
Agents and Data Mining Interaction
International Workshop, ADMI 2011

Taipei, Taiwan, May 2011
Proceedings

Longbing Cao, Ana Bazzan, Andreas L. Symeonidis, Vladimir Gorodetsky, Gerhard
Weiss and Philip S. Yu (Eds.)

No Institute Given



2 Authors Suppressed Due to Excessive Length



Message from the Workshop Chairs

We are pleased to welcome you to attend the 2011 International Workshop on Agents
and Data Mining Interaction (ADMI-11), joint with AAMAS 2011. We hope you enjoy
the program, and have intensive discussions on Agent Mining research through ADMI-
11.

In recent years, Agents and Data Mining Interaction (ADMI, or agent mining) has
emerged as a very promising research field. Following the success of ADMI-06 in
Hongkong, ADMI-07 in San Jose, AIS-ADM-07 in St Petersburg, ADMI-08 in Syd-
ney, ADMI-09 in Budapest, ADMI-10 in Toronto, the ADMI-11 provides a premier
forum for sharing research and engineering results, as well as potential challenges and
prospects encountered in the coupling between agents and data mining.

The ADMI-11 workshop encourages and promotes theoretical and applied research
and development, which aims at:

– exploit agent-enriched data mining and demonstrate how intelligent agent technol-
ogy can contribute to critical data mining problems in theory and practice;

– improve data mining-driven agents and show how data mining can strengthen agent
intelligence in research and practical applications;

– explore the integration of agents and data mining towards a super-intelligent sys-
tem;

– discuss existing results, new problems, challenges and impact of integration of
agent and data mining technologies as applied to highly distributed heterogeneous,
including mobile, systems operating in ubiquitous and P2P environments; and

– identify challenges and directions for future research and development on the syn-
ergy between agents and data mining.

The 12 papers accepted by ADMI-11 are from 14 countries. ADMI-11 submis-
sions cover areas from North America, Europe to Asia, indicating the booming of agent
mining research globally. The workshop also includes two invited talks by two distin-
guished researchers.

Following ADMI-09, the papers accepted by ADMI-11 are to be revised and pub-
lished as an LNAI post-proceedings by Springer. We appreciate Springer, in particular
Mr. Alfred Hofmann, for the continuing publication support.

ADMI-11 is sponsored by the Special Interest Group: Agent-Mining Interaction
and Integration (AMII-SIG: www.agentmining.org). We appreciate the guideline by the
Steering Committee.

More information about ADMI-11 is available from the workshop website:
http://admi11.agentmining.org/.

Finally, we appreciate the contributions made by all authors, program committee
members, invited speakers, panelists, and AAMAS 2011 workshop and local organiz-
ers.



VI Authors Suppressed Due to Excessive Length

May 2011 Gerhard Weiss
Philip S Yu

Longbing Cao
Ana Bazzan

Andreas L. Symeonidis
Vladimir Gorodetsky



Organization

General Chair

Gerhard Weiss University of Maastricht, Netherlands
Philip S Yu University of Illinois at Chicago, USA

Workshop Co-Chairs

Longbing Cao University of Technology Sydney, Australia
Ana Bazzan Universidade Federal do Rio Grande do Sul, Insti-

tuto de Informatica, Brasil
Andreas L. Symeonidis Aristotle University of Thessaloniki, Greece
Vladimir Gorodetsky Russian Academy of Sciences, Russia

Workshop Organizing Co-Chairs

Dionysis Kehagias Informatics and Telematics Institute, Centre for Re-
seach and Technology Hellas, Greece

Program Committee

Ajith Abraham Norwegian University of Science and Technology,
Norway

Eduardo Alonso University of York, UK
Luis Otavio Alvares Universidade Federal do Rio Grande do Sul, Brazil
Ioannis Athanasiadis Dalle Molle Institute for Artificial Intelligence,

Switzerland
Sviatoslav Braynov University of Illinois at Springfield, USA



VIII Authors Suppressed Due to Excessive Length

Valerie Camps University Paul Sabatier, France
William Cheung Hong Kong Baptist University, HK
Sung-Bae Cho Yonsei University, Korea
Frans Coenen University of Liverpool, UK)
Yves Demazeau CNRS, France
Giovanna Di Marzo Serugendo Birkbeck College, UK
Tapio Elomaa Tampere University of Technology, Finland
Boi Faltings Artificial Intelligence Laboratory, The Swiss Fed-

eral Institute of Technology in Lausanne
Nathan Griffiths University of Warwick, UK
Mirsad Hadzikadic University of North Carolina, Charlotte, USA
Ahmed Hambaba San Jose State University. USA
Heikki Helin TeliaSonera Finland Oyj, Finland
Henry Hexmoor University of Arkansas, USA
Ken Kaneiwa National Institute of Information and Communica-

tions Technology, Japan
Hillol Kargupta University of Maryland, USA
Oleg Karsaev SPIIRAS, Russia
Dionysis Kehagias Kristian Kerst-
ing Yasuhiko Kitamura Matthias
Klusch

DFKI, Germany

Matthias Klusch DFKI, Germany
Daniel Kudenko University of York, UK
Vipin Kumar University of Minnesota, USA
Kazuhiro Kuwabara Ritsumeikan University, Japan
Yaodong Li Institution of Automation, Chinese Academy of

Sciences, China
Jiming Liu Hong Kong Baptist University, China
Eleni Mangina University College Dublin, Ireland
Vladimir Marik Czech Technical University in Prague, Czech Re-

public
Pericles Mitkas Aristotle University of Thessaloniki, Greece
Joerg Mueller Technische University Clausthal, German
Mircea Negoita WellTech, New Zealand
Wee Keong Ng Nanyang Technological University, Singapore
Ngoc Thanh Nguyen Wroclaw University of Technology, Poland
Eugenio Oliveira University of Porto, Portugal
Michal Pechoucek Czech Technical University, Czech Republic
Jean-Marc Petit University Clermont-Ferrand II, France
Martin Purvis University of Otago, New Zealand
Zbigniew Ras University of North Carolina, USA
Sandip Sen University of Tulsa, USA
Simeon Simoff University of Technology Sydney, Australia



Agents and Data Mining Interaction IX

Victor Skormin Binghamton University, USA
Andrzej Skowron Institute of Decision Process Support, Poland
Katia Sycara Carnegie Mellon University, USA
Yasufumi TAKAMA Tokyo Metropolitan University, Japan
David Taniar Monash University, Australia
Andrea G. B. Tettamanzi University degli Studi di Milano, Italy
Karl Tuyls Maastricht University, Netherlands
Wen-Ran Zhang Georgia Southern University, USA
Ning Zhong Maebashi Institute of Technology, Japan
Jason Jung Yeungnam University, Korea
Kazuhiro Kuwabara Ritsumeikan University, Japan
Yiyu Yao University of Regina, Canada
Yves Demazeau CNRS, France
Zbigniew Ras University of North Carolina, USA
Yanqing Zhang Georgia State University, USA
Zili Zhang Deakin University, Australia

Steering Committee

Longbing Cao University of Technology Sydney, Australia (Coor-
dinator)

Edmund H. Durfee University of Michigan, USA
Vladimir Gorodetsky St. Petersburg Institute for Informatics and Au-

tomation, Russia
Hillol Kargupta University of Maryland Baltimore County, USA
Matthias Klusch DFKI, Germany
Michael Luck King’s College London, UK
Jiming Liu Hong Kong Baptist University, China
Pericles A. Mitkas Aristotle University of Thessaloniki, Greece
Joerg Mueller Technische University Clausthal, Germany
Ngoc Thanh Nguyen Wroclaw University of Technology, Poland
Carles Sierra Artificial Intelligence Research Institute of the

