identified the genre of one item that is being

searched for by all users, we can recommend other items of the same type. Theoret-

ically there is no need within this approach to consider a given user’s history once a

categorization scheme has been implemented based on the item based approach.

1 http://www.mysupermarket.co.uk/Help/FAQ.aspx/
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One major disadvantage in both the collaborative and item based approaches is the

time required and / or the needed data required to build these models. This is often re-

ferred to as the “cold start” or “ramp up” problems whereby the system cannot make

effective recommendations at the beginning of its operation [4, 5, 7]. The “cold start”

element within user based approaches refers to the challenge in a-priori knowing what

this user, or similar users, will do in new or in the early stages of a given system. It can

take weeks, or even months until enough data is collected on new items to attempt a col-

laborative solution. Even within item based approaches, it is not necessary clear which

characteristics should be used to find similar items without any a-priori knowledge.

This problem is very significant for MySupermarket as new products are constantly

being added to the system and there is no clear connection between the new item and

others in the database. Thus, alternative recommendation approaches are necessary.

A third, less popular approach, involves knowledge based recommendation [3, 5]

which uses some preset rules for generating recommendations. The advantage of this

approach is a complete solution to the cold-start problem – accurate recommendations

can be immediately generated. The major disadvantage to this approach is the steep

overhead involved with the knowledge engineering. MySupermarket currently employs

9 knowledge experts who create rules for generating recommendations for new prod-

ucts. Not only are these rules expensive to generate, but they are not necessarily ac-

curate. The goal of this paper is to describe an approach that uses a knowledge based

approach for the early stages of the system, but also create recommender agents that

can autonomously update these initial recommendations based on both item based and

collaborative approaches.

To the best of our knowledge, this paper represents the first of its kind – a knowl-

edge based approach with item based and collaborative elements to update the original

recommendations. Many hybrid recommendation models have been previously sug-

gested with combinations of these approaches and surveys of these models have been

previously published [5, 4, 1]. These algorithms often combine the two popular families

of recommendation algorithms – collaborative and item-based approaches [1, 8]. Clos-

est to our approach are the Libra [9] and MovieLens [11] systems. However, both of

these systems augment collaborative systems with content based approaches. However,

many other hybrid combinations are possible, with previous work described a theoret-

ical number of 53 possible different types of hybrid systems [4]. The same article also

points out that most theoretical combinations have not been studied or implemented,

and particularly singles out directions involving hybrid systems with knowledge based

components should be further explored. Particularly, our system goes one step further

from previous hybrids, by also integrating expert knowledge along with a more classic

content based – collaborative hybrid. We now detail the exact algorithms used by the

system, and how the expert’s recommendations are augmented by the item based and

collaborative elements.

3 Using MySupermarket’s Expert Data

As most recommendation systems are based on collaborative or item based data that can

be cheaply obtained and analyzed [3, 5], it may seem strange that MySupermarket bases
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its system on a costly team of experts. In this section, we describe the motivation behind

MySupermarket’s business decision to use this approach, as well how the company uses

this data in creating its recommendation system.

MySupermarket.com’s use of experts to create recommendation system is indeed

costly. The company employees a team of experts that evaluate thousands of products

that are sold through the website, and create an expert measure which they call a simi-

larity score which compares all products to each other. To slightly simplify the process,

these experts defined “Product Families” of similar products such as types of wines,

dairy product, diapers, etc., and only consider creating scores for all products within

all given product families. Nonetheless, this process is expensive, as the company em-

ployees a team of 9 experts who on average study 100 products a day checking and

updating products’ similarity rating. The current trigger for this analysis is when new

products are added for sale by MySupermarket, thus requiring the experts to reconsider

how these new products are comparable to existing ones.

With the growth of automated recommendation systems, one might think that there

is no longer a need for this costly knowledge engineering process and these experts

should be replaced by automated recommendation agents. However, MySupermarket’s

use of these expert’s knowledge goes well beyond its application for helping recom-

mend products to end users, or its Business to Consumer (B2C) e-commerce website.

In addition, these experts’ knowledge forms the foundation for a second Business to

Business (B2B) application, called MySupermarket insights that provides information

about trends and possible strategic growth opportunities related to products supermar-

kets stock. While our focus is on how the recommendations from the first system can

be improved, it should be noted that the second types of recommendations for busi-

nesses are no less important to the business strategy of the company and cannot be

replaced by known recommendation algorithms. This is because the B2C application

has already been functioning for several years and has now created enough historical

data to overcome the classic cold start problem in new recommendation systems [4, 5].

However, the B2B application has far less historical data and the experts’ knowledge is

not easily encodable. For example, these experts maintain a blog about product trends

and prices and thus cannot be replaced with automated agents. More about the B2B ap-

plication, and the recommendations it provides can be found at the company’s website

at: http://www.mysupermarket-insights.co.uk/Marketing/Services.aspx.

In creating the B2C application, the expert’s knowledge is central towards deciding

what recommendations are presented to the user, and in generating what the company

calls “swap recommendations”. While shopping, items can be presented to the user

that may be of interest, such as items that may save the user money by purchasing

them in larger bulk, or alternative products that should be considered, especially when

these items are discounted due to sales promotions or are a comparable generic alterna-

tive. Furthermore, these recommendations are especially important when the item they

wished to buy is not in stock.

The expert’s knowledge is then used in conjunction with item based data to create

recommendations. Similar to item based recommendation systems, swap recommen-

dations are generated by constructing a similarity vector between the desired product

and characteristics of all other products within the company [1, 4, 7, 10]. However, non-
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hybrid item based recommenders are based on generic item data, which for this domain

are likely to include characteristics like the product family, its quantity, price, weight,

and color. In contrast, MySupermarket’s hybrid system includes one new characteris-

tic, the expert’s similarity measure, and explicitly gives this item with very high weight

in generating the vector to decide what products to recommend. Additionally, as op-

posed to classic item based methods that use machine learning techniques to decide

how to weigh each characteristic within the vector, MySupermarket currently uses a

hard-coded proprietary weight function between these items. For example, this weight

system presents up to 5 recommendation if it finds items that are comparable based

on these hard-coded weights taking into account all item’s characteristics. In addition,

MySupermarket also leaves one field, the last recommendation, where recommenda-

tions are based only one characteristic, price alone. Here, the system always presents an

alternative if a cheaper generic substitute exists in the product database even if it is not

deemed as similar by the other characteristics.

To better understand the system, please see Figure 1 depicting a screen shot from

the company’s website. Note that in the screenshot the user is given up to four swap rec-

ommendations by the system. Only items that are deemed worthy based on this weight

function are presented to the user, and thus the full maximal number of 6 recommen-

dations were not presented here. Please note in the first row of Figure 1 that the user

is encouraged to consider buying similar diapers in bulk, with the first choice being

cheaper than the second, but both being the same brand as the original product, and

only then is the user presented a third choice that is a different generic brand, yet far

cheaper. In the second row, the user is informed that there is a buy one get one free sale

on the item they selected, and she can receive a second product for no additional price.

Here no additional products are presented, as the expert’s hard coded threshold decides

no other products are sufficiently similar given the price differences. Similarly, in the

third row, the user is informed there is a sale and she could save money per item if she

chooses to buy 2 products instead of one, but no other products are given from different

brand. In the last row, the user is again encouraged to consider a sale item or a generic

substitute for the selected item.

4 Creating a New Type of Hybrid System

One important question MySupermarket must address is how good are the system’s

recommendations, and if they are not always effective, how could they be improved?

Intuitively, it seems unlikely that the system of static weights described above will al-

ways be accurate, especially as the items in the product database are constantly in flux,

as sales and changes in stock are frequent. Thus, these static weights do not necessarily

have the ability to deal with these dynamics. Furthermore, the need to constantly update

these weights is costly. Clearly some mechanism is needed to autonomously update the

system.

Towards building a more effective system, we believe a new type of hybrid model

is needed, as presented in this section. The basis of this hybrid is the above knowledge
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Fig. 1. A Sample Webpage from MySupermarket’s Website
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based system, which is useful for providing initial recommendations and is critical for

other MySupermarket applications. However, once a sufficient history is stored through

system use, item based and collaborative components can be potentially useful in im-

proving the system. However, one key question that must be addressed is when and how

can this data be useful in improving the system. Thus, care must be taken to properly

evaluate the usefulness of this added information, as we now detail.

4.1 A High Level System Overview

We propose constructing a three pronged hybrid that is knowledge based, but uses item

based and collaborative elements. A high level overview of our solution is shown in

Figure 3. As per MySupermarket’s business model, the Knowledge Based component

is at the core of the system and is shown at the top left corner of the diagram. As people

begin using the system, historical data is accumulated and this data is sent as input into

item based and collaborative components. If this data is found to be useful, a hybrid

model is formed where these models can be used in several ways: First, and on the most

basic level, assuming the expert’s knowledge is not equivalent to these models, we can

manually query the expert for input. It may be the expert will then wish to manually

revise or accept the values automatically generated by these components. However, as

we have begun to find, the experts are willing to forgo this step, thus automatically

accepting the autonomously generated agent changes. The outcome is a revised hybrid

system, that began exclusively as being knowledge based, but has accepted many key

components from the item based and collaborative algorithms.

To better understand the process by which the knowledge based recommender is

modified, please refer to Algorithm 1. As lines 1 and 2 state, initially the experts must

manually evaluate every item within the system, assigning a similarity value for every

product versus all other products. This similarity values is then evaluated in conjunction

with all other item attributes in a hard-coded formula to produce the system’s initial rec-

ommendations. However, as the system is used, some critical size of product history is

likely to become available for this product (line 5), to reevaluate these initial knowledge

based recommendations. Assuming this is the case, we currently perform three checks.

First, in line 6, we evaluate the overall effectiveness for the recommendation output

of this product. We found that for many products the users were willing to accept the

system’s recommendations, and for others users almost never accepted the system’s

recommendation. Currently, we simply flag those products with a very low user accep-

tance of the system’s recommendations (line 6) and present these results to the experts

for consideration. However, our goal is to automate any such evaluations through al-

lowing the recommender agents to autonomously change the system. To accomplish

this, we use verify and change the system through item-based and collaborative data

when available. In line 8, agents automatically evaluate the effectiveness of the expert’s

hard-coded initial weights through machine learning techniques, e.g. decision trees, as

described in the next subsection. Assuming this item-based model is not built around the

expert’s information (line 9), the system can either prompt the expert to accept the item
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Fig. 2. An architecture of a Hybrid Recommender System that is based on expert knowledge, but

also revises the system with item-based and collaborative components.

based recommendations or as we have begun to allow, autonomously update the system

(line 10). Furthermore, the recommender agent checks the initial expert’s recommen-

dations against acquired collaborative data (line 11). Assuming these weights are not

equal (line 12), we again either prompt the user to accept the changes or automatically

update the system.

Algorithm 1 The major steps for dynamically updating / changing the recommenda-

tion system

01 for Every product in System do

02 Create initial recommendations based on Expert’s Knowledge

03 while the System is in use do

04 for Every product in System do

05 if data history exists for this product then

06 if User acceptance for product < threshold then

07 Flag product in system

08 Build Item Based Model with Decision trees

09 if Expert’s Information not the root of the decision tree then

10 Present findings to Expert / Accept Item Based Recommendations

11 if Hybrid-Item weight �= Collaborative Values then

12 Present findings to Expert / Accept Collaborative Values

As Algorithm 1 indicates, the recommender system is one in flux, beginning exclu-

sively based on expert knowledge, but allows agents to autonomously update the initial
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system. However, in doing so, several challenges exist with implementing this algo-

rithm, which are addressed in the following subsection. All three system checks of the

expert’s initial recommendations (lines 6 – 12) are built around the assumption that the

recommender system can be objectively be evaluated. However, as we present in the

next Section (4.2), evaluating recommender systems is far from trivial, especially if a

controlled dataset cannot be formed. Second, we present a novel approach where agents

can check the expert’s recommendations using item based information. This again is not

simple, and our approach for doing so is presented in Section 4.3. Finally, the use of

collaborative data is again non-trivial, and our approach for doing so is presented in

Section 4.4.

4.2 Evaluating the Overall System

MySupermarket’s B2B and B2C applications are both built on their experts’ knowledge.

Thus, the key question about the accuracy of the expert’s knowledge is not limited to the

recommendations for their e-commerce website, but also for their B2B application as

well. In general, many metrics have been proposed to date to evaluate the effectiveness

of recommendation systems [7]. For example, one popular choice, used in the Netflix

competition [2] is to use the root mean error level of prediction between a set of pre-

viously tagged known ratings that people provide, and a set of automatically generated

recommendations by the system. However, this possibility is not available to us, as we

have no previously tagged data to use as a baseline. Instead, we use the bottom line user

satisfaction measure most intuitive to use in commercial systems [7].

We propose that two types of bottom line measures are useful in evaluating the

expert’s knowledge of this system. The first, and possibly more intuitive measure is to

measure the number of purchases made because of the recommended product swaps. As

the company has logged all transactions to its website over the past 5 years, extensive

historical data is available to allow for this analysis. A second complementary measure

searches for statistical correlation between those elements that were swapped in the past

(line 5 of Algorithm 5) and the expert’s recommendations. Note that the two studies are

intrinsically linked: If no swaps are performed, the recommendation system is clearly

not producing quality alternatives, and no correlation will be found between people’s

decisions and their swap purchases. If swaps are frequently performed, the question

then becomes, “why”? Are these swaps due to something inherent with these products,

or due to the expert’s knowledge, both factors, or something else?

We found that the number of swap purchases made varied greatly between different

product families. Figure 2 presents a look at 5 different product families and their aver-

age number of executed “swaps” or acceptance of the system’s recommendation. Note

that these 5 product families are a small samples of the 950 product families within the

system. However, we did find overall great differences in the acceptance of the system’s

recommendations across different types of products. Intuitively, such differences may

be because people are naturally more picky about accepting certain product substitu-

tions other others. For example, we found that people looking to buy a certain type of

51



10 Avi Rosenfeld and Aviad Levy and Asher Yoskovitz

Fig. 3. Five Different Product Families and their Average Number of Accepted Recommendations

dental accessories (e.g. dental floss) were most likely to accept the system’s recom-

mendation and chose an alternate product approximately 80% of the time. However,

people who were looking to buy a certain type of insecticide were only nearly 60%

likely to accept the system’s recommendation, and people looking for hand cream were

accepted the system’s recommendation about 40% of the time. The percentage of times

users accepted certain recommendations were extremely low, such as slightly more than

20% for chocolate mints, and less than even 5% for soup mixes. Overall we found that

these examples represent a wide range of acceptance levels, and that people accepted

the system’s recommendations approximately 35% of the time. However, is this level

of success due to some inherent pickiness of users about some types of products ver-

sus others, or is this the truly optimal state? If it is not the optimal state, what changes

would be necessary to further improve the system’s performance?

At present, MySupermarket uses this swap analysis to create a report to the experts.

The experts are then asked to manually analyze the data to question if their knowledge

is in fact effective in generating more sale. For example, we may present the system’s

5% success in generating swaps for soup mixes and ask the expert to manually change

its recommendation scheme for the products in this group. However, the company’s

vision involves using autonomous agents to automatically update these expert’s values,

as described in the following sections.

4.3 Evaluating the System with Item Data

Our first goal was to verify and update the expert’s similarity measure through using

machine learning techniques to check the predictive ability of the expert’s informa-
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tion. To do so, we use the well recognized Weka [12] package to create a predictive

model regarding when people purchased a product from the among the system’s rec-

ommendations. Realistically, some complex relationship likely exists between the type

of product, the quality of the expert’s information, the possible savings to the user, and

other factors in determining if a swap purchase is made. For example, this analysis may

find that price is used for some categories, other products are only swapped when the

expert’s similarity measure is less than a certain amount, and certain products are never

swapped.

The use of machine learning techniques to validate the recommendation model is

a twist from the classic use of these algorithms within item based recommenders. In

classic item-based classification, a collection of all item characteristics are used in con-

junction with historical data about purchases to create a learned model that correlates

between the two [10]. This type of learning can use any machine learning algorithm,

including Bayes, decision trees, and nearest neighbor methods to accurate find a corre-

lation between items, their characteristics, and historical data. No a-priori assumption

is made as to which characteristics will make the best model – in fact the purpose of the

model is to find these characteristics. In contrast, our goal is exactly the opposite. The

expert has already decided and hard-coded her own similarity measure as being most

important, and fixed the relative value of all other item characteristics. In the best case

scenario, the expert has discovered certain domain specific knowledge, encapsulated

in its similarity measure, allowing it to surpass the recommendations of a pure item

based system. Alternatively, the item based rules may approximate the expert based

knowledge, and comparing the derived rules will allow us to confirm the accuracy of

the expert knowledge. However, the pure item based system might be more accurate,

allowing us to pinpoint for exactly which items the expert’s knowledge is less accurate.

We chose to evaluate the expert’s knowledge through creating a model based on

decision trees. The advantage towards using trees versus any other model is that Weka

[12] not only creates a machine learning model, but also outputs the exact rules used in

this model. Assuming the expert’s knowledge is critical to the system, one would expect

to find the expert’s similarity measure to be the key rule, or at the root of the decision

tree. If the expert’s knowledge is not effective, one would expect it to either not appear

in the tree, or be limited to only very specific instances.

In creating these decision trees, we used as input the history of people’s swap pur-

chases for given product families, and entered all items’ data into Weka [12]. The item’s

input data included information the expert’s similarity measure, the projected saving by

choosing the new item, as well as items characteristics not currently given significant

weight by the expects, such as the serial number of the product and the serial number of

the proposed product. We recognize that it is quite possible that items the overlooked,

say the serial number of the proposed product, may produce recommendations that the

experts overlooked.

For many product families, we were able to confirm the importance of the expert’s

knowledge, while for other products the expert’s knowledge seemed much less impor-

tant. For example, Weka’s decision tree for purchases made for squash had at the root

of the tree: similarity <= 1.25, or if the similarity measure is less than 1.25, then peo-

ple are likely to buy in certain conditions. In other product families, such as for milk
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products, the similarity function was of secondary importance to the difference in cost

between products. Here we found the rule: If the AlternativePrice < 0.85 and simi-

larity < 1.1, then given certain other conditions the person will purchase the product.

However, for other product families similarity had seemingly no significance. For ex-

ample, for toilet paper the root rule was if the OriginalPricePerUnit <= 0.35 and the

AlternativePricePerUnit <= 0.28, then a person will buy given other conditions. Thus,

we found that using decision trees were useful in automatically generating where the

expert’s knowledge was most useful.

Note that as per line 9 of Algorithm 1, two possibilities exist when decision trees

found that the expert’s similarity measure was not the most important item characteris-

tic. Until recently, this information was presented to the expert, who could then decide if

she would like to revise the values, or accept the decision tree’s rules instead. However,

we have begun a pilot whereby the agent autonomously updates the expert’s recom-

mendation, especially for products where the expert’s recommendations yielded a low

recommendation (e.g. set the threshold of line 6 of Algorithm 1 to 10%).

4.4 Evaluating the System with Collaborative Data

We also use historical data to create a collaborative model to augment the expert’s rec-

ommendations. The above machine learning approach to validate the expert’s similarity

measure can validate the importance of this item to the recommender agent for how the

average, or typical user, behaved. Furthermore, the weights set by the expert, and even

by the hybrid knowledge-item based system, are still uniform across all users. However,

this approach does not validate how a specific user behaved, and if this model is appro-

priate for a specific user. For example, the experts may have hard-coded the system

to only present alternatives where a similarity value of 1.0 or less is found. However,

it may be found that certain users are willing to buy items that are even less similar

(e.g. values of greater than 1.0) and some are more discriminating and only purchase

items that are far more similar (say similarity 0.5 or less). Thus, the above approach can

only verify that user’s in general are willing to make purchases based on the expert’s

measures, it cannot predict if a specific user deviates from this assumption.

Note that the difference of the behavior of a general user and the behavior of a spe-

cific user is the inherent difference between item-based and collaborative recommen-

dation systems. As our goal is to customize the system’s recommendations as much

as possible, we present a heuristic approach where the hybrid knowledge-item based

agent’s recommendations are further customized based on that specific user’s history.

In general, we found that users generally decide to purchase a product based on

the expert’s similarity measure and the potential cost savings of the new item. How-

ever, while we found that these two attributes were important across all users, and thus

formed an effective hybrid item-knowledge based system, the actually savings and sim-

ilarity measures used by a specific user could differ greatly. To address this issue, we

found that an heuristic approach, where the similarity and savings measures were tuned

based on a specific user’s past activity for a given product, was highly effective in im-

proving the system’s recommendations. This led to an effective automatic tuning of

these parameters, increasing the companies sales through customers’ swaps.
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In general, it is important to stress that the company’s experts were initially ex-

tremely hesitate to forgo their initial values in favor of these found by the item based

and collaborative elements as described in the paper. This issue is further complicated

by the fact that the system lacks any proper evaluating dataset, and thus it was extremely

difficult to convince the experts of the importance of the agent’s recommendations. We

overcame this obstacle by first revising the systems only for those products where the

initial success of the expert’s system was extremely low (see line 6 of Algorithm 1).

This work is ongoing, and will take nearly a year before we can quantify where this

approach was successful. However, the generality of this approach leads and our initial

feedback from the company’s experts have led us to be confident about its importance.

5 Conclusions and Future Work

In this paper we introduced a novel hybrid approach to combine a knowledge based rec-

ommender system with item based and collaborative filtering elements. The system’s

recommender agent begins with a system exclusively based on the expert’s knowledge,

thus avoiding the classic cold start problem. However, as the system is used, a progres-

sively larger history of user transactions are recorded. The system then uses this infor-

mation to create hybrid models with item and collaborative items. An item based model

is used to validate or even replace the user’s knowledge. We describe using a novel vari-

ation of machine learning techniques to create a classic item based model can be used to

validate the expert’s knowledge. When the item based model finds the expert’s knowl-

edge is at the root of the item based model, the expert’s knowledge is accepted. When it

is found to not be a critical item in the model, the system can prompt the expert to up-

date item data, or automatically replace and update the user’s knowledge. Additionally,

if the expert’s knowledge is validated by the item based model, collaborative models are

useful for further improving the system’s recommendations by automatically tweaking

the system’s item’s parameters based on a specific user’s purchases. We present the sys-

tem’s prototype implementation and initial results demonstrating the importance and

success of this approach.

Several related problems are worthy of future consideration. One key hurdle we

needed to overcome was convincing the data experts that the agent’s item and collabo-

rative recommendations should replace or augment their own. We hope to further study

at what point can one assume the agent’s recommendations are definitive, and how to

convince the experts of this. Achieving this goals would significantly aid us in the goal

of fully automating system revisions. Additionally, we hope to further address how the

system’s evaluation can be better automated without explicitly labeled data as is done

in many classic recommendation system’s, such as the Netflix challenge [2]. We be-

lieve the approach we present, of using machine learning techniques to create an item

based approach for evaluation, can be further generalized to address this point. The im-

portance of hybrid systems such as the knowledge, item and collaborative system we

present, are likely to be of significance to other areas and fields as well. It is likely that

use of expert information can help avoid the “cold start” problem in other problems

as well. Our model, where collaborative and item based information are later used, are
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likely to be equally useful for these problems as well. We hope to study what modifica-

tions to our approach are necessary, if any, in addressing new problems.
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Abstract. We address the challenges of evaluating the fidelity of autonomous

agents that are attempting to replicate human behaviors. This is a fundamental

issue in the emerging intersection of artificial intelligence and social science mo-

tivated by problems such as training in virtual environments and large-scale social

simulation. Our specific interest focuses on emulating human strategic behavior

over time. We introduce and investigate the Social Ultimatum Game and discuss

the efficacy of a set of metrics in comparing various autonomous agents to human

behavior collected from experiments.

1 Introduction

We address the challenge of building autonomous agents that exhibit human-like be-

havior in economic settings and more importantly, developing techniques for evaluat-

ing their efficacy. In particular, we are interested in multi-agent domains where humans

make sequential decisions over time. In many settings, agent “goodness” is typically

evaluated relative to optimal behavior, using a metric like expected reward. However,

realistic human behavior is often not optimal, and in many of the domains of interest,

the notion of optimality is ill-defined.

Optimality of one agent in a multi-agent domain is dependent on the other agents.

If a machine’s assumptions about the other agents is incorrect, then its behavior, even

if optimal given those assumptions, could be wildly different from normal human be-

havior. We will see an example of this shortly, in a variant of the classic Ultimatum

game. Since the validity of these assumptions is an essential part of what must be eval-

uated, optimality based on the assumptions is not a good metric for realism. We need a

different approach.

Human data in multi-agent domains is getting easier to collect, given the current

state of access to the Internet and online interaction. Thus, we can obtain baseline col-

lections of behavior trajectories that describe human play. The challenge is to find a

way to compare collections of traces produced by autonomous agents with this existing

baseline, in order to determine which agents exhibit the most realistic behavior.

In this paper, we investigate these issues in the context of the Social Ultimatum

Game (SUG). SUG is a multi-agent multi-round extension of the Ultimatum Game [5],

which has been a frequently studied game over the last three decades as a prominent

example of how human behavior deviates from game-theoretic predictions that use the

“rational actor” model. Data gathered from people playing SUG was used to create
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various classes of autonomous agents that modeled the behaviors of the individual hu-

man players. We then created traces from games with autonomous agents emulating the

games that the humans played. We develop several metrics to compare the collections

of traces gathered from games played by humans and games played by the autonomous

agents. From this analysis, it becomes clear that human behavior contains unique tem-

poral patterns that are not captured by the simpler metrics. In SUG, this is revealed in

the likelihood of reciprocity as a function of the history of reciprocity. The key impli-

cation is that it is critical to retain the temporal elements when developing metrics to

evaluate the efficacy of autonomous agents for replicating human strategic behavior in

dynamic settings.

2 The Social Ultimatum Game

To ground our subsequent discussion, we begin by introducing the Social Ultimatum

Game. The classical Ultimatum Game, is a two-player game where P1 proposes a split

of an endowment e ∈ N to P2 who would receive q ∈ {0, δ, 2δ, . . . , e− δ, e} for δ ∈ N.

If P2 accepts, P2 receives q and P1 receives e− q. If P2 rejects, neither player receives

anything. The subgame-perfect Nash or Stackelberg equilibrium has P1 offering q = δ
(i.e., the minimum possible offer), and P2 accepting, because a “rational” P2 should

accept any q > 0, and P1 knows this. Yet, humans make offers that exceed δ, make

“fair” offers of e/2, and reject offers greater than the minimum.

To represent the characteristics that people operate in societies of multiple agents

and repeated interactions, we introduce the Social Ultimatum Game. Players, denoted

{P1, P2, . . . , PN}, play K ≥ 2 rounds, where N ≥ 3. In each round k, every player Pm

chooses a recipient Rk
m and makes them an offer qkm,n (where n = Rk

m). Each recipient

Pn then considers the offers they received and makes a decision dkm,n ∈ {0, 1} for each

offer qkm,n to accept (1) or reject (0) it. If the offer is accepted by Pm, Pm receives

e − qkm,n and Pn receives qkm,n, where e is the endowment to be shared. If an offer is

rejected by Pn, then both players receive nothing for that particular offer in round k.