Spanish Research Council, Spain
Andreas L. Symeonidis Aristotle University of Thessaloniki, Greece
Gerhard Weiss University of Maastricht, Netherlands
Xindong Wu University of Vermont, USA
Philip S. Yu University of Illinois at Chicago, USA
Chengqi Zhang University of Technology Sydney, Australia



Table of Contents 
Obtaining an Optimal MAS Configuration for Agent-Enhanced Mining 

Using Constraint Optimization 

Chayapol Moemeng, Can Wang and Longbing Cao. ................................................................................. 2 

Exploiting Domain Knowledge in Making Delegation Decisions 

Chukwuemeka David Emele, Timothy Norman, Murat Sensoy and Simon 

Parsons ...................................................................................................................................................... 10 

Toward a methodology for agent-based data mining and visualization 

Elizabeth Sklar, Chipp Jansen, Jonathan Chan and Michael Byrd ........................................................... 20 

Opinion Formation in the Social Web: Agent-based Simulations of 

Opinion Convergence and Divergence in Sub-Communities 

Pawel Sobkowicz, Michael Kaschesky and Guillaume Bouchard ............................................................ 32 

Enhancing Agent Intelligence through Evolving Reservoir Networks for 

Power Load and Settlement Price Predictions in Power Stock Markets 

Kyriakos Chatzidimitriou, Antonios Chrysopoulos, Andreas Symeonidis and 

Pericles Mitkas ......................................................................................................................................... 45 

Agent Based Middleware for Maintaining User Privacy in IPTV 

Recommender Services 

Ahmed Mohamed and Dimtr Botich ........................................................................................................ 57 

Pricing Analysis in Online Auctions using Clustering and Regression 

Tree Approach 

Preetinder Kaur, Madhu Goyal and Jie Lu ............................................................................................... 71 

Change Point Analysis for Intelligent Agents in City Traffic 

Maksims Fiosins, Jelena Fiosina and Joerg Mueller................................................................................. 81 

A Data-driven Approach for Resource Gathering in Real-time Strategy 

Games 

Dion Christensen, Henrik Ossipoff Hansen, Jorge Pablo Cordero Hernandez, 

Lasse Juul-Jensen, Kasper Kastaniegaard and Yifeng Zeng ..................................................................... 92 

A Multi-Agent Based Approach To Clustering: Harnessing The Power of 

Agents 

Santhana Chaimontree, Katie Atkinson and Frans Coenen .................................................................... 102 

Data Cloud for Distributed Data Mining via Pipelined MapReduce 

Zhiang Wu, Jie Cao and Changjian Fang ............................................................................................... 113 

 

  



Obtaining an Optimal MAS Configuration for
Agent-Enhanced Mining Using Constraint

Optimization

Chayapol Moemeng, Can Wang, Longbing Cao

Quantum Computing and Intelligent Systems,
Faulty of Engineering and Information Technology,

University of Technology, Sydney
P.O. Box 123, Broadway, NSW 2007, Australia
{mchayapol,cawang,lbcao}@it.uts.edu.au

Abstract. We investigate an interaction mechanism between agents and
data mining, and focus on agent-enhanced mining. Existing data mining
tools use workflow to capture user requirements. The workflow enact-
ment can be improved with a suitable underlying execution layer, which
is a Multi-Agent System (MAS). From this perspective, we propose a
strategy to obtain an optimal MAS configuration from a given workflow
when resource access restrictions and communication cost constraints are
concerned, which is essentially a constraint optimization problem. In this
paper, we show how workflow is modeled in the way that can be opti-
mized, and how the optimized model is used to obtain an optimal MAS
configuration. Finally, we demonstrate that our strategy can improve the
load balancing and reduce the communication cost during the workflow
enactment.

Keywords: Constraint Optimization, Workflow Management System,
Agent and Data Mining Interaction

1 Introduction

A challenge in agent and data mining interaction (ADMI) is the interaction
itself: whether agent enhances the data mining process, or data mining is used
to improve agent intelligence [1]. Given the current pace of research progression
from these two fields, introducing an entirely new mechanism would face the
issues in terms of acceptance and adoption by the ADMI community.

At first, let us look at the successful existing data analysis and mining tools
(data mining tools, for short). Take SAS Analytics1, RapidMiner2, KNIME3,
as examples, they manage complicated data analysis and mining components

1 SAS website: http://www.sas.com/
2 Rapid-i website: http://rapid-i.com/
3 KNIME website: http://www.knime.org



2

through workflow-style tools. Workflow not only provides a high level of visual-
ization which increases the usability of the system, but also eases system devel-
opments in terms of re-usability from the computational resources, such as data
analysis and mining components. As a result, users can define arbitrary work-
flows for their requirements with the support of these application tools. As for
today, Workflow Management System (WfMS) has become a de facto standard
for data mining tools [2]. Contemporarily, major efforts on improving WfMS
performance by using different system architectures and engineering strategies
[3, 4] have been made.

Besides, in terms of data mining techniques, there exist two major constraints
which significantly impact the performance of the data mining process: large data
sets and resource access restriction [5]. In fact, transmitting a large amount
of data over the network could degrade such performance due to the enforced
resource access restriction, and may lead the system into inconsistency state
and various costs [3] which involve message passing for workflow management
activities. Consequently, handling the aforementioned constraints together with
the performance improvement at the same time is a challenging task.

However, from the standpoint of our interests in ADMI, adjustable anatomy
of Agent-based Workflow Management System (A-WfMS) has been investigated
to support dynamic constraints analysis recently [6]. Within A-WfMS, essen-
tially, the workflow functions as a process descriptor and a Multi-Agent System
(MAS) handles the workflow engine by coordinating the workflow enactment
[7–10].

Our recent work [2] has shown the successful use of workflow system as an
interaction platform between agent and data mining. Further, in this paper, we
focus on how to obtain the optimal MAS configuration for the agent-enhanced
data mining when given an optimized workflow model. In fact, this problem is a
class of Constraints Optimization Problem (COP) in which the hard constraint
(resource access restriction) must be satisfied and the soft constraint (data trans-
fer minimization) can be optimized.

The main contributions of this paper are in threefold: (i) we explore a type
of A-WfMS data mining process explicitly, (ii) we present a strategy to interact
between agents and data mining in terms of agent-enhanced mining based on
constraint optimization framework, and (iii) we provide the ADMI community
with a mechanism that can be quickly and inexpensively accepted and adopted.

The rest of the paper is structured as follows. Section 2 reviews the related
work for this paper. Problem statement, including preliminary assumptions, case
description, and relevant definitions, is explained in Section 3 in which the POCL
plan [11] is used to present our task description. Section 4 specifies the constraint
optimization and the MAS configuration schemes individually. Afterwards, we
evaluate the strategy and analyse the results in Section 5. Finally, we end the
paper in Section 6.



3

2 Related Work

Integration of agents and WfMS have been introduced in the late 1990s. Pio-
neer work [7, 8] argued that agents are suitable for workflows since the nature
of the requirements could always evolve over time. Therefore, automatic process
improvement is desirable, which can then intelligently adapt to the changing
environmental conditions. Recent A-WfMSs, JBees [9] and i-Analyst [10], use
collaborating software agents as the basis of the systems provides more flexibil-
ity than existing WfMSs. JBees uses Coloured Petri nets as process formalism
However, JBees’ allocation of process agent (workflow engine) does not concern
the cost of communication and resource access restrictions. On the other hand,
i-Analyst is specifically designed for data mining process using agent technol-
ogy for workflow execution layer. It provides a range of capabilities, including
workflow construction, workflow management, algorithm development, resource
management, workflow enactment, and reporting. The mechanism for MAS con-
figuration of i-Analyst is described in this paper.