Thus, Pm’s reward in round k is the sum of the offers they accept (if any are made to

them) and their portion of the proposal they make, if accepted:

rkm = (e− qkm,n)d
k
m,n +

∑

j=1...N,j �=m

qkj,mdkj,m (1)

The total rewards for Pm over the game is the sum of per-round winnings, rm =∑K
k=1 r

k
m. A game trajectory for Pm is a time-series of proposed offers, Ok

m = (Rk
m, qkm,n, d

k
m,n)

and received offers, Ok
n,m = (Rk

n, q
k
n,m, dkn,m). At time k, the trajectory for Pm is

T k
m = (Ok

m, {Ok
n,m}n, O

k−1
m , {Ok−1

n,m}n, . . . , O
1
m, {O1

n,m}n). Assuming no public in-

formation about other players’ trajectories, T k
m includes all the observable state infor-

mation available to Pm at the end of round k.
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3 Metrics

Let Cm be the collection of trajectories Pm produces by taking part in a set of Social

Ultimatum Games. In other domains, these traces could represent other interactions.

Our goal is to evaluate the resemblance of a set of human trace data C to other sets of

traces C̃, namely those of autonomous agents. We need a metric that compares sets of

multi-dimensional time series: d(C, C̃). Standard time-series metrics such as Euclidean

or absolute distance, edit distance, and dynamic time warping [9] are not appropriate in

this type of domain.

One challenge arises because we are interested in the underlying behavior that cre-

ates the trajectories rather than superficial differences in the trajectories themselves.

If we can collapse a collection of traces C to a single probability distribution Q, by

aggregating over time, then we can define a time-collapsed metric,

d(C, C̃) = KL(Q||Q̃) +KL(Q̃||Q) (2)

where KL denotes the Kullback-Leibler divergence. The sum enforces symmetry and

nonnegativity. Time-collapsed metrics for SUG include:

– Offer Distribution. Let QO be the distribution of offer values {qkm,n} observed

over all traces and all players.

– Target-Recipient Distribution. Let QR denote the likelihood that a player will

make an offer to the kth most likely recipient of an offer. This likelihood is non-

increasing in k. In a 5-person game, a single player may have an target-recipient

distribution that looks like {0.7, 0.1, 0.1, 0.1} which indicates that they made offers

to their most-targeted partner 7 times more often than their second-highest-targeted

partner. We can produce QR by averaging over all games to characterize a player

and further average over all players to characterize a population.

– Rejection Probabilities. For each offer value q, we have a Bernoulli distribution

QBq that captures the likelihood of rejection by averaging across all players, games

and rounds in a collection of traces. We then define a metric:

dB(C, C̃) =

10∑

q=0

KL(QBq ||Q̃Bq ) +KL(Q̃Bq ||QBq ).

We can also define time-dependent metrics that acknowledge that actions can de-

pend on observations of previous time periods. One prominent human manifestation of

this characteristic is reciprocity. We define two time-dependent metrics based on reci-

procity:

– Immediate Reciprocity When a player receives an acceptable offer from someone,

they may be more inclined to reciprocate and propose an offer in return in the next

round. We can quantify this p(Rk+1
m = n|Rk

n = m) across all players and games

in a collection of traces. This probability defines a Bernoulli distribution QY from

which we can define a metric dY as before.
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– Reciprocity Chains Taking the idea of reciprocity over time further, we can cal-

culate the probability that an offer will be reciprocated, given that a chain of reci-

procity has already occurred. For example, for chains of length c = 2, we p(Rk+1
m =

n|Rk
n = m,Rk−1

m = n); for c = 3, we calculate p(Rk+1
m = n|Rk

n = m,Rk−1
m =

n,Rk−2
n = m). As before, these probabilities can be used to define a Bernoulli

distribution QYc for each length c. Then, for some L, we define

dYL (C, C̃) =

L∑

c=1

KL(QYc ||Q̃Yc) +KL(Q̃Yc ||QYc).

We expect that the longer a pair of players reciprocate, the higher the likelihood that

they will continue doing so. The probabilities of how likely humans are to reciprocate

can be obtained from the experimental data.

4 Autonomous Agents

In this section, we describe various agent models of behavior. We first apply traditional

game-theoretic analysis to the Social Ultimatum Game to derive the “optimal” behavior

under rational actor assumptions. We then describe two distribution-based agents that

do not model other agents but are capable of incorporating human behavior data. Fi-

nally, we describe an adaptive agent that incorporates some aspects of human behavior

such as fairness and reciprocity.

4.1 Game-Theoretic Agents

Let strategies be characterized by the statistics that they produce in steady-state: the

distribution of offers made by each player, where pgm(n, q) denotes the likelihood that

Pm will give an offer of q to Pn, and the distribution of offers accepted by each player,

where pam(n, q) denotes the likelihood that Pm will accept an offer of q from Pn. Then,

the expected reward for Pm per round in steady-state is rm =

∑

n,q

qpgn(m, q)pam(n, q) +
∑

n,q

(e− q)pgm(n, q)pan(m, q) (3)

where
∑

n,q p
g
m(n, q) = 1, ∀m, as the total outgoing offers must total one offer per

round, and the acceptance likelihoods are pam(n, q) ∈ [0, 1], ∀m,n, q. A player max-

imizing these rewards will modify their offer likelihoods {pgm(n, q)} and acceptance

likelihoods {pam(n, q)}, given those of other players. A player can create the desired

statistics by playing a stationary mixed strategy with the desired likelihoods. To opti-

mize the offer likelihoods, Pm sets

pgm(n, q) > 0, ∀n ∈ N g ⊂ argmax
n

max
q

(e− q)pan(m, q)

such that
∑

n,q p
g
m(n, q) = 1, and pgm(n, q) = 0, otherwise. Thus, in equilibrium,

Pm will make offers to those agents whose acceptance likelihoods yield the highest

expected payoff.
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Proposition 1. In the Social Ultimatum Game, accepting all offers is not a dominant

strategy.

Proposition 2. In the Social Ultimatum Game, Nash equilibrium outcomes only hap-

pen when players employ strategies of the form “greedy’ strategies, where

pgm(n, q) = 0, ∀q > δ,m, n, pam(n, δ) = 1, ∀m,n, (4)

i.e.,“greedy” strategies where players only make the minimum offers of δ, and all play-

ers accept all minimum offers.

Proof details are provided in [2].

4.2 Distribution-Based Agents

One way to create agents that satisfy a set of metrics is to use the metrics to generate

the agent behavior. Using only time-collapsed metrics, one could create a distribution-

based agent (DBA) as follows. Learn distributions of offer value, target recipient and

rejection percentage from human data. Find the appropriate target-recipient distribution

based on number of participants and assign agents to each position (i.e., most likely

to least likely). In offer phases of each round, choose a target by sampling from the

target-recipient distribution and an offer value by sampling from the offer distribution.

For received offers, decide via Bernoulli trial based on the rejection percentage for that

offer value.

The DBA has no notion of reciprocity. We also investigated a class of distribution-

based reciprocal agents (DBRA) which behave like the DBA agents in all aspects other

than target selection. If DBRA agents receive an offer it will decide to reciprocate based

on a reciprocation percentage that is learned from human data. If multiple offers are

received, the target is chosen using a relative likelihood based on the target-recipient

distribution. Similarly, if it doesn’t receive any offers, it uses the target-recipient dis-

tribution. While the distribution-based agents act on the basis of data of human play,

they do not have models of other agents and consequently execute an open-loop static

policy. The following model introduces an adaptive model that is not based simply on

fitting the metrics.

4.3 Adaptive Agents

In order to create adaptive agent models of human players for the Social Ultimatum

Game, we need to incorporate some axioms of human behavior that may be considered

“irrational”. The desiderata that we address include assumptions that people will (1)

start with some notion of a fair offer, (2) adapt these notions over time at various rates

based upon their interactions, (3) have models of other agents, (4) choose the best option

while occasionally exploring for better deals. Each player Pm is characterized by three

parameters: α0
m : Pm’s initial acceptance threshold, βm : Pm’s reactivity and γm : Pm’s

exploration likelihood.

The value of α0
m ∈ [0, e] is Pm’s initial notion of what constitutes a “fair” offer

and is used to determine whether an offer to Pm, i.e., qkn,m, is accepted or rejected. The
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value of βm ∈ [0, 1] determines how quickly the player will adapt to information during

the game, where zero indicates a player who will not change anything from their initial

beliefs and one indicates a player who will solely use the last data point. The value of

γm ∈ [0, 1] indicates how much a player will deviate from their “best” play in order to

discover new opportunities where zero indicates a player who never deviates and one

indicates a player who always does.

Each player Pm keeps a model of other players in order to determine which player

to make an offer to, and how much that offer should be. The model is composed as

follows: akm,n : Pm’s estimate of Pn’s acceptance threshold; ākm,n : Upper bound on

akm,n ; and akm,n : Lower bound on akm,n. Thus, Pm has a collection of models for

all other players {[akm,na
k
m,nā

k
m,n]}n for each round k. The value am,n is the Pm’s

estimate about the value of Pn’s acceptance threshold, while akm,n and ākm,n represent

the interval of uncertainty over which the estimate could exist. For simplicity, we will

assume that δ = 1.

Making Offers In each round k, Pm may choose to make the best known offer, denoted

q̃km, or explore to find someone that may accept a lower offer. If there are no gains to be

made from exploring, i.e., the best offer is the minimum offer (q̃km = δ = 1), a player

will not explore. However, if there are gains to be made from exploring, with probability

γm, Pm chooses a target Pn at random and offers them qkm,n = q̃km−1. With probability

1− γm, Pm will choose to exploit. The target is chosen from the players who have the

lowest value for offers they would accept, and the offer is that value:

qkm,n = ⌈akm,n − ǫ⌉ where n ∈ arg min
ñ�=m

⌈akm,ñ⌉ (5)

The previous equation characterizes an equivalence class of players from which Pm

can choose a target agent. The ǫ parameter is used to counter boundary effects in the

threshold update, discussed below. The target agent from the equivalence class is chosen

using proportional reciprocity, by assigning likelihoods to each agent with respect to

offers made in some history window.

Accepting Offers For each offer qkm,n, the receiving player Pn has to make a decision

dkm,n ∈ {0, 1} to accept or reject it, based on its threshold:

If qkm,n ≥ ⌈αk
m − ǫ⌉, then dkm,n = 1, else dkm,n = 0 (6)

Updating Acceptance Threshold The acceptance threshold is a characterization of

what the agent considers a “fair” offer. Once an agent is embedded within a community

of players, the agent may change what they consider a “fair” offer based on the received

offers. We model this adaption using a convex combination of the current threshold and

the offers that are received, with adaptation parameter βm. Let the set of offers that are

received be defined as: Rk
m = {qki,j : j = m, qki,j > 0}. If |Rk

m| ≥ 1, then αk+1
m =

(1− βm)|R
k
m|αk

m +
(1− ((1− βm)|R

k
m|)

|Rk
m|

∑

i

qki,m (7)
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If |Rk
m| = 0, then αk+1

m = αk
m. Thus, offers higher than your expectation will raise

your expectation and offers lower than your expectation will lower your expectation at

some rate.

Updating Threshold Estimate Bounds As a player makes an offer qkm,n and receives

feedback on the offer dkm,n, they learn about Pn’s acceptance threshold. Using this

information, we can update our bounds for our estimates of their threshold. The details

can be found in an extended version of this paper.

Updating Threshold Estimates Once the threshold bounds are updated, we can mod-

ify our estimates of the thresholds as follows. If the player accepts the offer, we move

the estimate of their threshold closer to the lower bound and if the player rejects the

offer, we move our estimate of their threshold closer to the upper bound using a convex

combination of the current value and the appropriate bound as follows.

dkm,n = 1 ⇒

ak+1
m,n = min{βm ak+1

m,n + (1− βm)akm,n, ā
k+1
m,n} (8)

dkm,n = 0 ⇒

ak+1
m,n = max{βm āk+1

m,n + (1− βm)akm,n, a
k+1
m,n + 2ǫ} (9)

The min and max operators ensure that we don’t make unintuitive offers (such as re-

peating a just rejected offer), if our adaptation rate is not sufficiently high. The adaptive

agent described above fulfills the properties of the desiderata prescribed to generate

behavior that is more aligned with our expectations in reality.

5 Experiments

Data was collected from human subjects recruited from undergraduates and staff at the

University of Southern California. In each round, every player is given the opportunity

to propose a $10 split with another player of their choosing. Games ranged from 20

to 50 rounds. A conversion rate of 10 ultimatum dollars to 25 U.S. cents was used

to pay participants, i.e., $5 per 20 rounds per player in an egalitarian social-welfare

maximizing game. The subjects participated in organized game sessions and a typical

subject played three to five games in one session. Between three and seven players

participated in each game. During each session, the players interacted with each other

exclusively through the game’s interface on provided iPads, shown in Figure 1. We have

collected data from 27 human subject games thus far. In this paper, we focus on the

seven 5-person games in the dataset. By restricting our attention to five-player games,

we avoid biases that may be introduced if we attempted to normalize the data from the

other games to reflect a five-person composition. Analysis on the games of other sizes

yields similar results.

To create the Distribution-Based Agent and Distribution-Based Reciprocal Agent

to the collected data, we calculated the appropriate distributions (offer value, rejection
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Fig. 1. The Social Ultimatum Game Interface

percentage by value, targeted-recipient), by counting and averaging over all games and

all players. For the Adaptive Agents, we analyzed the traces of each game, and esti-

mated game-specific α, β, γ parameters of each of the participating players, as follows.

For each player Pm in the game,

– αm : This is set as the player’s first offer in this game.
– βm : When a player decreases his offer to a specific player from q1 to q2 after K

steps (not necessarily consecutive), we find and store the best β value such that K
applications of βq2+(1−β)q1 yields a result less than q1+q2

2 (so that the next offer

should be closer to q2 then it is to q1). We then take βm to be this stored β value.
– γm : This is the likelihood that a player’s offer is less than the minimum known ac-

cepted offer, where the minimum accepted offer at a given round k is the minimum

offer known to be accepted by any player at time k − 1.

Having estimated the population parameters of each game, we then use them as

input to create an autonomous agent for each player, and simulate each game ten times

to produce ten traces. Within each of these games, each of the five players uses the

parameters corresponding to one of the five original human players.