In later years, attentions have been moved to the implementation techniques.
The increasing growth of the Internet has played a major role in the development
of WfMS. Recently and remarkably, web Services is a promising method to pro-
vide the computational resources for workflow, and such workflow benefits from
the support for distributed process models [12]. Although web services technol-
ogy is becoming a main stream in workflow integration, Huhns [13] argued that
web services alone may not completely fulfil distributed WfMS requirements due
to the fact that web services know only about themselves, rather than any meta-
level awareness; web services are not designed to utilize or understand ontologies;
besides, web services are not capable of autonomous action, intentional commu-
nication, or deliberatively cooperative behavior. Accordingly, Buhler and Buhler
[6] showed a critical survey of workflow, web services, and agent technologies to
make a point that web services and MAS will become imperative parts of the
future WfMS development. To our extend, we aim at an agent-enhanced data
mining system in which computational resources (operations) are not required
to be web services. The location requirement of the web service does not support
our approach, because rather than transmitting large data over the network to
the designated operation at a service provider, we prefer the operation to be
transmitted to the data site instead.

Some works attempting to improve the performance of A-WfMS have become
incrementally popular. For instance, Yoo et al. [4] proposed an architecture that
involves agents in workflow engine layer, therefore, agents can help distribute
workloads of a naming/location server and a workflow engine effectively. Bauer
and Dadam [3] proposed a variable server assignment for distributed WfMS
which allows dynamic server assignment without expensive run-time analysis.
Their approaches use the advanced techniques in system engineering to help
minimize the communication load in the distributed system, while our approach
takes great advantage of the pre-construct configuration which has its own unique
benefit: that is once the agent organization has been acquired and tasks have
been allocated to the corresponding agents, they may perform tasks in advance,



4

such as loading independent data and libraries, without having to wait for depen-
dent task completions. In our understanding, improving the performance means
minimizing the related costs in A-WfMS.

3 Problem Statement

This section depicts the building blocks of this paper. We propose, firstly, the
preconditions of the involved data mining tool. Secondly, the case to be used in
the rest of the paper is specified. And finally, the relevant definitions are formal-
ized. In this work, the concerned system is a data mining tool with an embedded
WfMS. The WfMS has the information of the size of data sources. The workflow
execution layer is deployed on a group of computers (hosts) on a network. Each
host has an agent platform to perform as a workflow engine. Lastly, the topology
of the network does not change significantly. We have implemented such system
in our previous work [10].

3.1 Case Description

Fig. 1: A Workflow

For the rest of the paper, we set up a workflow and describe the MAS con-
figuration to be obtained from the above one.

To begin with, Fig. 1 is a workflow that consists of six tasks. All the tasks are
connected with each other by one or more directed arcs. Each arc is inscribed
with a cause ci and a cost in a numeric value. A cause c is both an effect of task
ti and a precondition of task tj [11] which can be written as ti

c→ tj .
Highlighted tasks t1 and t4 are location-specific tasks, which must be executed

at the specific location only; while other tasks are non-location-specific.
In addition, MAS configuration is a document that describes the organiza-

tion of agents in a platform. The description of the configuration is varied by
the types of agent platform. Let us use a generic agent platform, WADE, for our
common understanding. WADE is an extension of JADE (Java Agent Develop-
ment Framework) 4. Listing 1.1 shows a sample of MAS configuration used in

4 WADE website, http://jade.tilab.com/wade/index.html



5�
<plat form name=”Conf igurat ion−1”>
<hos t s>
<host name=”host1 ”>
<con ta i n e r s>
<conta ine r name=”Execution−Node−1”>
<agents>
<agent name=”performer1 ” type=”WE Agent”/>
<agent name=”performer2 ” type=”WE Agent”/>

</ agents>
</ conta ine r>

</ con ta i n e r s>
</ host>

</ hos t s>
</ plat form>
� �

Listing 1.1: Sample MAS Configuration

WADE. Specifically, an agent platform is composed of multiple hosts. Each host
may contain multiple agent containers, in which each container may have multi-
ple agents. Agents, in particular, are type specific. In this example, agents are of
Workflow Engine (WE) Agent type. Note that every element (host, container,
and agent) must have a specific name.

3.2 Definitions

We desire to obtain the MAS configuration that is optimal for a workflow. In or-
der to get such document, we establish the following definitions. In this work, our
definition of a multi-agent plan extends that of the Partial-Order Causal-Link
(POCL) plan. The POCL plan definition has been well-established in the plan-
ning community [11]. Our definition is also inspired by the framework proposed
by Cox and Durfee [14].

Definition 1. A Localized POCL (L-POCL) plan is a tuple P = ⟨T,≻T

,≻C , LT ,C ⟩ where

– T is a set of the tasks,

– ≻T is the temporal orders on T , where e ∈≻T is a tuple ⟨ti, tj⟩ with ti, tj ∈ T ,

– ≻C is the causal partial orders on T , where e ∈≻C is a tuple ⟨ti, tj , c⟩ with
ti, tj ∈ T and c is a cause,

– LT is a set of the locations and the corresponding tasks on T , where e ∈ LT

is a tuple ⟨li, tj⟩ with location li ∈ L and task tj ∈ T ,

– C is the cost function mapping C : T×T → {0,ℜ}, this function C (ti, tj) = 0
if lti = ltj , otherwise C (ti, tj) = r where ti, tj ∈ T , and r ∈ ℜ is a real value
related with the size of data to be transmitted.



6

Location and Cost Function. We have added location set LT and cost func-
tion C to the original POCL plan. The L-POCL plan itself does not fully rep-
resent the workflow, since it does not maintain the information about process
and execution conditions. However, it is still adequate to capture necessary in-
formation for constraint optimization. Here, location can be in any form that
uniquely represents a physical place, such as IP address, host name, etc. A non-
location-specific task has ∅ as its location. In relation to LT , we introduce two
more related sets L|T | and T ∗

L.

– L|T |: describes the number of tasks at the same location, i.e., e ∈ L|T | is a
tuple ⟨li, n⟩, where li is the location, ti ∈ T , and n is the number of tasks at
location li.

– T ∗
L: is a set of tasks t ∈ T whose locations cannot be changed.

In terms of COP, the hard constraint must be satisfied strictly; in this sce-
nario, that is the location of each task t ∈ T ∗

L cannot be changed. However, the
soft constraint is preferred to be optimized. In this case, the concerned global
function is the communication cost C between each task, for the reason that the
data transmission between locations incurs communication costs. But when the
tasks are at the same location, communication cost is marked to zero.

Consider the workflow as shown in Fig. 1, the L-POCL plan concepts involved
are exemplified as follows:

T = {t1, t2, t3, t4, t5, t6}
≻T={⟨t1, t2⟩, ⟨t1, t3⟩, ⟨t1, t6⟩, ⟨t2, t3⟩, ⟨t2, t6⟩, ⟨t3, t6⟩,

⟨t4, t2⟩, ⟨t4, t3⟩, ⟨t4, t5⟩, ⟨t4, t6⟩, ⟨t5, t6⟩}
≻C= {⟨t1, t2, c1⟩, ⟨t2, t3, c2⟩, ⟨t3, t6, c3⟩, ⟨t4, t2, c4⟩, ⟨t4, t5, c4⟩, ⟨t5, t6, c5⟩}
T ∗
L ={t1, t4}

LT ={(l1, t1), (l2, t4), (∅, t2), (∅, t3), (∅, t5), (∅, t6)}
L|T | ={(l1, 1), (l2, 1), (∅, 4)}

C (i, j) =



5 if i = t1 and j = t2,

2 if i = t2 and j = t3,

1 if i = t3 and j = t4,

4 if i = t4 and j = t2,

4 if i = t4 and j = t5,

1 if i = t5 and j = t6

Note that LT and C are also illustrated in Fig 2a Initial LT table.