6 Evaluation

These experiments and simulations result in a collection of game traces for each of

the five types of agent discussed: Human, Adaptive, DBA, DBRA, and Game-theoretic

(GT). Table 1 shows the similarity between the collection of human traces and each

of the four collections of autonomous agent traces, according to the metrics discussed

earlier.

The DBA and DBRA agents score very well on the three metrics based on offer

value, rejection percentage, and target-recipient. We fully expect this result as both these

agents generate their behavior by sampling from these distributions. It is also clear that

the GT agent performs very differently from the human data, based on most of the
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Adaptive DBA DBRA GT

dO 0.57 0.008 0.008 33.26

dR 0.21 0.0005 0.01 0.19

dB 11.74 0.008 0.11 32.83

dY8 4.22 16.34 20.10 97.02

Table 1. Similarity to human play, based on various metrics.

metrics. Naturally, the Adaptive Agent scores worse than the distribution-based agents

on the temporally-independent distribution metrics dO, dR, and dB , but its behavior

is still relatively close to human behavior. On the temporally-dependent reciprocation-

chain metric dY8 , the Adaptive Agent scores much better in similarity to the human

traces.

To get a more intuitive sense of the differences in the trace data, we also display the

actual distributions that underlie the metrics in Figure 6 which shows the distributions

of offer amounts for each of the agent types, the probability of rejection given each offer

amount, the distribution of offer recipients, ordered from most likely to least likely, and

the probability that an offer will be reciprocated, given that a chain of c offers have been

made between the players in the past c = 1, 2, . . . , 8 time periods.

While the Adaptive Agent may not have been the most human-like agent according

to the other three metrics, the form of its distributions still reasonably resembled the

distributions produced by human play. However, on the time-dependent reciprocation-

based metric, it is very clear that the Adaptive Agent is the only one that exhibits behav-

ior that is similar to human play. This temporal dependence is crucial to creating agent

behavior that emulates human behavior.

7 Related Work

Our choice to investigate the Ultimatum Game was motivated by its long history in

the field and the fact that it is a leading example of where game-theoretic reasoning

fails to predict consistent human behaviors [4, 10, 5]. Economists and sociologists have

proposed many variants and contexts of the Ultimatum Game that seek to address the

divergence between the “rational” Nash equilibrium strategy and observed human be-

havior, for example, examining the game when played in different cultures, with mem-

bers of different communities, where individuals are replaced by groups, where the

players are autistic, and when one of the players is a computer. Interestingly, isolated

non-industrialized cultures, people who have studied economics, groups, being autistic,

and playing with a computer all tend to lead to less cooperative behavior [4, 10, 8, 6, 1,

3]. Learning human game data is a promising approach for quickly learning realistic

models of behavior. In the paper, we have demonstrated this approach in SUG, and pro-

posed metrics that evaluate the similarity between autonomous agents’ game traces and

human game traces.

Recently, there has also been other work attempting to model human behavior

in multi-agent scenarios, primarily in social network and other domains modeled by
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graphical relationship structures [7]. In contrast, our work focuses on multi-agent sit-

uations where motivated agents make sequential decisions, thus requiring models that

include some consideration of utilities and their interplay with psychological effects.

Our Adaptive Agent is a simple model, with parameters that are fit to the collected data,

that demonstrates this approach.

Finally, a critical aspect of this line of work must include the development of ap-

propriate metrics for evaluating the verisimilitude of the autonomous agent behaviors

to human behavior. While there is a long literature on time-series metrics [9], in this

paper, we show that these metrics do not capture the temporal causality patterns that are

key to evaluating human behaviors, and thus are insufficient to evaluate agent behaviors

when used alone.

8 Conclusion

Our goal is to develop approaches to create autonomous agents that replicate human

behavior in multi-agent domains where humans make sequential decisions over time.

To create and evaluate these agents, one needs appropriate metrics to characterize the

deviations from the source behavior. The challenge is that a single source behavior in

dynamic environments produces not a single decision but instead multiple traces where

each trace is a sequence of decisions. A single source can produce a diverse collection

of traces. Thus, the challenge is to find a way to compare collections of traces.

We introduced the Social Ultimatum Game and in that context, developed time-

collapsed and time-dependent metrics to evaluate a collection of autonomous agents.

We showed that agents built on time-collapsed metrics can miss key characteristics of

human play, in particular an accurate model of temporal reciprocity. While our adap-

tive agent was able to perform closer to this metric, the key is the identification of

time-dependent metrics as a key factor in evaluating emulation agents. This also has

implications on the type of agent model necessary to have as a substrate upon which

one can learn from human data.

Going forward, we will consider more complex domains and potential correspond-

ing models. We will require both general, parameterized models that can be learned

from data, as well as more formal methods for constructing appropriate temporal met-

rics to automatically evaluate the realism of the learned behaviors.
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Abstract. Non-cooperative bargaining is modeled as an extensive–form
game with uncertain information and infinite actions. Its resolution is a
long–standing open problem and no algorithm addressing uncertainty
over multiple parameters is known. We provide an algorithm to solve
bargaining with any kind of one–sided uncertainty. Our algorithm re-
duces a bargaining problem to a finite game, solves this last game, and
then maps its strategies with the original continuous game. Computa-
tional complexity is polynomial with two types, while with more types
the problem is hard and only small settings can be solved in exact way.

1 Introduction

The automation of economic transactions through negotiating software agents is
receiving a large attention in the artificial intelligence community. Autonomous
agents can lead to economic contracts more efficient than those drawn up by
humans, saving also time and resources [13]. We focus on the main bilateral
negotiation setting: the bilateral bargaining. This setting is characterized by the
interaction of two agents, a buyer and a seller, who can cooperate to produce a
utility surplus by reaching an economic agreement, but they are in conflict on
what specific agreement to reach. The most expressive model for non–cooperative
bargaining is the alternating–offers [10]: agents alternately act in turns and each
agent can accept the offer made by her opponent at the previous turn or make
a new offer. Agents’ utility over the agreements depends on some parameters:
discount factor, deadline, reservation price. In real–world settings, agents have
a Bayesian prior over the values of the opponents’ parameters.

The alternating–offers is an infinite–horizon (agents can indefinitely bar-
gain) extensive–form (the game is sequential) Bayesian (information is uncer-
tain) game and the number of available actions to each agent is infinite (an offer
is a real value). The appropriate solution concept is the sequential equilibrium [7].
The game theoretic study of bargaining with uncertain information is an open
challenging problem. No work presented in the literature so far is applicable
regardless of the uncertainty kind (i.e., the uncertain parameters) and degree

(i.e., the number of the parameters’ possible values). Microeconomics provides
analytical results for settings without deadlines, for single uncertainty kinds,
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and with narrow degrees of uncertainty, e.g., over the discount factor of one
agent with two possible values [11] and over the reservation price of both agents
with two possible values per agent [1]. Computer science provides algorithms to
search for sequential equilibria [8] only with finite games and without producing
belief systems off the equilibrium path. This makes such algorithms not suitable
for bargaining. Several efforts have been accomplished to extend the backward
induction algorithm to solve games with uncertain information [3]. However, as
shown in [4], the solutions produced by these algorithms may not be equilibria.
Finally, the algorithm provided by [4] solves settings with one–sided uncertain
deadlines, but its extension to general settings appears to be impractical due to
the mathematical machinery it needs.

The work in [4] provides the unique known computational complexity result,
showing that with one–sided uncertain deadlines the problem is polynomial in
the length of the bargaining independently of the number of types. However, this
uncertainty situation is very special because all the types have the same utility
functions before their deadlines. This fact leads all the types whose deadline is
not expired to have the same behavior, drastically reducing thus the complex-
ity of the problem. When discount factors and reservation prices are uncertain,
the types have different utility functions and we expect that they have differ-
ent optimal behaviors. The difficulty of developing an exact algorithm for the
bargaining problem pushed the scientific community to produce approximate so-
lutions. A large number of tactic–based heuristics are available, e.g., see [2], but
none provides bounds over the solution quality in terms of ǫ–Nash equilibrium.

In this paper, after having reviewed the alternating–offers protocol and its
solution with complete information (Section 2), and after having discussed the
model with uncertainty (Section 3), we present a sound and complete algorithm
to solve settings with arbitrary kinds and degrees of uncertainty (Section 4). Our
algorithm reduces the bargaining game to a finite game, solves this last game,
and finally maps its equilibrum strategies to the original continuous game. We
initially focus on settings with two possible types. We define a belief system
μ and a strategy profile σ where agents can make a finite number of offers
and the randomization probabilities with which agents make such offers are
parameters. To compute the values of these parameters such that (μ,σ) is a
sequential equilibrium, we build a finite game and we provide an algorithm based
on support–enumeration to solve it. We show that the problem is polynomial in
the deadline length. Then, we extend the algorithm to more than two types by
exploiting mathematical programming and we experimentally evaluate it.

2 Bargaining Model and Complete Information Solution

We present the alternating–offers protocol [10] with deadlines. There are two
agents, a buyer b and a seller s, who can play alternatively at discrete time points
t ∈ N. The function ι ∶ N → {b, s} returns the agent that plays at time point t,
and it is such that ι(t) ≠ ι(t + 1). We study single–issue bargaining because our
aim is the study of settings with uncertainty and algorithms for single–issue
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problems can be easily extended to multi–issue problems as it is shown in [3].
Agents bargain on the value of a variable x ∈ R, e.g., representing the price. The
pure strategies σι(t)(t) available to agent ι(t) at t > 0 are: offer(x), where x is
the offer for the issue; accept, that concludes the bargaining with an agreement,
formally denoted by (x, t), where x is such that σι(t−1)(t − 1) = offer(x) (i.e.,
the value offered at t− 1), and t is the time point at which the offer is accepted;
exit, that concludes the bargaining with a disagreement, formally denoted by
NoAgreement. At t = 0 only actions offer(x) and exit are available.

Seller’s and buyer’s utility functions, denoted by Us ∶ (R×N)∪NoAgreement→
R and Ub ∶ (R ×N) ∪ NoAgreement → R respectively, return the agents’ utility
for each possible outcome. Each utility function depends on the following pa-
rameters: the reservation prices, denoted by RPb ∈ R

+ and RPs ∈ R
+ for buyer

and seller respectively (we assume RPb ≥ RPs), the discount factor, denoted by
δb ∈ (0,1] and δs ∈ (0,1] for buyer and seller respectively, and the deadlines,
denoted by Tb ∈ N and Ts ∈ N for buyer and seller respectively. The buyer’s
utility function is:

Ub(⋅) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NoAgreement 0

(x, t) {(RPb − x) ⋅ (δb)t if t ≤ Tb

ǫ otherwise

,

where ǫ < 0 (after Ti, Ui(x, t) is strictly negative and thus agent i strictly prefers
to leave the game rather than reaching any agreement). The seller’s utility func-
tion is analogous, except for Us(x, t) = (x −RPs) ⋅ (δs)

t if t ≤ Ts .
With complete information, the appropriate solution concept is the subgame

perfect equilibrium. The solution can be found by using backward induction as
follows. We call T =min{Tb, Ts} and we call x∗(t) the ι(t)’s best offer at t, if this
offer exists. It can be easily observed that the outcome of each subgame which
starts at t ≥ T is NoAgreement, because at least one agent strictly prefers to exit
the game rather than to reach any agreement. Now we consider the subgame
which starts at t = T − 1. This subgame is essentially an ultimatum game [5].
ι(T ) accepts any offer x such that Uι(T )(x,T ) ≥ 0 (x ≤ RPb if ι(T ) = b and
x ≥ RPs if ι(T ) = s), she leaves the game otherwise. The ι(T − 1)’s optimal offer
x∗(T − 1) maximizes ι(T − 1)’s utility (i.e., x∗(T − 1) = RPb if ι(T − 1) = s and
x∗(T − 1) = RPs if ι(T − 1) = b). The subgames which start at time t < T − 1 can
be studied in a similar way. Suppose that we have found x∗(t + 1) and that we
want to derive x∗(t). We can consider the subgame composed of time points t
and t + 1 as an ultimatum game variation in which ι(t + 1) accepts any offer x
such that Uι(t+1)(x, t+1) ≥ Uι(t+1)(x∗(t+1), t+2) and offers x∗(t+1) otherwise.
The ι(t)’s best offer, among all the acceptable offers at time point t + 1, is the
one which maximizes ι(t)’s utility. We can compute this offer as:

x
∗(t) = {RPs + (x∗(t + 1) −RPs) ⋅ δs if ι(t) = b

RPb − (RPb − x∗(t + 1)) ⋅ δb if ι(t) = s
.

The computation of the values x∗(t) is linear in t. We report the buyer’s
subgame perfect equilibrium strategies (the seller’s ones are analogous):
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σ
∗
b
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0 offer(x∗(0))

0 < t < T

⎧⎪⎪
⎨
⎪⎪⎩

accept if s’s offer ≤ x∗(t − 1)

offer(x∗(t)) otherwise

t = T

⎧⎪⎪
⎨
⎪⎪⎩

accept if s’s offer ≤ x∗(t − 1)

exit otherwise

t > T exit

.

3 Introducing Uncertainty

We consider one–sided uncertain settings where the buyer’s parameters are
uncertain to the seller (the reverse situation is analogous). Our game is an
imperfect–information game in which the buyer can be of different types, each
one with different values of RPb, δb, and Tb. Uncertainty is over the actual type
of the buyer. For the sake of presentation, we describe our algorithm for the
basic case where the number of buyer’s types is two, we call them b1 and b2.
Then, we discuss how to extend it with more than two types. Without loss of
generality we assume Tb1 ≤ Tb2 . We call μ(t) = ⟨Θb(t), Pb(t)⟩ the s’s beliefs
about b’s type where Θb(t) ∈ ℘({b1,b2})/∅ and Pb(t) = {ωb1

(t), ωb2
(t)} (℘

denotes the power set and ωbi
(t) denotes the probability that b’s type is bi at

time t). μ(0) are data of the problem.