Multi-Agent L-POCL. We have shown that a workflow can be modeled by a
L-POCL plan. However, the MAS configuration also requires information about
agents and their task assignments. The task assignment is to be mapped with the
corresponding location. Therefore, a multi-agent version of L-POCL is defined
as follows:



7

Definition 2. A Multi-Agent L-POCL plan (ML-POCL) is a tuple P =
⟨A, T,≻T ,≻C , LT ,C , X⟩ where

– ⟨T,≻T ,≻C , LT ,C ⟩ is the embedded POCL plan,
– A is a set of the agents,
– Execution assignment X is a set of the tuples with the form ⟨t, a⟩, represent-

ing that the agent a ∈ A is assigned to execute task t ∈ T .

LT and X are necessary components to construct a MAS configuration. Con-
sider Listing 1.1, hosts are all locations found in LT ; agents are specified in
X. LT and X are mutually linked by tasks. Note that the naming scheme of an
agent has no restriction as long as the name is unique.

4 Optimal MAS Configuration

This section describes how to obtain an optimal MAS configuration in terms of
constraint optimization. A constraint optimization algorithm, in this case, is to
minimize the soft constraint C . The optimization reflects the change of LT to
an optimal one L∗

T . Then L∗
T is used to guide the construction of the optimal

MAS configuration.

4.1 Constraint Optimization

The optimization algorithm migrates workflow tasks based on location. It uses
the global cost function C as a guide by reducing the costly routes by minimizing
the number of locations in the workflow.

Algorithm 1: Optimize C

input : LT

output: L∗
T

L∗
T = LT ;

while there exists non-location-specific task in L∗
T do

foreach non-location-specific task t ∈ L∗
T do

let Tx be a set of location-specific tasks adjacent to t;
if Tx = ∅ then continue;
let tx ∈ Tx be a task that maximizes C (t, tx) or C (tx, t).;
update (∅, t) ∈ L∗

T to (lx, t) where lx is the location of tx.;
if tx maximizes C (t, tx) then

C (t, tx)← 0;
else

C (tx, t)← 0;

return L∗
T ;

Given a workflow as shown in Fig. 1, each arc is marked with the estimated
size of data (presume in mega-bytes) to be transmitted between relevant tasks.
Tasks t1 and t4 are at l1 and l2 respectively, and the locations of them cannot



8

C l1, t1 ∅, t2 ∅, t3 l2, t4 ∅, t5 ∅, t6
l1, t1 - 5 - - - -

∅, t2 - - 2 - - -

∅, t3 - - - - - 1

l2, t4 - 4 - - 4 -

∅, t5 - - - - - 1

∅, t6 - - - - - -
Fig 2a Initial LT table

C l1, t1 l1, t2 l1, t3 l2, t4 l2, t5 ∅, t6
l1, t1 - 0 - - - -

l1, t2 - - 0 - - -

l1, t3 - - - - - 1

l2, t4 - 4 - - 0 -

l2, t5 - - - - - 1

∅, t6 - - - - - -
Fig 2c Migrate t5 to l2 and t3 to l1

C l1, t1 l1, t2 ∅, t3 l2, t4 ∅, t5 ∅, t6
l1, t1 - 0 - - - -

l1, t2 - - 2 - - -

∅, t3 - - - - - 1

l2, t4 - 4 - - 4 -

∅, t5 - - - - - 1

∅, t6 - - - - - -
Fig 2b Migrate t2 to t1

C l1, t1 l1, t2 l1, t3 l2, t4 l2, t5 l2, t6

l1, t1 - 0 - - - -

l1, t2 - - 0 - - -

l1, t3 - - - - - 1

l2, t4 - 4 - - 0 -

l2, t5 - - - - - 0

l2, t6 - - - - - -

Fig 2d Optimized L∗
T

Fig. 2: Cost Function C Optimization

be changed since t1, t2 ∈ T ∗
L. The corresponding location set LT and cost func-

tion C can be presented in the tabular form as shown in Fig. 2a. Each header
cell contains the combinations of each task tj(j = 1, · · · , 6) and its location
li(i = 1, 2), note that ∅ means unspecified location. Moreover, ‘−’ denotes the
situation of unavailable connection. As optimize() is applied to the workflow, for
instance, we get C (t1, t2) = 5, where t1 is at l1 and t2 is non-location-specific.
The algorithm gradually evolves to the point L∗

T that every task is assigned with
a optimal location. The algorithm performs the migration in two fashions: cost
reduction and load balancing.

Cost reduction optimization: The algorithm searches for every non-location-
specific task that is adjacent to at least one location-specific task. Firstly, (∅, t2) is
found with two adjacent location-specific tasks t1 and t4. As C (t1, t2) > C (t4, t2),
t2 is migrated to the same location of task t1, i.e., l1. Tasks t1 and t2 are now
at the same location l1, then C (t1, t2) is updated to zero. Subsequently, the al-
gorithm searches again and finds another non-location-specific task t3, and then
migrates it to the location of task t2, i.e., l1. The same principle goes on for
non-location-specific task t5, it is migrated to the location of t4, i.e., l2.

Load balancing optimization: As the cost reduction optimization goes
on, the last non-location-specific task t6 has two choices to migrate, t3’s loca-
tion l1 and t5’s location l2, and both the values of C (t3, t6) and C (t5, t6) equal
to 1. Now, let us consider the number of tasks at each location, indicated as
L|T | = {(l1, 3), (l2, 2), (∅, 1)}. A simple load balancing advises to migrate task
t6 to location l2. However, it also depends on other factors such as computing
power which we do not cover in this paper, we will consider it for our future
work. The final L∗

T is shown in Fig. 2d.



9

4.2 Obtaining MAS Configuration

Fig. 3: Workflow Constructs

This section discusses the way to obtain the optimal MAS configuration.
The basic configuration rule is to assign one task to one agent, thus |A| = |T |
regardless of locations. But agents are related to the structure of L∗

T which has
been attained in the previous steps. The execution assignment X of ML-POCL
plan is also needed to obtain the desired configuration. Instead of starting out
with one agent for one task, one agent is assigned to one location, thus initially
|A| = |L| regardless of tasks. Tasks that can be executed without having to
wait for other tasks should be allocated with an agent. At each location l ∈ L∗

T ,
determine the agent allocation according to the workflow constructs (illustrated
in Fig. 3):

– Sequence: If task ti has a successive task tj defined in ≻T , an agent a is
assigned to ti and tj , s.t. (ti, a), (tj , a).

– Parallel: If task ti and tj are not linked with temporal ordering as defined
in ≻T , two agents a1 and a2 are assigned to tasks ti and tj respectively, s.t.
(ti, a1), (tj , a2). For example in Fig. 1, if tasks t2 and t5 were at the same
location, they are parallel.

– Condition: If task ti is to choose either tj or tk exclusively, which means
only one successive task will be executed, therefore an agent a is assigned to
all ti, tj , tk, s.t. (ti, a), (tj , a), (tk, a).

– Iteration: Iterative task is a sequential form of condition and loop. Let task
ti be the entrance to the iteration, Ti is the set of tasks to be repeated in a
loop, tj is the decision-making task, and tk is the successive task of tj , then
an agent a is assigned to all tasks t ∈ {ti, tj , tk} ∪ Ti.