Example 31 The parameters values are: RPs = 0, δs = 0.75, Ts = 10; RPb1
= 1,

δb1
= 0.7, Tb1 = 5; the b2’s parameters values are: RPb2

= 0.9, δb2
= 0.8, Tb2 = 5.

Assume that ι(0) = b and that the values ωb1(0) and ωb2(0) are arbitrary.

The appropriate solution concept is the sequential equilibrium [7]. It is a couple
a = (μ,σ), also called assessment, in which μ is a belief system that specifies how
agents must update their beliefs during the game and σ is the agents’ strategy
profile that specifies how they must act. μ must be consistent with σ and σ
must be sequentially rational given μ. On the equilibrium path, μ is consistent
to σ if it is equal to the beliefs derived from σ by using the Bayes rule. Off the
equilibrium path, the Bayes rule is not applicable and two notions of consistency
can be employed: weak consistency does not pose any constraint, while strong

consistency requires that a sequence of fully mixed strategies exists such that its
limit converges to σ and that the limit of the sequence of beliefs derived from
the fully mixed strategies by using the Bayes rule converges to μ. In bargaining
problems, strong consistency is commonly used because it allows one to exclude
non reasonable equilibria. We remark that every game admits at least one strong
sequential equilibrium. Off the equilibrium path we impose that is, if at time
point t we have ωbi

(t) = 0, then for any τ > t we keep ωbi
(τ) = 0.

4 The Algorithm

Since bargaining with uncertainty may not admit any equilibrium in pure strate-
gies, as shown in [4], we directly search for equilibria in mixed strategies. The
basic idea behind our work is to solve the bargaining problem by reducing it to
a finite game, deriving equilibrium strategies such that on the equilibrium path
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the agents can act only a finite set of actions, and then by searching for the
agents’ optimal strategies on the path. Our work is structured in the following
three steps. 1) We analytically derive an assessment a = (μ,σ) in which the
randomization probabilities of the agents are parameters and such that, when
the parameters’ values satisfy some conditions, a is a sequential equilibrium. 2)
We formulate the problem of finding the values of the agents’ randomization
probabilities in a as the problem of finding a sequential equilibrium in a reduced
bargaining game with finite actions, and we prove that there always exist values
such that a is a sequential equilibrium. 3) We develop an algorithm based on
support enumeration to solve the reduced game when the types are two and we
show that its computational complexity is polynomial in the agents’ deadlines.
Then we develop an algorithm based on linear complementarity mathematical
programming to solve the case with more than two types.

4.1 Deriving Equilibrium Strategies

Without loss of generality, on the equilibrium path we study only time points
t < Tb1 . This is because, if agents reach time points t ≥ Tb1 on the equilibrium
path, then the bargaining at t is a game with complete-information in which
agents are b2 and s. Indeed, b1 never makes offers at time t ≥ Tb1 , action
exit being the dominant action, and therefore, if action offer(x) is observed
at t ≥ Tb1 , the Bayes rule imposes that ωb1(t) = 0. We build an assessment
a such that, on the equilibrium path, the ι(t)’s offers at t < Tb1 belong to a
finite set X(t) ∶= {x∗

bi
(t) ∶ ∀i}, where x∗

bi
(t) is the ι(t)’s optimal offer at t in

the corresponding complete-information game between bi and s computed as
previously discussed. Offering at t any x /∈ X(t) does not allow ι(t) to improve
her expected utility. In Fig. 1 we show x∗

b1
(t) and x∗

b2
(t) related to Example 31.

We connect the offers x∗
b1
(t) with a dotted line and the offers x∗

b2
(t) with a

dashed line.

�

�

�

�

�
x∗

b1
(0)

x∗

b1
(1)

x∗

b1
(2) x∗

b1
(3)

�

�

�

�

�
x∗

b2
(0)

x∗

b2
(1)

x∗

b2
(2)

x∗

b2
(3) x∗

b1
(4)

x∗

b2
(4)

0 1 2 3 4 5
b s b s b s

Tb1
= Tb2

RPs

RPb2

RPb1

Fig. 1. x∗bi
(t) in the complete information games between s and bi (see Example 31).

We focus on a. For each t < Tb1 we rank the values in X(t) in increasing order
and we call bw = argmaxi∈{b1,b2}{x∗i (0)} and bs = argmini∈{b1,b2}{x∗i (0)} where
w means weak and s means strong. In Fig. 1 we have bw = b1 and bs = b2. Ac-
cording to [12], the adjectives ‘strong’ and ‘weak’ refer to the contractual power
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of the corresponding buyer’s type: in complete–information settings the seller’s
expected utility is larger when it bargains with bw rather than when it bargains
with bs. In two cases, the type with the strongest contractual power at t = 0 is
not the strongest for all t > 0. This happens, first, when there exists at least a
time point t where x∗

bs
(t) > x∗

bw
(t), second, when Tbw

> Tbs
. These two cases

represent two exceptions that can be easly tackled by modifying the computa-
tion of x∗

bs
(t) and x∗

bw
(t). For reasons of space, we omit their description. The

basic idea behind a is that, when agents are forced to make the offers in X(t),
bw can gain utility from disguising herself as bs, making the optimal bs’s offers,
while bs prefers to signal her own type, making offers different from the bw’s
ones. That is, bw acts in order to increase her expected utility with respect to
the situation where s believes b’s type to be bw with certainty. The same idea
is used in [1].

We focus on the buyer’s behaviour. On the equilibrium path, bw random-
izes between offering x∗

bw
(t) (or, equivalently, accepting x∗

bw
(t−1)) and offering

x∗
bs
(t) (the offer x∗

bs
(t − 1) is always accepted, leading to the largest possible

utility), whereas bs offers x∗
bs
(t) in pure strategies (or, equivalently, accepts

x∗
bs
(t−1)). We denote by 1−α(t) and α(t) the bw’s randomization probabilities

over offering x∗
bw
(t)/accepting x∗

bw
(t − 1) and offering x∗

bs
(t), respectively, and

we consider α(t) as parameters. We remark that, if α(t) = 1, then the strate-
gies of bw and bs are pure and they are the same. On the equilibrium path,
the beliefs are updated according to the Bayes rule. We call ω∗

bi
(t) the proba-

bility over type bi at time t produced according to the Bayes rule after that b

made offer(x∗
bs
(t−1)) at time t−1. We have ω∗

bs
(t) =

ωbs(t−1)
α(t−1)ωbw (t−1)+ωbs(t−1) and

ω∗
bw
(t) = 1−ω∗

bs
(t). We notice that when the strategies are pure, if α(t − 1) = 1,

then ω∗
bw
(t) = ωbw

(t − 1) and ω∗
bs
(t) = ωbs

(t − 1), while, if α(t − 1) = 0, then
ω∗

bw
(t) = 0 and ω∗

bs
(t) = 1.

To characterize b’s strategies off the equilibrium path, at each time t we
divide the domain of x as: D1 ∶= (x∗

bw
(t− 1),+∞), D2 ∶= (x∗

bs
(t− 1), x∗

bw
(t− 1)],

D3 ∶= (−∞, x∗
bs
(t − 1)]. We call y the value such that σs(t − 1) = offer(y). The

bw’s strategies are: if y ∈ D1, then y is rejected; if y ∈ D2, then y is accepted
with probability of 1 − α(t) and rejected to offer x∗

bs
otherwise, and, if y ∈ D3,

then the offer is accepted (no better agreement can be reached from time point
t+ 1 on). The bs’s strategies are exactly her optimal strategies in the complete–
information game between bs and s: if y ∈ D1 or y ∈ D2, then the offer is refused
and, if y ∈ D3, then the offer is accepted. We notice that, if α(t) = 1, then bw and
bs have the same strategies also off the equilibrium path. Formally, the strategies
are (at t > Tb1 the buyer’s strategies are those with complete information; the
strategies in the case in which the buyer’s type is bs and ωbs

(t) = 0 are):

σ
∗
bw

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

offer(x∗
bw

(0)) 1 −α(0)

offer(x∗
bs
(0)) α(0)

0 < t < T
b1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ D1

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

offer(x∗
bw

(t)) 1 −α(t)

offer(x∗
bs
(t)) α(t)

y ∈ D2

⎧⎪⎪
⎨
⎪⎪⎩

accept 1 −α(t)

offer(x∗
bs
(t)) α(t)

y ∈ D3 accept

, σ
∗
bs
(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

t = 0 offer(x∗
bs
(0))

0 < t < T
b1

⎧⎪⎪
⎨
⎪⎪⎩

y ∈ D1,D2 offer(x∗
bs
(t))

y ∈ D3 accept

.
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To characterize the beliefs and s’s strategies off the equilibrium path, at each
time t we divide the domain of x as: D1′ ∶= [x∗

bw
(t − 1),+∞), D2′ ∶= [x∗

bs
(t −

1), x∗
bw
(t−1)), D3′ ∶= (−∞, x∗

bs
(t−1)). We call y the value such that σb(t−1) =

offer(y). If ωbw
(t − 1) > 0, then the beliefs are: if y ∈ D1′, then b is believed bw

with a probability of 1; if y ∈ D3′, then the probabilities of b’s types are the
same that we compute on the equilibrium path when y = x∗

bs
(t − 1); if y ∈ D2′,

then the bs’s probability increases linearly in y such that, if y goes to x∗
bw
(t−1),

then ωbs
(t) goes to 0 and, if y goes to x∗

bs
(t − 1), then ωbs

(t) goes to ω∗
bs
(t)

(notice that we cannot use ‘=’, since the cases with ‘=’ are on the equilibrium

path). Defining κ(t, y) =
x
∗
bw
(t)−y

x∗
bw
(t)−x∗

bs
(t) , the belief system is:

µ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y ∈ D1′ ωbs(t) = 0

y ∈ D2′ ωbs(t) = ω∗
bs
(t)κ(t− 1, y)

y ∈ D3′ ωbs(t) = ω∗
bs
(t)

.

We focus on the seller’s behaviour. On the equilibrium path, s randomizes
between offering x∗

bs
(t) (or, equivalently, accepting x∗

bs
(t−1)) and offering x∗

bw
(t)

(the offer x∗
bw
(t − 1) is always accepted, leading to the largest possible utility).

We denote by β(t) and 1−β(t) the s’s randomization probabilities over offering
x∗
bs
(t)/accepting x∗

bs
(t − 1) and offering x∗

bw
(t), respectively, and we consider

β(t) as parameters. Off the equilibrium path, the s’s strategies are: if y ∈ D1′,
then the offer is accepted; if y ∈ D2′, then the acceptance probability decreases
linearly in y such that, if y goes to x∗

bw
(t− 1), then it goes to 1 and, if y goes to

x∗
bs
(t−1), then it goes to β(t) (the s’s probability to offer x∗

bw
(t) is 1 minus the

acceptance probability); if y ∈ D3′, then it is rejected to offer x∗
bw
(t) if β(t) < 1

and x∗
bs
(t) otherwise. Formally the strategies are (at t > Tb1 the seller’s strategies

are those with complete information):

σ
∗
s
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

offer(x∗
bw

(0)) 1 − β(0)

offer(x∗
bs
(0)) β(0)

0 < t < T
b1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∈ D1′ accept

y ∈ D2′
⎧⎪⎪
⎨
⎪⎪⎩

offer(x∗
bw

(t)) κ(t − 1, y)(1 − β(t))

accept 1 −κ(t − 1, y)(1 − β(t))

y ∈ D3′
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

offer(x∗
bw

(t)) ⌈1 − β(t)⌉

offer(x∗
bs
(t)) ⌊β(t)⌋

.

Call σ = (σ∗
bw

, σ∗
bs

, σ∗
s
). We state the following theorem.

Theorem 41 If α(t), β(t) ∈ [0,1] are such that, limited to the offers in X(t),
σ is sequentially rational given μ, then a = (μ,σ) is a sequential equilibrium.

Proof. We assume that there are values α(t), β(t) ∈ [0,1] such that, limited to
the offers in X(t), σ is sequentially rational given μ and we prove: (i) sequential
rationality off the equilibrium path and (ii) Kreps and Wilson’s consistency. (The
computation of the values of α(t), β(t) is discussed in the following sections.)

To prove (i) we need to show that agents cannot gain more by making offers
not belonging to X(t). At first, we characterize agents’ strategies on the equilib-
rium path because it is useful for our proof. We do not consider the trivial cases
in which ωbw

(0) = 1 or ωbs
(0) = 1; they can be solved as complete–information
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games. It can be easily observed that if ωbw
(0) < 1 then α(t) > 0 for every

t. Indeed, let suppose ι(0) = b and ωbw
(0) < 1, if α(0) = 0, then bw and bs

make different offers at time t = 0 and s accepts both of them at t = 1. In this
case bw can increase her utility acting as bs. Thus, two situations are possible:
either 0 < α(t) < 1 or α(t) = 1. If 0 < α(t) < 1, then bw randomizes between
offering xbw

(t) and xbs
(t), so necessarily 0 < β(t + 1) < 1 because the game is

non–degenerate. Otherwise, if α(t) = 1, then necessarily β(t+ 1) = 1 because the
game in non-degenerate and the case β(t + 1) = 0 cannot lead to an equilibrium
(bw can increase her utility by offering x∗

bw
(t) that will be always accepted).

Now, we are in the position to prove sequential rationality off the equilibrium
path. We focus on the case 0 < α(t) < 1 and 0 < β(t + 1) < 1. We consider bw.
Offering any x > x∗

bw
(t) at time t is dominated by offering x∗

bw
(t) because all

these offers are accepted with a probability of one and x∗
bw
(t) gives a larger

utility to bw. By construction, all the offers x∗
bs
(t) < x < x∗

bw
(t) give to bw

the same expected utility and all the offers x < x∗
bs
(t) are rejected, so the bw’s

expected utility cannot be increased by performing them. In a similar way, it
is possible to analyze the strategies of bs and s. In the case of s, if she acts at
t = 0 or t > 0 after that b makes an off–equilibrium–path offer, her strategy will
be pure. It can be shown that, if σb(t − 1) = offer(x) with x < x∗

bs
(t − 1) and

β(t) < 1, then s’s optimal action is to offer x∗
bw
(t). Therefore, agents cannot gain

more by making offers not belonging to X(t).
In order to prove (ii), we need to provide a fully mixed strategy σbi,n(t) such

that limn→∞ σbi,n(t) = σ∗
bi
(t) and limn→∞ ωbi,n(t) = ωbi

(t) where ωbi,n(t) are
the sequences of beliefs derived from σbi,n(t) by Bayes rule and ωbi

(t) are the
beliefs prescribed by μ(t). The fully mixed strategies are:

σ
bw,n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y > x∗
bw

(t) 1
n

y = x∗
bw

(t) 1 −α(t) −A(n)

x∗
bw

(t) > y > y 1
n

y ≥ y > x∗
bs
(t) 1 − (1 −α(t))

y−x∗
bs
(t)

n(y−x∗
bs
(t))

y = x∗
bs
(t) α(t) −A(n)

x∗
bs
(t) > y

α(t)
n

, σ
bs,n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ≥ x∗
bw

(t) 1

n
T
b1

x∗
bw

(t) > y > y
x∗
bw

(t)−y

n(x∗
bw

(t)−y)

y ≥ y > x∗
bs
(t) 1

n

y = x∗
bs
(t) 1 −B(n)

x∗
bs
(t) > y 1

n

,

where A(n) and B(n) are functions of n such that they go to zero as n goes to
infinity and the sum over the probabilities of all actions is one. ◻

4.2 Building the Reduced Bargaining Game

The previous section drastically reduces the complexity of solving a bargaining
game, leaving open only the determination of the values of the randomization
probabilities such that Theorem 41 holds. In this section, we formulate the prob-
lem of computing these values as the problem of solving a reduced bargaining
game with finite actions. Since each finite game admits at least one equilibrium
strategy, there always exist values such that Theorem 41 holds.

To compute the values of α(t) and β(t) we “extract” the equilibrium path
prescribed by assessment a given in the previous section. We build an imperfect–
information extensive–form game with finite actions. It can be represented by
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a game tree built as follows. Fig. 2 depicts the tree related to Example 31; for
the sake of simplicity, we denote accept by ‘A’ and offer(x) by ‘x’; A′ and A′′
label two different As of the same buyer’s type at the same t. In the root of the
tree, nature plays drawing the buyer’s type: b1 or b2 with probability ωb1

(0)
and ωb2

(0), respectively. Since the game is with imperfect information, s cannot
distinguish whether her opponent’s type is b1 or b2 unless she observes an action
that can be made only by b1 or by b2, respectively (e.g., in Fig. 2, action x∗

b1
(0)

can be accomplished only by b1). Customarily in game theory, decision nodes
that an agent cannot distinguish constitute an information set (in Fig. 2, dashed
lines connect decision nodes of the same information set).

ι(0) = b

ι(1) = s

ι(2) = b

ι(3) = s

ι(4) = b

ι(5) = s

Tb1

�

� �

� � �

� �

�

�

�

�

� �

�

�

�

�

�

�

�

Nature

ω
b1

(0) ω
b2

(0)

x∗

b1
(0) x∗

b2
(0) x∗

b2
(0)

A′ A′′

x∗

b1
(1)

A
x∗

b1
(1)

A
x∗

b2
(2) x∗

b2
(2)

A
x∗

b1
(3)

A
x∗

b1
(3)

A
x∗

b2
(4)

A

.26, .46 .16, .55 .16, .55

.26, .27

.06, .30 .06, .39

.09, .17

.00, .29

Fig. 2. Tree of the reduced game related to Example 31. We denote accept by A and
offer(x) by value x. We report utilities Us(x, t),Ub(x, t) under the terminal nodes.

Let be t = 0. If ι(0) = b, the available actions are offer(x) with x ∈ X(0) if
bi = bw and x = x∗

bs
(0) if bi = bs (we recall that in Example 31, b1 = bw and

b2 = bs). When ι(0) = s, the available actions are offer(x) with x ∈X(0).

Let be 0 < t < Tb1−1. Suppose ι(t) = b. If bi = bw and σs(t−1) = offer(x∗
bs
(t−

1)), then the only possible action is accept, otherwise, if σs(t−1) = offer(x∗
bw
(t−

1)), the available actions are accept and offer(x∗
bs
(t)). Action accept at time t

leads to a terminal node in which the agents reach the agreement (x, t) where x is
such that σι(t−1)(t−1) = offer(x). In Fig. 2, under the terminal nodes, we report
the agents’ utilities Us(x, t), Ub(x, t). If bi = bs and σs(t − 1) = offer(x∗

bs
(t − 1))

then the only possible action is accept, otherwise, if σs(t − 1) = offer(x∗
bw
(t −

1)), the only available action is offer(x∗
bs
(t)). Suppose ι(t) = s. If σb(t − 1) =

offer(x∗
bw
(t−1)) then the only possible action is accept, otherwise, if σb(t−1) =

offer(x∗
bs
(t − 1)), the available actions are accept and offer(x∗

bw
(t)).

Let be t = Tb1 − 1. If x∗
bw
(t) > x∗

bs
(t), the tree building rules are those

described for the previous case. Otherwise, if x∗
bw
(t) = x∗

bs
(t), when bi = bw and

σs(t−1) = offer(x∗
bw
(t)) the only available action is accept, as in Example 31 (see
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Fig. 1). There cannot be any equilibrium when a buyer’s type bi randomizes at
t over accepting and offering offers of the same sequence of offers x∗

bi
(t).

We notice that the size of the tree is linear in Tb1. The values of α(t) and
β(t) can be computed finding a sequential equilibrium in the above reduced
bargaining problem. By definition, the value of α(t) is equal to the probability
with which bw makes offer(x∗

bs
(t)) at t in the reduced bargaining game, while

the value of 1−β(t) is equal to the probability with which s makes offer(x∗
bw
(t))

at t in the reduced bargaining game. Since any finite game admits at least one
sequential equilibrium, there always exist values of α(t) and β(t) such that a is
a strong sequential equilibrium, namely, Theorem 41 always holds.

4.3 Solving the Reduced Bargaining Game

To compute an equilibrium, at first we represent the game in the sequence
form [6] where agents’ actions are sequences in the game tree.

The sequence form is represented with a sparse matrix in which the agent i’s
actions are the sequences of her extensive form actions connecting the root of the
tree to any information set of i. To avoid confusion, we shall use ‘sequence’ for the
actions of the sequence form and ‘action’ for the actions of the extensive-form.
For the sake of simplicity, we define different b’s sequences for each different type.
Considering the game tree reported in Fig. 2, the set of agent i’s sequences Qi is:
Qs = {∅, ⟨A′⟩, ⟨A′′⟩, ⟨x∗

b1
(1)⟩, ⟨x∗

b1
(1),A⟩, ⟨x∗

b1
(1), x∗

b1
(3)⟩, ⟨x∗

b1
(1), x∗

b1
(3),A⟩},

Qb1 = {∅, ⟨x∗
b1
(0)⟩, ⟨x∗

b2
(0)⟩, ⟨x∗

b2
(0),A⟩, ⟨x∗

b2
(0), x∗

b2
(2)⟩, ⟨x∗

b2
(0), x∗

b2
(2),A⟩},

Qb2 = {∅, ⟨x∗
b2
(0)⟩, ⟨x∗

b2
(0), x∗

b2
(2)⟩, ⟨x∗

b2
(0), x∗

b2
(2), x∗

b2
(4)⟩}; where ∅ is the

empty sequence. Given two sequences q and q′ with q ∈ Qbi
and q′ ∈ Qs, the

payoffs are non–null only if the node reached performing the combination of
sequences q and q′ is a terminal node. Let consider the subtree of type b1 shown
in Fig. 2. The node reached performing q = ⟨x∗

b2
(0)⟩ and q′ = ⟨x∗

b1
(1)⟩ is a non

terminal node and, therefore, the payoffs are null, whereas the node reached
performing q = ⟨x∗

b2
(0)⟩ and q′ = ⟨A′′⟩ is a terminal node and the payoffs are

Us = 0.16 and Ub = 0.55. We show in Table 1 the payoff bimatrix for b1 and s

(for reason of space we omit the empty sequences ∅). The payoff bimatrix for
b2 and s is defined similarly.

b1, s A′ A′′ x∗
b1
(1) x∗

b1
(1), A x∗

b1
(1), x∗

b1
(3)

x∗
b1
(0) .26, .46 − − − −

x∗
b2
(0) − .16, .55 − − −

x∗
b2
(0), A − − .26, .27 − −

x∗
b2
(0), x∗

b2
(2) − − − .06, .30 −

x∗
b2
(0), x∗

b2
(2), A − − − − .09, .17

Table 1. Payoff bimatrix for b1 and s.

The sequence form presents some constraints over the probabilities with
which the sequences are played by agents. We denote by pi(q) the probabil-
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Non–Cooperative Bargaining with Arbitrary One–Sided Uncertainty 11

ity with which agent i makes sequence q. The constraints on the probabilities of
the empty sequences are (by convention, we set ωs(0) = 1):

pi(∅) = ωi(0) ∀i, (1)

constraints on the probabilities of non-empty sequences are:

pi(q) = ∑
a at hq

pi(q∣a) ∀i, q ∈ Qi, hq ∈ Iq, (2)

where Iq is the set of information sets reachable performing q, hq is a information
set belonging to Iq, a is an action available at information set hq, and q∣a is the
sequence obtained by adding action a to sequence q. Let consider s in Fig. 2, if q =
⟨x∗

b1
(1)⟩, then the constraint (2) is ps(q) = ps(⟨x

∗
b1
(1),A⟩)+ps(⟨x

∗
b1
(1), x∗

b1
(3)⟩),

because only one information set is reachable by performing q. The values of α(t)
and β(t) are easily computable on the basis of probability pi(q). More precisely,
called q a bw’s sequence that ends at time point t − 1 with ι(t) = b, we have

α(t) =
pbw (q∣x∗bs

(t))
pbw (q) . The values of β(t) can be computed on the basis of ps(q) in

a similar way.
To solve the game we use the PNS algorithm [9] because it results very

efficient: we can safely check a very small number of supports.

Theorem 42 Excluded the degenerate case ωbw
(0) = 1, agents’ Nash equilib-

rium strategies on the equilibrium path in the reduced bargaining game are: if

ι(0) = b, either bw’s and s’s strategies are fully mixed or bw makes offer(x∗
bs
(t))

with probability of 1 at t = 0 and s makes accept with probability of 1 at t = 1;
if ι(0) = s, either s makes offer(x∗

bw
(0)) with probability of 1 at t = 0 and from

t = 1 on bw’s and s’s strategies are fully mixed or s makes offer(x∗
bs
(0)) with

probability of 1 at t = 0 and bw makes accept at t = 1.

Proof. We show that on the equilibrium path bw cannot make accept at time t
with probability of 1 in all the decision nodes where multiple actions are avail-
able. Assume by contradiction that bw makes it. Then, s’s best response is to
make accept at time t + 1 with probability of 1. However, if s makes such ac-
tion at t + 1, bw’s best response is to make offer(x∗

bs
(t)) at time t and thus we

have a contradiction. We show that on the equilibrium path bw cannot make
offer(xbs

(t)) at time t > 0 with probability of 1 in all the decision nodes where
multiple actions are available. Assume by contradiction that it happens. Then,
s’s best response is to make accept at time t−1 with probability of 1. Therefore,
time point t would never be reached on the equilibrium path and then we have
a contradiction.

The same above reasoning can be applied to show that on the equilibrium
path s cannot make with probability of 1 neither accept at time t > 1 nor
offer(xbw

(t)) at time t > 0. Thus, the unique possible agents’ strategies on the
equilibrium path are those reported in the theorem. If the fully mixed strategy is
a Nash equilibrium, then it is by definition a sequential equilibrium. This is be-
cause every action is played with positive probability. If it is not an equilibrium,
then necessarily the game concludes at t = 1. ◻
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12 Ceppi et al.

The above theorem shows that for each bargaining problem we need to check
only one joint support: if the fully mixed strategy is not an equilibrium, then on
the equilibrium path the game concludes at t = 1. In this second case, to com-
pute agents’ equilibrium strategies off the equilibrium path it is sufficient to solve
the reduced bargaining game from t ≥ 2 with initial beliefs. The computational
complexity of finding agents’ equilibrium strategies on the equilibrium path is
polynomial in Tb1 , because the computational complexity of solving a linear fea-
sibility problem is polynomial in the number of variables, this last number rises
linearly in Tb1, and the number of joint supports to be checked is constant in the
size of the game. Off the equilibrium path a number of joint supports that rises
linearly in Tb1 must be checked, then the computational complexity is polyno-
mial in Tb1 . We use AMPL and CPLEX to solve the game. The computational
times are negligible (< 1 s) even for large problems (up to Tb1 = 500) with a
2.33 GHz 8 GB RAM UNIX computer. We report in Tab. 2 the values of α(t)
and β(t) for Example 31 with different values of initial beliefs.

ωb1
(0) ωb2

(0) α(0) β(1) α(2) β(3)
0.10 0.90 1.00 1.00 1.00 1.00
0.70 0.30 1.00 1.00 0.86 0.77
0.80 0.20 0.68 0.69 0.44 0.77

Table 2. Values of α(t)s and β(t)s. When ωb1(0) = 0.1 and ωb1(0) = 0.7 players always
act in pure strategies; when ωb1(0) = 0.8 players randomize.