With respect to iteration, we cannot precisely calculate the number of it-
erations which will directly affect the total costs. But this is a factor that will
influence every scheme of configuration proportionally.



10

5 Evaluation

In this section we demonstrate that the overall communication cost can be signif-
icantly reduced by taking advantage of the optimal MAS configuration strategy.
For this purpose, we have simulated the execution of the randomly generated
workflow in a distributed system composed of 5 hosts (locations). We randomly
generate 20 workflows consisting of 10-20 tasks with random structures. In a
workflow, 20-30% of all tasks are location specific. And each causal link is as-
signed with a random cost value between 1-5 (assumed mega-bytes). This sim-
ulation generates three MAS configurations for each workflow:

1. Centralized configuration (C): All tasks run at one host.
2. Equally distributed configuration (E): Equally assign a host with a

number of tasks.
3. Optimal configuration (O): The method we have proposed.

Fig. 4: Results of the Simulation

Based on the 20 workflows and 5 hosts, we calculate three evaluation values
(the results are shown in Fig. 4):

1. The average percentage of utilization of the entire system: indicates
the percentage of hosts being used to run the tasks. C uses only one host;
E distributes all tasks to all hosts, so all hosts are utilized; and O uses only
the hosts that have location-specific tasks, s.t., the number of active hosts is
equal to |LT |.

2. The average percentage of load at the active hosts: indicates the
percentage of the number of tasks assigned to the active hosts. C runs all
tasks at the only active host, s.t. 100%; E distributes all tasks to all hosts,



11

s.t. the number of tasks per host is |T |/|host|; and O uses only the hosts
that have location-specific tasks, therefore, it is slightly higher than that of
E, |T |/|LT |.

3. The average percentage of total cost: indicates the amount of commu-
nication cost compared to the maximum cost in each workflow of the three
configurations. In this simulation, we add one extra unit of cost for each
causal link although all communications happened at the same host in order
to demonstrate the activity that happens during the workflow enactment,
otherwise C will always have zero cost. C communicates at a single host
internally, then the cost is minimum; E communicates through out the sys-
tem, so the cost is the highest among all; and O communicates only between
selected hosts, therefore, the cost is between E and C.

The results of the simulation show that the proposed optimal MAS configura-
tion both reduces the communication cost significantly and maintains a high
level of system utilization. Its load balancing is better than that of centralized
configuration, and obviously it cannot be better than that of equally distributed
configuration as it does not use all of the hosts. With the proposed approach, we
can achieve an optimal configuration that satisfies the hard constraints (location
specific tasks) and optimizes the soft constraints (communication cost).

6 Conclusion and Future Work

We have presented a strategy to obtain an optimal MAS configuration for agent-
enhanced data mining. The method utilizes the existing component in modern
data mining tools, i.e., the workflow. The workflow is modeled with our proposed
ML-POCL plan. The plan is then optimized and used to obtain an optimal MAS
configuration. The result shows that the attained MAS configuration optimally
reduces the communication cost and maintains a high level of system utilization.

However, there are a few issues yet to be improved. The constraint opti-
mization process assumes all costs (C ) between tasks to be pre-defined. But in
a more complex situation, the configuration should deal with cost function C
dynamically since the environment may change and affect it. Another issue is
that most WfMSs use data pipe-lining to pass data from one task to another,
while global resource sharing scheme allows data production from one activity
to be published to the naming directory service for later reference and re-use.
This will help boost re-usability of the resource.

References

1. Cao, L., Gorodetsky, V., Mitkas, P.: Agent mining: The synergy of agents and
data mining. Intelligent Systems, IEEE 24(3) (2009) 64–72

2. Moemeng, C., Zhu, X., Cao, L. In: Integrating Workflow into Agent-Based Dis-
tributed Data Mining Systems. Volume 5980 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 4–15



12

3. Bauer, T., Dadam, P.: Efficient Distributed Workflow Management Based on Vari-
able Server Assignments. In: Advanced Information Systems Engineering, 12th
International Conference CAiSE 2000. Volume 1789. (2000) 94–109

4. Yoo, J.J., Suh, Y.H., Lee, D.I., Jung, S.W., Jang, C.S., Kim, J.B.: Casting Mobile
Agents to Workflow Systems: On Performance and Scalability Issues. In Mayr,
H.C., Lazansky, J., Quirchmayr, G., Vogel, P., eds.: Database and Expert Systems
Applications. Volume 2113 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg (August 2001) 254–263

5. Klusch, M., Lodi, S., Gianluca, M.: The role of agents in distributed data mining:
issues and benefits. IEEE Comput. Soc (2003)

6. Buhler, P.A., Vidal, J.M.: Towards Adaptive Workflow Enactment Using Mul-
tiagent Systems. Information Technology and Management 6(1) (January 2005)
61–87

7. Judge, D.W., Odgers, B.R., Shepherdson, J.W., Cui, Z.: Agent-enhancedWorkflow.
BT Technology Journal 16(3) (July 1998) 79–85

8. Odgers, B.R., Shepherdson, J.W., Thompson, S.G.: Distributed Workflow Co-
ordination by Proactive Software Agents. In: In Intelligent Workflow and Process
Management. The New Frontier for AI in Business IJCAI-99 Workshop. (1999)

9. Ehrler, L., Fleurke, M., Purvis, M., Savarimuthu, B.: Agent-based workflow man-
agement systems (WfMSs). Information Systems and E-Business Management
4(1) (January 2006) 5–23

10. Moemeng, C., Zhu, X., Cao, L., Jiahang, C.: i-Analyst: An Agent-Based Dis-
tributed Data Mining Platform. IEEE (December 2010)

11. Weld, D.S.: An Introduction to Least Commitment Planning. AI Magazine 15(4)
(1994) 27–61

12. Savarimuthu, B.T., Purvis, M., Purvis, M., Cranefield, S.: Agent-based integration
of Web Services withWorkflowManagement Systems. In: AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous agents and multiagent
systems, New York, NY, USA, ACM (2005) 1345–1346

13. Huhns, M.: Agents as Web services. Internet Computing, IEEE 6(4) (2002) 93–95
14. Cox, J., Durfee, E.: An efficient algorithm for multiagent plan coordination. In:

Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, ACM (2005) 828–835



Exploiting Domain Knowledge in Making Delegation
Decisions

Chukwuemeka David Emele1, Timothy J. Norman1,
Murat Şensoy1, and Simon Parsons2

1 University of Aberdeen, Aberdeen, AB24 3UE, UK
2 Brooklyn College, City University of New York, 11210 NY, USA

{c.emele,t.j.norman,m.sensoy}@abdn.ac.uk
parsons@sci.brooklyn.cuny.edu

Abstract. In multi-agent systems, agents often depend on others to act on their
behalf. However, delegation decisions are complicated in norm-governed envi-
ronments, where agents’ activities are regulated by policies. Especially when
such policies are not public, learning these policies become critical to estimate
the outcome of delegation decisions. In this paper, we propose the use of domain
knowledge in aiding the learning of policies. Our approach combines ontological
reasoning, machine learning and argumentation in a novel way for identifying,
learning, and modeling policies. Using our approach, software agents can au-
tonomously reason about the policies that others are operating with, and make
informed decisions about to whom to delegate a task. In a set of experiments, we
demonstrate the utility of this novel combination of techniques through empirical
evaluation. Our evaluation shows that more accurate models of others’ policies
can be developed more rapidly using various forms of domain knowledge.