4.4 Extension to More than Two Types

Here the idea is the same of the two–type solution. At first, we compute all the
sequences of optimal offers x∗

bi
(t) in the complete–information games between

bi and s. We rank the buyer’s types from the strongest to the weakest according
to x∗

bi
(0). At t each buyer’s type bi randomizes over all the offers x∗

bj
(t) such

that bj is not weaker than bi and bj is believed by s with positive probabil-
ity. More precisely, we denote by αi,j(t,Θb(t)) the probability with which bi

makes offer x∗
bj

at time point t given that the buyer’s types believed by s with

strictly positive probability are those belonging to Θb(t). Only the probabilities
αi,j(t,Θb(t)) with x∗

bi
(t) > x∗

bj
(t) and bj ∈ Θb(t) can be non–null. The sys-

tem of belief is such that, once offer x∗
bi
(t) is observed, all the types bj with

x∗
bj
(t) < x∗

bi
(t) are removed from Θb(t). Then, the number of possible Θb(t) is

linear in the size Θb(0), e.g., if Θb(0) = {b1,b2,b3}, then the possible Θb(t)
are {b1,b2,b3}, {b2,b3}, and {b3}. Similarly, the seller’s strategy can be rep-
resented by probabilities βj(t,Θb(t)), i.e., the probability to accept x∗

bi
(t − 1)/

offer x∗
bi
(t) at t when the buyer’s types believed with positive probabilities are

Θb(t).
The construction of the game tree is accomplished according to the following

rules: 1) no buyer’s types makes offer strictly weaker than her optimal offer in
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the complete–information game; 2) at time t > 0, no agent (buyer and seller)
makes offers strictly weaker (w.r.t. her utility function) than the one made by
the opponent at the previous time point t − 1; 3) at time t > 0, no agent (buyer
and seller) makes offers that, if accepted at t + 1, provide her the same utility
she receives by accepting the offer made by the opponent at t − 1; 4) no buyer’s
type makes offers besides min{Tbi

, Ts} and the seller does not make offer besides
min{max{Tbi

}, Ts}; 5) at time t > 0, an offer xi is not made if the buyer’s type
bi is out of the game (i.e., t >= Tbi

or type bi has been excluded because the
buyer has previously made an offer strictly weaker than the optimal complete–
information offer of bi).

It can be easily observed that the size of the tree rises exponentially in
the length of the deadlines. Differently from what we did for the two–type
case, here do not use support–enumeration techniques, but we resort to linear–
complementarity mathematical programming. This is because the number of
supports rises as 4n where n is the number of agents’ actions, while the space of
solutions over which linear complementarity works rises as 2.6n.

We implemented an ad hoc version of the Lemke’s algorithm with perturba-
tion as described in [8] to compute a sequential equilibrium. The algorithm is
based on pivoting (similarly to the simplex algorithm) where perturbation affects
only the choice of the leaving variable. We coded the algorithm in C language
by using integer pivoting and the same approach of the revised simplex (to save
time during the update of the rows of the tableau). We executed our algorithm
with a 2.33 GHz 8 GB RAM UNIX computer. We produced several bargaining
instances characterized by the number of buyer’s types (from 2 up to 6) and the
deadline T =min{max{Tbi

}, Ts} (from 6 up to 500). Tab. 3 reports the average
computational times over 10 different bargaining instances; we denote by ‘–’ the
cases whose execution exceeds one hour.

T number of buyer’s types
2 3 4 5 6

6 < 0.01 s 0.06 s 0.29 s 3.47 s 929.73 s
8 < 0.01 s 1.32 s 32.94 s 1890.96 s –
10 < 0.01 s 15.16 s 2734.29 s – –
12 < 0.01 s 211.11 s – – –
14 < 0.01 s 3146.20 s – – –
50 0.22 s – – – –
100 1.55 s – – – –
500 175.90 s – – – –

Table 3. Computational times for solving a bargaining game with linear complemen-
tarity mathematical programming (T =min{max{Tbi

}, Ts}).

As it can be observed, the computational times are exponential in the bar-
gaining length and have the number of types as basis and only small settings can
be solved by using linear–complementarity mathematical programming. Notice
that the support–enumeration approach used for the two–types case is much
faster than the linear–complementarity approach. This pushes for the develop-
ment of algorithms for finding approximate solutions.
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5 Conclusions and Future Works

The study of strategic bargaining with uncertainty is a challenging game theo-
retic problem. The literature provides several heuristics–based approaches gener-
ally applicable to any uncertain setting, while the optimal approaches work only
with very narrow uncertainty settings. In particular, no algorithm works with
uncertainty over multiple parameters. In this paper, we focused on one–sided un-
certainty. Our main result is the reduction of the bargaining to a finite game. This
allows one to resort to well known techniques to solve finite games. We proved
that with two types the problem is polynomial (by using support–enumeration
techniques), while with more types our algorithm requires exponential time. As a
result, only small settings can be solved in exact way. Nevertheless, our reduction
allows one to resort to techniques to find approximate equilibria.

In future works, on the one hand, we shall develop algorithms to find an ǫ–
approximate equilibrium with a provable bound over ǫ and, on the other hand,
we characterize solutions to produce insight over the structure of the problem
and design more efficient exact algorithms.
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Abstract. Most critical challenge of applying generalized second price
(GSP) idea in multi-round sponsored search auction (SSA) is to prevent
revenue loss for search engine provider (SEP). In this paper, we pro-
pose non-decreasing Sponsored Search Auction (NDSSA) to guarantee
SEP’s revenue. Each advertiser’s bid increment is restricted by mini-
mum increase price (MIP) in NDSSA. The MIP determination strategy
influences bid convergence speed and SEP’s revenue. Fixed MIP strat-
egy and Additive-Increase/Multiplicative-Decrease (AIMD) principle are
applied to determine MIP values, and they are evaluated in this paper.
For the convergence speed analysis, fixed MIP strategy converges faster
than AIME in most instances. For SEP’s revenue, AIMD assists SEP
to gain more revenue than fixed MIP strategy by experiments. Simulta-
neously, SEP’s revenue in Vickrey-Clarke-Groves auction (VCG) is the
lower bound of that in AIMD.
Key words: Sponsored Search Auction; Generalized Second Price Auc-
tion; Minimum Increase Price; Additive-Increase/Multiplicative-Decrease;
lower bound

1 Introduction

Recently, search engine provider (SEP) combines advertising and search results
on the screen. This kind of advertising application is called as sponsored search
auction (SSA).

Many advertisers would like to join SSA due to the pay-per-click design.
Only advertiser whose advertisement is clicked by the Internet user is charged. To
simulate the click event, the click-through-rate (CTR) is introduced [1]. CTR is a
probability that the Internet user clicks on. Thus, the quality of each advertising
slot can be estimated by the CTR assumption.

Aggarwal et al. suggest that the CTR should be evaluated according a
merchant-specific factor and a position-specific factor [9]. So, the relevance of
each advertisement and inputted keywords impacts CTR. For simplification,
most related works only consider position-specific factor, such as [1] [2].

Generalized Second price (GSP) [1] is the famous charging function in real
world SSA applications. Each clicked advertiser pays equal to the bid value
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of next ranked advertiser. Comparing to the idea of paying what he/she bids,
advertisers in GSP will save more money.

Bu et al. [7] and Cary et al. [6] study the multi-round SSA, while SEP’s
revenue may be reduced round by round. When an advertiser is benefited in a
worse position, he/she will propose a lower bid in the next round. Therefore,
SEP’s revenue will be decreased because the revenue comes from the sum of
payments.

According to [6] [7], we propose Non-decreasing Sponsored Search Auction
(NDSSA) to improve SEP’s revenue by allowing biding on only non-decreasing
prices. Thus, advertisers will compete for better slots to improve utilities, that
is similar to English auction, and the revenue loss problem is resolved.

However, SEP suffers an extended issue: long-term revenue loss problem.
SEP’s long-term revenue is the sum of payments after several rounds. Less pay-
ment will also improve advertiser’s long-term utility. Either the initial bid with
extremely low value is proposed or increasing bid values slightly is beneficial
for long-term utility of each advertiser. So, SEP’s revenue in each round will be
raised slowly, and the long-term revenue loss problem is taken place.

All kinds of initial bid values are available in NDSSA. We only focus on
solving the second counterattack strategy, increasing bids slowly, by restricting
bid increments. The essential bid increment is called as Minimum Increase Price
(MIP) in this paper. Each advertiser is allowed to propose only the bid value
which is either equal to that in the last round or increased by the MIP value.
Thus, advertisers will bid actively due to MIP consideration.

For SEP, the first issue in NDSSA is the convergence speed. After NDSSA
begins, each advertiser continuously updates his/her bid value to compete better
slot. SEP’s revenue is improved during this phase. When no advertiser would like
to propose higher bid, NDSSA is converged. Requiring more rounds to reach sta-
ble allocation is caused from that bids are increased slowly. So, the convergence
speed is an important factor to evaluate the mechanism for SEP.

The second issue is SEP’s revenue, and this is most interested by SEP. Since
SEP’s revenue comes from advertisers’ payments, maximizing bid values in each
round implies SEP’s revenue is improved.

To determine MIP settings, two MIP strategies are proposed: fixed and adap-
tive MIP strategies. The MIP setting is invariant in each round in fixed MIP
strategy. The idea of additive-increase/multiplicative-decrease (AIMD) is applied
in adaptive MIP strategy to calculate MIP setting in each round.

Convergence speed and SEP’s revenue are discussed in this paper. We proof
that fixed MIP strategy converges faster than AIMD in most instances. On the
other hand, SEP will obtain more revenue than fixed MIP strategy according to
our experiment results.

In the following context, NDSSA is defined in section 2 which includes the
mechanism, bidding strategy, and MIP strategies. The convergence speed issue is
analyzed in section 3. SEP’s revenue comparisons between different MIP strate-
gies are measured by experiments in section 4. The conclusion and future works
are shown in section 5.

2
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1.1 Related Work

Most popular payment calculations in SSA are GSP [1] and Vickrey-Clarke-
Groves auction (VCG) [2]. Each winner pays bid value ranked in the next slot
and the social welfare gap between the winner leaves and joins the auction in
GSP and VCG respectively.

Incentive compatibility is the major advantage of VCG. Advertisers are
ranked by their advertising valuations, because bidding on other prices is not
beneficial for each advertiser. For SEP’s revenue and computation cost, VCG
is not practical in real word applications [4]. Moreover, VCG is the revenue
lower bound of GSP for SEP in some instances [2]. To build a more realistic
mechanism, SEP should consider GSP.

Winning the slot to improve the utility is the natural objective of each adver-
tiser. After receiving a satisfied allocation, no advertiser wishes for any deviation,
and the auction meets the equilibrium result [5]. Edelman et al. apply the stable
idea to define locally envy-free equilibrium [1].

Since the allocation is steady under locally envy-free equilibrium, SEP’s rev-
enue is invariant and expectable. Moreover, VCG is the revenue lower bound
for SEP when advertisers bid truthfully [2]. Because the steady allocation is the
natural target and produces expectable revenue for each advertiser and SEP re-
spectively, winning an envy-free slot is the bidding behavior discussed in NDSSA.

The multi-round assumption is close to the real world instance. Major prop-
erty in this assumption is that participants will learn from previous result [5].
Cary et al. study the “balance bidding strategy” in the multi-round SSA [7].
Similar to our work, Cary et al. restrict the bid value, but not all instances meet
the steady allocation. The outcome stability is important for SEP due to the
revenue expectation, so the stability is considered in NDSSA.

Restricting minimum bid prices has the same effect with MIP. Even-Dar et
al. modified Tâtonnement process to compute the minimum bid value [8]. When
applying the idea of Even-Dar et al., SEP will gains more revenue than VCG. If
the auction efficiency is guaranteed, the mechanism is more useful for SEP.

2 NDSSA

SEP must solve the revenue loss problem when applying GSP in multi-round
SSA. Consider the advertiser occupied 1st slot, for example. If he/she is benefited
in the 2nd slot, he/she will propose a lower bid price for moving to 2nd slot in the
next round. The advertiser is benefited by payment decrease, but SEP revenue
is reduced simultaneously.

2.1 Auction Mechanism

An NDSSA instance includes an SEP, and k + 1 advertisers that compete for k
advertising slots. Suppose that each advertiser is interested in the same keyword
and has the ability to update his/her bid value in each round. Payments are

3
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calculated by GSP, i.e. px
i = bx

i+1, where px
i is adi’s payment in xth round and

bx
i+1 is adi+1’s bid in xth round.

Each advertiser adi has two parameters: the valuation and the initial bid rate
(IBR) IBRi. The valuation vi is the worth per each click, and IBR indicates the
ratio of valuation to the initial bid value. So the initial bid value is vi × IBRi.

In xth round, each advertiser is allowed to propose two kinds of bids bx
i .

1. same bid value , i.e. bx
i = bx−1

i , or

2. higher value, i.e. bx
i ≥ bx−1

i + MIP x−1 + ǫ,∀ǫ ≥ 0.

where all advertisers obey the same MIP value in each round.

Each slot slj has a click probability, called click-through rate (CTR), to
simulate the slot importance. Without Lost of Generality, the better slot has
higher CTR value. Therefore, adi allocated in slj pays bx

y × CTRj expectedly,
where ady is the winner of slj+1.

2.2 Bidding Strategy

Consider adi occupies slj , the utility in xth round is denoted by ux
i (j) = CTRj×

(vi−px
i ). We only consider Rational Bidding advertiser in this paper. This implies

no advertiser will bid higher than his/her valuation, i.e. bx
i ≤ vi.

According to the concept of locally envy-free equilibrium, bx
i will be increased

only when slj−1 is more beneficial than slj , i.e. ux
i (j−1) > ux

i (j). Thus, adi will
bid min{(bx

y + 1), (bx
i + MIP )}, where ady is ranked in slj−1

2.3 MIP Strategies

The MIP value of fixed MIP strategy determines SEP’s revenue. For higher
settings, higher bid increment will limit the final bid value. Advertisers can not
bid close to their valuations, so SEP’s revenue in higher MIP setting may be
less than in lower MIP setting. Consider the advertiser with valuation 50, bid
value 40, and MIP 11, for example. The advertiser must propose $51 at least.
According to rational bidding, SEP will lose $10 at most.