1 Introduction

In many settings, agents (whether human or artificial) engage in problem solving activ-
ities, which often require them to share resources, act on each others’ behalf, communi-
cate and coordinate individual acts, and so on. Such problem-solving activities may fail
to achieve desired goals if the plan is not properly resourced and tasks delegated to ap-
propriately competent agents. Irrespective of the field of endeavour, the overall success
of problem-solving activities depends on a number of factors; one of which is the selec-
tion of appropriate candidates to delegate tasks to (or share resources with). However,
successful delegation decisions depend on various factors. In norm-governed environ-
ments, one of the factors for making successful delegation decisions is the accuracy of
the prediction about the policy restrictions that others operate with.

In multi-agent environments, agents may operate under policies, and some policies
may prohibit an agent from providing a resource to another under certain circumstances.
Such policies might regulate what resources may be released to a partner from some
other organisation, under what conditions they may be used, and what information re-
garding their use is necessary to make a decision. In addition, policies may govern
actions that can be performed either to pursue individual goals or on behalf of another.



2 Emele et. al.

In Emele et al. [1], we show that intelligent agents can determine what policies oth-
ers are operating within by mining the data gathered from past encounters with that
agent (or similar agents) as they collaborate to solve problems. This prior research uses
a novel combination of argumentation-derived evidence (ADE) and machine learning
in building stable models of others’ policies. Here we explore the question that given
agents may have access to some background (or ontological) domain knowledge, how
can we exploit such knowledge to improve models of others’ policies? To do this, we
propose the use of ontological reasoning, argumentation and machine learning to aid in
making effective predictions about who to approach if some other collaborator is to be
delegated to perform a task on the behalf of another.

The rest of this paper is organised as follows. Section 2 discusses delegation in
norm-gorverned environments. Section 3 presents our approach for learning policies.
Section 4 reports the results of our evaluations. Section 5 summarises our findings,
discusses related work and outlines future directions.

2 Delegating in Norm-governed environments

Task delegation, in general, is concerned with identifying a suitable candidate (or candi-
dates) to transfer authority to act on one’s behalf [4]. In other words, we are concerned
with finding candidate agents that will achieve a given goal on our behalf. Implicitly,
this model is based on experience gathered from past encounters. In a norm-governed
multi-agent system where each agent is regulated by a set of rules, referred to as poli-
cies (or norms), the policies could determine what actions an agent is (or is not) allowed
to perform. Delegation, in this case, is not just a matter of finding agents that possess
the appropriate expertise (or resource); if an agent has the required expertise but is op-
erating under a policy that prohibits the performance of that action, it may not take on
the delegated task. Nevertheless, delegation in such settings entails finding agents who
possess the required expertise (or resources), and whose policies permit it to perform
the required action (or provide the required resource). If an agent is allowed to perform
an action (according to its policy) then we assume it will be willing to perform it when
requested, provided it has the necessary resources and/or expertise, and that doing so
does not yield a negative utility. In our framework, an agent that has been assigned a task
is solely responsible for that task. However, an agent can delegate an aspect of a task to
another. For example, agent x is responsible for performing task Tx but could delegate
the provision of some resource Rr required to fulfill Tx to another agent y1. Provided
agent y1 has resource Rr, and does not have any policy that forbids the provision of Rr

then we assume y1 will make Rr available to x.
From the above example, we see that agent x needs to find effective ways of dele-

gating the provision of resource Rr. In order to delegate a task successfully, we need
to find out the agent whose policy constraints will most likely, according to a chosen
metric, permit it to execute the delegated task. In our framework, whenever there is a
task to be delegated, policy predictions are generated alongside the confidence of those
predictions from the policy models that have been learned over time. Confidence values
of favourable policy predictions are easily compared to determine which candidate to



Exploiting Domain Knowledge in Making Delegation Decisions 3

delegate the task to. In our case, confidence values range from 0 to 1, with 0 being no
confidence in the prediction, and 1 being complete confidence.

The delegating agent explores the candidate space to identify suitable candidates to
whom it can delegate a task. In these terms, our delegation problem is concerned with
finding potential candidates whose policies permit it to perform the delegated task, and
thereafter, selecting the most promising candidate from the pool of eligible candidates.
Borrowing ideas from economics, we assume that some payment will be made to an
agent for performing a delegated task (e.g. payment for the provision of a service).

Example 1 Consider a situation where an agent x is collaborating with a number of
agents, y1, y2, y3, and y4, to solve an emergency response problem. Let us assume
that agent x does not have a helicopter in its resource pool, and that each of agents
y1, y2, y3, and y4 can provide helicopters, jeeps, vans, bikes, fire extinguishers, and
unmanned aerial vehicles (UAVs).

Agent x in Example 1 has to decide which of the potential providers, y1, y2, y3, and
y4 to approach to provide the helicopter. Let us assume that the four providers advertise
similar services. Agent x, at this point, attempts to predict the policy of the providers
with respect to task delegation (or resource provision). This prediction is based on pol-
icy models built from past experience with these providers (or similar agents). Assum-
ing the predictions are as follows: (i) y1 will accept to provide the helicopter with 0.6
confidence; (ii) y2 will accept with 0.9 confidence; (iii) y3 will accept with 0.7 confi-
dence; and (iv) y4 will decline with 0.8 confidence. If the decision to choose a provider
is based on policy predictions alone, then y2 is the best candidate.

3 Learning agent policies

The framework we propose here enables agents to negotiate and argue about task dele-
gation, and use evidence derived from argumentation to build more accurate and stable
models of others’ policies. The architecture of our framework, sketched in Figure 1, en-
ables agents to learn the policies and resource availabilities of others through evidence
derived from argumentation, and improve those models by exploiting domain knowl-
edge. The dialogue manager handles all communication with other agents. The learning
mechanism uses machine learning techniques to reason over the dialogue and attempts
to build models of other agents’ policies and resource availabilities based on arguments
exchanged during encounters. The arguments include the features that an agent requires
in order to make a decision about accepting a task delegation or not. The agent attempts
to predict the policies of others by reasoning over policy models (built from past experi-
ence). Such reasoning is further improved by exploiting background domain knowledge
and concept hierarchies in an ontology (see Section 3.4).

3.1 Policies

In this framework, agents have policies that govern how resources are deployed to oth-
ers. In our model, policies are conditional entities (or rules) and so are relevant to an
agent under specific circumstances only. These circumstances are characterised by a set
of features, e.g., vehicle type, weather conditions, etc.



4 Emele et. al.

Resource 

Availability 

Models

Policy 

Models

Rule Learning 

Mechanism

Plan Resourcing 

Strategy Mechanism

Dialogue ManagerDialogical episodes

Dialogue strategy

Argumentation-based

plan resourcing dialogues

POLICIES LEARNED

PROVIDER 2

IF   resource=r1

AND  purpose=p8

THEN YES

IF   resource=r2

THEN NO

IF   resource=r1

AND  purpose=p5

THEN NO

IF   resource=r1

THEN YES

IF   resource=r2

AND  purpose=p5

THEN NO

...

POLICIES LEARNED

PROVIDER 1

IF   resource=r1

AND  purpose=p8

THEN YES (0.75)

IF   resource=r2

THEN NO (0.8)

IF   resource=r1

AND  purpose=p5

THEN NO (0.66)

IF   resource=r1

AND  purpose=p4

AND  location=l1

THEN YES (0.9)

IF   resource=r2

AND  purpose=p5

THEN NO (0.86)

...

PROVIDER  RESOURCE  AVAILABILITY

    1        r1         0.66

    1        r2         0.4

    1        r3         0.8

 ...

Agent          

Fig. 1. Agent reasoning architecture.

Definition 1 (Features). Let F be the set of all features such that f1, f2, . . . ∈ F . We
define a feature as a characteristic of the prevailing circumstance under which an agent
is operating (or carrying out an activity).

Our concept of policy maps a set of features into an appropriate policy decision.
In our framework, an agent can make one of two policy decisions at a time, namely
(1) grant, which means that the policy allows the agent to provide the resource when
requested; and (2) deny, which means that the policy prohibits the agent from providing
the resource.

Definition 2 (Policies). A policy is defined as a function Π : F → {grant, deny},
which maps feature vectors of agents, F , to appropriate policy decisions.

In order to illustrate the way policies may be captured in this model, we present an
example. Let us assume that f1 is resource, f2 is purpose, f3 is weather report (with re-
spect to a location), f4 is the affiliation of the agent,
and f5 is the day the resource is required, then P1,
P2, and P3 in Figure 2 will be interpreted as fol-
lows: P1: You are permitted to release a helicopter
(h), to an agent if the helicopter is required for the
purpose of transporting relief materials (trm); P2:
You are prohibited from releasing an aerial vehi-

Policy Id f1 f2 f3 f4 f5 Decision
P1 h trm grant
P2 av vc deny
P3 j grant
P4 c vc xx grant
. . . . . . . . . . . . . . . . . . . . .
Pn q yy w xx z deny

Fig. 2: An agent’s policy profile.

cle (av) to an agent in bad weather conditions - e.g. volcanic clouds (vc); P3: You are
permitted to release a jeep (j) to an agent.

In the foregoing example, if helicopter is intended to be deployed in an area with
volcanic clouds then the provider is forbidden from providing the resource but might
offer a ground vehicle (e.g. jeep) to the seeker if there is no policy prohibiting this
and the resource is available. Furthermore, whenever a seeker’s request is refused, the
seeker may challenge the decision, and seek justifications for the refusal. This additional
evidence is beneficial, and could be used to improve the model, hence, the quality of
decisions made in future episodes.

3.2 Argumentation-based Negotiation

Figure 3 illustrates the protocol employed in this framework, which guides dialogical
moves. Our approach in this regard is similar to the dialogue for resource negotiation



Exploiting Domain Knowledge in Making Delegation Decisions 5

OPEN-
DIALOGUE PROPOSE ACCEPT CLOSE-

DIALOGUE

REFUSE

COUNTER-
PROPOSE

REJECT

CHALLENGE

ASSERT

QUERY

INFORM

Fig. 3. The negotiation protocol.

proposed by McBurney & Parsons [3]. To illustrate the sorts of interaction between
agents, consider the example dialogue in Figure 4. Let x and y be seeker and provider
agents respectively. Suppose we have an argumentation framework that allows agents
to ask for and receive explanations (as in Figure 4, lines 11 and 12), offer alternatives
(counter-propose in Figure 3), or ask and receive more information about the attributes
of requests (lines 4 to 9), then x can gather additional information regarding the policy
rules guiding y concerning provision of resources.

# Dialogue Sequence Locution Type
1 x: Start dialogue. OPEN-DIALOGUE
2 y: Start dialogue. OPEN-DIALOGUE
3 x: Can I have a helicopter for $0.1M reward? PROPOSE
4 y: What do you need it for? QUERY
5 x: To transport relief materials. INFORM
6 y: To where? QUERY
7 x: A refugee camp near Indonesia. INFORM
8 y: Which date? QUERY
9 x: On Friday 16/4/2010. INFORM
10 y: No, I can’t provide you with a helicopter. REJECT
11 x: Why? CHALLENGE
12 y: I am not permitted to release a helicopter ASSERT

in volcanic eruption.
13 x: There is no volcanic eruption near Indonesia. CHALLENGE
14 y: I agree, but the ash cloud is spreading, and ASSERT

weather report advises that it is not safe
to fly on that day.

15 x: Ok, thanks. CLOSE-DIALOGUE

Fig. 4. Dialogue example.

Negotiation for resources takes place in a turn-taking fashion. The dialogue starts,
and then agent x sends a request (propose in Figure 3) to agent y, e.g. line 3, Figure 4.
The provider, y, may respond by conceding to the request (accept), rejecting it, offering
an alternative resource (counter-propose), or asking for more information (query) such
as in line 4 in Figure 4. If the provider agrees to provide the resource then the negotiation
ends. If, however, the provider rejects the proposal (line 10, Figure 4) then the seeker
may challenge that decision (line 11), and so on. If the provider suggests an alternative
then the seeker evaluates it to see whether it is acceptable or not. Furthermore, if the
provider agent needs more information from the seeker in order to make a decision, the
provider agent would ask questions that will reveal the features it requires to make a
decision (query, inform/refuse). The negotiation ends when agreement is reached or all
possibilities explored have been rejected.



6 Emele et. al.

f4=xx
f4=ss

f2=yy
f2=trm

f1=jf1=cf5=ef5=z

f3=vc f3=w

f4
f4=aa

f2

grantdeny

f5

deny grant f3
grant

f1

grant

deny

Fig. 5. Example decision tree.

3.3 Learning from past experience through dialogue

When an agent has a collection of experiences with other agents described by feature
vectors (see Section 3.1), we can make use of existing machine learning techniques
for learning associations between sets of discrete attributes (e.g. f1, f2, . . . fn ∈ F)
and policy decisions (i.e., grant and deny). In previous research we investigated three
classes of machine learning algorithms: (i) instance-based learning (using k-nearest
neighbours); (ii) rule-based learning (using sequential covering); and (iii) decision tree
learning (using C4.5). Figure 5 shows an example decision tree representing a model of
the policies of some other agent learned from interactions with that agent. Nodes of the
decision tree capture features of an agent’s policy, edges denote feature values, while
the leaves are policy decisions.

The machine learning algorithms were chosen to explore the utility of different
classes of learning techniques. Instance-based learning is useful in this context because
it can adapt to and exploit evidence from dialogical episodes incrementally as they ac-
crue. In contrast, decision trees, and rule learning are not incremental; the tree or the set
of rules must be reassessed periodically as new evidence is acquired.3 Learning mecha-
nisms such as sequential covering, decision trees do have a number of advantages over
instance-based approaches; in particular, the rules (or trees) learned are more amenable
to scrutiny by a human decision maker.

The training examples used in each learning mechanism are derived from plan re-
sourcing episodes (or interactions), which involves resourcing a task t using provider y
and may result in (F y, grant) or (F y, deny). In this way, an agent may build a model
of the relationship between observable features of agents and the policies they are oper-
ating under. Subsequently, when faced with resourcing a new task, the policy model can
be used to obtain a prediction of whether or not a particular provider has a policy that
permits the provision of the resource. In this paper, we take this aspect of the research
further by investigating semantic-enriched decision trees (STree), which extend C4.5
decision trees using ontological reasoning to explore how much domain knowledge can
improve learning.

3 For these algorithms we define a learning interval, φ, which determines the number of plan
resourcing episodes (or interactions) an agent must engage in before building (or re-building)
its policy model.



Exploiting Domain Knowledge in Making Delegation Decisions 7

3.4 Learning from domain knowledge

In this paper, we argue that domain knowledge can be used to improve the performance
of machine learning approaches. Specifically, in this section, we will describe how we
can exploit domain knowledge to improve C4.5 decision trees.

GroundVehicle

Vehicle

SeaVessel
AerialVehicle

speedBoatyacht

Boat

cruiser submarine

MilitaryShip

coach car

van
jeep

UAVs helicopter

hunter
reaper

hawk

Thing

...WeatherConditions

GoodWeatherBadWeather

clear
rainy

foggysnowy

windy

volcanicCloud

Fig. 6. A simple ontology for vehicles and weather conditions. Ellipsis and rectangles represent
concepts and their instances respectively.