AIMD is used to probing unknown bandwidth in a TCP connection [3]. We
apply the adjustability of AIMD to determine the MIP setting in each round. No
bid update indicates the congestion in TCP, so the MIP value is set to one half.
Otherwise, MIP is increased by one continuously. When each advertiser keeps
the same bid under MIP = 1, advertisers have no idea to increase bids, and
NDSSA converges.

To maximizing SEP’s revenue, AIMD requires more rounds than fixed MIP
strategy to check that NDSSA converges or not. SEP has the trade-off between
the convergence speed and the revenue for determining MIP strategies.

4
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3 Convergence Speed Analysis

3.1 Fixed MIP Strategy

SEP requires determining the MIP value before NDSSA begins. The MIP setting
is invariant throughout the auction. In the worst case, Theorem 1 shows the
number of rounds required to converge by fixed MIP strategy.

Theorem 1. Consider admab has maximum available bid amount over all ad-

vertisers in an NDSSA instance, where MIP 0 is initial MIP setting and mab =
arg max∀i �=1 vi(1 − IBRi). In the worst case, the number of rounds rF required

to meet the stable allocation by fixed MIP strategy is as follows.

rF = ⌈
vmab(1 − IBRmab)

MIP 0
⌉

Proof. This proof is divided into two portions. We first deal with why the ad-
vertiser admab dominates the convergence speed and then calculate the number
of convergence rounds.

The advertiser admab, where mab = arg max∀i �=1 vi(1−IBRi), represents that
he/she has most available prices to bid. In other words, admab still can increase
his/her bid value while others meet their valuations. The advertiser with highest
valuation is excluded, because he/she will win the 1st slot when bidding over
2nd ranked advertiser rather than his/her valuation. Therefore, admab, except
for ad1, dominates the convergence bottleneck in fixed MIP strategy.

We have the maximum available bid increment vmab(1 − IBRmab), and the
increment divided by the MIP setting is the number of convergence rounds re-
quired in the worst case.

3.2 AIMD

The convergence speed of AIMD is analyzed by two portions. The first part is
the first decrease of MIP value, and the second portion is the remainder rounds.
They are shown in Lemma 1 and 2.

Lemma 1. In the worst case of the NDSSA with AIMD, MIPh+1 will be de-

creased, where h = 2
√

(MIP 0)2 + 2vmab − MIP 0.

Proof. Suppose the MIP value is decreased at (h + 1)th round. All bids in hth

and (h + 1)th rounds are the same, i.e. bh
i = bh+1

i . In Fig. 1, the bid value is
bh
mab + MIPh where MIPh = MIP 0 + h, and the pink area indicates the sum

of bid increments in the auction, that is h × (MIP 0 + (MIP 0 + h))/2.
If admab still increases his/her bid in (h + 1)th round, he/she will overbid,

i.e. bh
mab + MIPh ≥ vmab. The first round of MIP decrease h can be derived.

bh
mab + MIPh ≥ vmab

h × (MIP 0 + (MIP 0 + h)) ≥ 2vmab

h2 + 2MIP 0h − 2vmab ≥ 0

5
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Fig. 1. the MIP modification history of NDSSA in the worst case

h ≥
−2MIP 0 ± 2

√
4(MIP 0)2 + 8vmab

2

= 2
√

(MIP 0)2 + 2vmab − MIP 0

According to Lemma 1, we derive that higher initial MIP settings result in
faster convergence. Then, we focus on the remainder rounds in the worst case.

Lemma 2. After first MIP decrease, NDSSA with AIMD requires 2⌈log(MIP 0+
h)⌉ rounds to converge, where h = 2

√
(MIP 0)2 + 2vmab − MIP 0 and mab =

arg max∀i �=1 vi(1 − IBRi) in the worst case.

Proof. As shown in Fig. 1, the available bid increment is at most MIP 0 + h in
(h + 1)th round. If the assumption is false, MIP 0 + h + 1 for example, admab is
able to update his/her bid in (h+1)th round due to MIPh+1 = (MIP 0 +h)+1.

The remainder rounds in the worst case is composed of decrease-increase
pairs. Consider the idea in (h + 2)th round. We have MIPh+2 = MIPh+1/2 =
(MIP 0 + h + 1)/2 and the available bid increment is MIP 0 + h. So admab

increases his/her bid by (MIP 0 + h + 1)/2. The remainder bid increment is
(MIP 0+h)−(MIP 0+h+1)/2 = (MIP 0+h−1)/2 in the first round of decrease-
increase pair, and the MIP value should be increased by one. Because the MIP
value is higher than the available bid increment, e.g. ((MIP 0 + h + 1)/2) + 1 ≥
(MIP 0 + h − 1)/2, no bid update will be taken place in the second round of
decrease-increase pair.

The NDSSA with AIMD will decrease the MIP setting to one half, and each
decrease contains a pair of rounds. When MIP = 1, each advertiser will no longer
update his/her bid value. Therefore, the remainder rounds is 2⌈log(MIPh)⌉ =
2⌈log(MIP 0 + h)⌉.
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Combining Lemma 1 and 2, the total number of convergence rounds required
by the NDSSA with AIMD is shown in Theorem 2.

Theorem 2. NDSSA with AIMD will converge at most rA = h+2⌈log(MIP 0+
h)⌉ rounds, where h = 2

√
(MIP 0)2 + 2vmab−MIP 0 and mab = arg max∀i �=1 vi(1−

IBRi).

The upper bound of convergence rounds for fixed MIP strategy and AIMD
are shown in Theorem 1 and 2 respectively. Now, we are analyzing the condition
that fixed MIP strategy converges faster than AIMD.

Theorem 3. When the MIP value is decreased after (rF −2 log vmab) rounds in

AIMD, fixed MIP strategy converges faster than AIMD, where rF = ⌈vmab(1 −
IBRmab)/MIP 0⌉, in the worst case.

Proof. Combining Theorem 1 and 2, assume that fixed MIP strategy converges
faster than AIMD, i.e. rF ≤ rA. The objective is to proof h ≥ rF − 2 log vmab.

rF ≤ rA

= h + 2 log(MIP 0 + h)

≤ h + 2 log(
vmab

2
) + 2

= h + 2 log vmab

⇒ h ≥ rF − 2 log vmab

4 Simulation

The distributions of valuation, CTR, and IBR, are shown in table 1, 2, and 3
respectively. The gaps of valuation and CTR settings include uniform, linear,
exponential increasing, exponential decreasing, and random. The IBR settings
are not required to restrict as a decreasing order, so the previous advertiser may
have smaller IBR value than the next one. Since the maximum valuation is 50,
initial MIP values are evaluated from 1 to 50 for each instance. So, we have 6250
measurements.

Following experiments are evaluated in this paper: (1) robustness, comparing
which mechanism produces more SEP’s revenue in more instances, (2) overall
SEP’s revenue comparison, evaluating SEP’s revenue for all mechanisms under
stable allocations, (3) SEP’s average revenue, analyzing SEP’s average revenue
after converging, and (4) SEP’s long-term revenue comparison, discussing the
SEP’s total revenue during a specific round.

4.1 Robustness

For two mechanisms x and y, we say that x is more robust than y if the number
of instances with more SEP’s revenue in x is more than that in y.
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Table 1. valuation setting

case # ad1 ad2 ad3 ad4 ad5

1 50 40 30 20 10
2 50 34 22 14 10
3 50 46 38 26 10
4 50 45 38 26 10
5 44.46 41.00 40.68 28.80 26.96

Table 2. CTR setting

case # sl1 sl2 sl3 sl4

1 0.8 0.6 0.4 0.2
2 0.8 0.376 0.164 0.053
3 0.8 0.747 0.641 0.429
4 0.8 0.76 0.4 0.38
5 0.8 0.598 0.475 0.39

The pairwise comparisons of fixed MIP strategy, AIMD, and VCG are eval-
uated in this experiment, and results are shown in Figure 2, 3, and 4. The labels
x > y, x = y, and x < y in each figure denote the number of instances that
SEP’s revenue of mechanism x is more than, same to, and less than mechanism
y respectively.

In Figure 2, AIMD is more robust than fixed MIP strategy. After initial MIP
46, SEP gains more revenue in AIMD than in fixed MIP strategy in all instances.
Recall our claim in suction 2.3: higher MIP values will increase the gap between
stable bid value and the valuation for fixed MIP strategy. The conjecture is
confirmed in this measurement.

The robustness comparison between AIMD and VCG is shown in Figure 3.
AIMD is also more robust than VCG. SEP’s revenue in VCG is the lower bound
of that in GSP just in some instances [1]. The revenue lower bound of GSP is
extended to all instances in NDSSA according to our simulation.

Figure 4 draws the comparison between fixed MIP strategy and VCG. As
the initial MIP increases, fixed MIP strategy performs worse and worse. The
disadvantage of fixed MIP strategy, less SEP’s revenue in higher MIP settings,
is explored clearly in this simulation. Under lower MIP settings, SEP is benefited,
and fixed MIP strategy is more robust than VCG in average.

4.2 Overall SEP’s Revenue Comparison

Fig 5 shows the overall comparison about SEP’s revenue between AIMD, fixed
MIP strategy, and VCG. Each square includes three comparison results: “>”,
“=”, and “<”, and they stand for how many instances that the left mechanism
is better than, equal to, and worse than above one respectively. The VCG-ALL
comparison, for example, represents that VCG produces more SEP’s revenue
than all mechanisms in 892 instances, identical to 98 instances, and less than in
11510 instances.
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Table 3. IBR setting

case # ad1 ad2 ad3 ad4 ad5

1 0.9 0.7 0.5 0.3 0.1
2 0.1 0.3 0.5 0.7 0.9
3 0.9 0.3 0.7 0.1 0.5
4 0.5 0.1 0.7 0.3 0.9
5 0.87 0.36 0.57 0.10 0.92
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Fig. 2. SEP’s revenue comparison between AIMD and fixed MIP strategy in the stable
allocation.

AIMD produces more revenue in 11134 instances (89.07%) approximately,
and only 192 instances (1.54%) are worse than other mechanisms. The second
one is the NDSSA with fixed MIP strategy, and last one is VCG. Comparing to
VCG, AIMD improves 990 instances (15.84%) of fixed MIP strategy. Therefore,
SEP’s revenue of the stable allocation is maximized by adopting AIMD in most
instances.

4.3 SEP’s Average Revenue

In this simulation, we deal with the impact of initial MIP values on SEP’s revenue
in the stable allocation. Figure 6 shows the result. The x-axis indicates initial
MIP values, and the y-axis is SEP’s revenue averaged by all instances under the
same MIP value.

Since the payment of VCG is calculated according to valuations, SEP’s rev-
enue is identical to various initial MIP values. In average, AIMD and fixed MIP
strategy perform better than VCG.

AIMD receives a more stable result than fixed MIP strategy, and the impact
of initial MIP values is slight. Since AIMD adjust MIP values in each round, bid
values are optimized in average.

SEP’s revenue of fixed MIP strategy decreases slightly in lower initial MIP
settings. After initial MIP is 18 approximately, SEP’s revenue drops dramatically
until MIP 46. Increasing initial MIP value implies that the gap between the
valuation and the stable bid value becomes larger. Therefore, SEP’s revenue is
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Fig. 3. SEP’s revenue comparison between AIMD and VCG in the stable allocation.
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Fig. 4. SEP’s revenue comparison between fixed MIP strategy and VCG in the stable
allocation.

decreased. Lower initial MIP values are better for SEP’s revenue in the stable
allocation.

4.4 SEP’s Long-term Revenue Comparison

Given a maximum round, the long-term revenue of SEP is the sum of revenue in
each round. Only AIMD and fixed MIP strategy is compared in this simulation,
and the result is shown in Figure 7.

Given different maximum rounds, the variance degree of SEP’s long-term
revenue is not different too much for both AIMD and fixed MIP strategy. Similar
to Figure 6, initial MIP values almost do not vary SEP’s total revenue in AIMD.
SEP gains less revenue when initial MIP value increase in fixed MIP strategy. In
Figure 7(a), SEP gains more revenue in fixed MIP strategy than AIMD in a few
instances. As the number of maximum rounds increases, AIMD performs better
in all initial MIP values. AIMD is more appropriate than fixed MIP strategy for
the long term revenue for SEP.
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Fig. 5. Overall SEP’s revenue comparison between all mechanisms.
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Fig. 6. SEP’s average revenue comparison under different initial MIP values.

5 Conclusion

When applying GSP to a multi-round SSA, SEP suffers the revenue loss problem.
We propose Non-decreasing Sponsored Search Auction (NDSSA) to solve this
problem while each advertiser is allowed to propose only non-decreasing bids in
next round. Minimum Increase Price (MIP) is used in NDSSA to control the bid
value for improving long term revenue.

Fixed MIP strategy and AIMD are applied to compute MIP values. For
theoretical convergence speed analysis, fixed MIP strategy converges faster than
AIMD in most instances. For SEP’s revenue comparison of our simulations,
AIMD not only produces better but is more robust than fixed MIP strategy.
Thus, fixed MIP strategy is outstanding in short-term plan, and AIMD is for
long-term consideration.
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(a) After 50 rounds.
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(b) After 75 rounds.
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(c) After 100 rounds.
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(d) After 125 rounds.
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(e) After 150 rounds.

Fig. 7. SEP’s total revenue comparison for given different rounds.
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SEP’s revenue is improved in NDSSA in this paper. However, SEP has no
idea to capture advertiser’s satisfaction. If the expected objectives, the utility
for example, are not achieved, advertisers may leave the auction. SEP’s revenue
will also be decreased potentially. Therefore, measuring satisfactions for any
participant will be studied in the future.
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