Domain Knowledge Domain knowledge consists of such background information that
an expert (in a field) would deploy in reasoning about a specific situation. Semantic Web
technologies allow software agents to use ontologies to capture domain knowledge, and
employ ontological reasoning to reason about it [2]. Figure 6 shows a part of a simple
ontology about vehicles and weather conditions. The hierarchical relationships between
terms in an ontology can be used to make generalisation over the values of features
while learning policies as demonstrated in Example 2. Policies are often specified using
numerical features (e.g., vehicle price) and nominal features (e.g., vehicle type). Each
nominal feature may have a large set of possible values. Without domain knowledge, the
agent may require a large training set containing examples with these nominal values.
However, domain knowledge allows agents to reason about to the terms unseen in the
training set and learn more general policies with fewer number of training examples.

Example 2 Suppose agent x in Example 1 has learned from previous interactions with
agent y1 that there is a policy that forbids y1 from providing a helicopter when the
weather is rainy, foggy, snowy, or windy. In addition, suppose agent x has learned
from previous experience that agent y1 is permitted to provide a jeep in these condi-
tions. This information has little value for x if it needs a helicopter when the weather is
not rainy, foggy, snowy, or windy but volcanic clouds are reported. On the other hand,
with the help of the ontology in Figure 6, agent x can generalise over the already ex-
perienced weather conditions and expect that “agent y1 is prohibited from providing
helicopters in bad weather conditions”. Such a generalisation allows x to reason about
y1’s behavior for the cases that are not experienced yet. That is, with the help of the do-
main knowledge, agent x can deduce (even without having training examples involving
volcanic clouds directly) that agent y1 may be prohibited from providing a helicopter if
there is an evidence of volcanic clouds in the region.

C4.5 Decision Tree Algorithm In this section, we shortly describe the induction of
C4.5 decision trees. Then, in the following section, we describe how domain knowledge
can be exploited during tree induction.



8 Emele et. al.

The well-known C4.5 decision tree algorithm [6] uses a method known as divide
and conquer to construct a suitable tree from a training set S of cases. If all the cases
in S belong to the same class Ci, the de-
cision tree is a leaf labeled with Ci. Oth-
erwise, let B be some test with outcomes
{b1, b2, . . . , bn} that produces a partition of
S, and denote by Si the set of cases in S
that has outcome bi of B. The decision tree
rooted at B is shown in Figure 7, where Ti

is the result of growing a sub-tree for the
Fig. 7: Tree rooted at the test B and its
breaches based on its outcomes.

cases in Si. The root node B is based on an attribute that best classifies S. This at-
tribute is determined using information theory. That is, the attribute having the highest
information gain is selected.

Information gain of an attribute is computed based on information content. Assume
that testing an attribute A in the root of the tree will partition S into disjoint subsets
{S1, S2, . . . , St}. LetRF (Ci, S) denote the relative frequency of cases in S that belong
to class Ci. The information content of S is then computed using Equation 1. The
information gain for A is computed using Equation 2.

I(S) = −
nX

i=1

RF (Ci, S)× log(RF (Ci, S)) (1)

G(S, A) = I(S)−
tX

i=1

|Si|
|S|
× I(Si) (2)

Once the attribute representing the root node is selected based on its information gain,
each value of the attribute leads to a branch of the node. These branches divide the
training set used to create the node into disjoint sets {S1, S2, . . . , St}. Then, we recur-
sively create new nodes of the tree using these subsets. If Si contains training examples
only from the class Ci, we create a leaf node labeled with the class Ci; otherwise, we
recursively build a child node by selecting another attribute based on Si. This recursive
process stops either when the tree perfectly classifies all training examples, or until no
unused attribute remains.

Figure 8 lists 10 training examples, where Type, Age, and Price are the only fea-
tures. C4.5 decision tree algorithm makes induction only over numerical attribute val-
ues. However, it could not make induction or general-
isation over the nominal attribute values (i.e., terms).
For instance, a decision node based on the price test in
Figure 9 can be used to classify a new case with price
$250, 000, even though there is no case in the training
examples with this price value. However, a new case
with an unseen type, for instance a submarine, cannot
be classified using the decision node based on the at-
tribute Type.

# Type Age Price Class
1 Van 10 10,000 grant
2 Van 5 20,000 grant
3 Car 8 5,000 grant
4 Car 15 1,000 grant
5 Coach 2 200,000 grant
6 Yacht 20 300,000 deny
7 Yacht 2 500,000 deny
8 Speedboat 4 8,000 deny
9 Speedboat 15 2,000 deny
10 Cruiser 10 100,000 deny

Fig. 8: Training examples.

Semantic-enriched decision trees Here, we propose semantic-enriched decision trees
(STree) built upon the subsumptions relationships between terms in the ontology.
These relationships can be derived automatically using an off-the-shelf ontology rea-
soner [2]. The main idea of STree is to replace the values of nominal attributes with



Exploiting Domain Knowledge in Making Delegation Decisions 9

Type=?

Car Van Coach
Yacht Speed

boat
Cruiser

{1,2,3,4,5,6,7,8,9,10}

{1,2} {3,4} {5} {6,7} {8,9} {10}

Price >= 100,000 ?

{1,2,3,4,5,6,7,8,9,10}

tr
u
e

false

{5,6,7,10} {1,2,3,4,8,9}

Fig. 9. Decision nodes created using the tests on Type (on left) and Price (on right).

more general terms iteratively during tree induction, unless this replacement results in
any decrease in the classification performance.

Algorithm 1 Generalising values of nominal attribute A in training set S.
1: Input : S, A
2: Output: T
3: g = G(S, A)
4: baned = {Thing}
5: terms = getAttributeV alues(S, A)
6: while true do
7: if ∃t such that t ∈ T ∧ t /∈ baned then
8: t′ = generalise(t)
9: T ′ = replaceWithMoreSpecificTerms(T, t′)
10: s = replaceAttributeV alues(S, A, T ′)
11: if G(s, A) = g then
12: S = s and T = T ′

13: else
14: baned = baned ∪ {t}
15: end if
16: else
17: break
18: end if
19: end while

Algorithm 1 summarises how the values of A are generalised for S. First, we com-
pute the original gain G(S,A) (line 3). Second, we create a set called banned, which
contains the terms that cannot be generalised further (line 4). Initially, this set contains
only the top concept Thing. Third, we create the set T that contains A’s values in S
(line 5). While there is a generalisable term t ∈ T (lines 6-18), we compute its gener-
alisation t′ using ontological reasoning (line 8) and create the set T ′ by replacing more
specific terms in T with t′ (line 9). If this term is an instance of a concept, then the
generalisation of the term is the concept, e.g., Boat is generalisation of Y acht. If the
term is a concept, its generalisation is its parent concept, e.g., SeaV essel is generalisa-
tion of Boat. For instance, let S be the data in Figure 8, then T would contain Y acht,
Speedboat,Cruiser, V an,Car,Coach, andCruiser. IfCar is selected as t, t′ would
be GroundV ehicle. In this case, T ′ would contain Y acht, Speedboat, Cruiser, and
GroundV ehicle. Next, we check if the generalisation leads to any decrease in the in-
formation gain. This is done by creating a temporary training set s from S by replacing
A’s values in S with the more general terms in T ′ (line 10) and then comparingG(s,A)
with the original gain g (line 11). If there is no decrease in the information gain, S and
T are replaced with s and T ′ respectively; otherwise t is added to banned. We iterate
through until we cannot find any term in T to generalise without any decrease in the
information gain.

The output of the algorithm would be {SeaV essel,GroundV ehicle} for the ex-
amples in Figure 8, because any further generalisation results in a decrease in informa-
tion gain. Hence, a decision node based on Type attribute would be as shown in Fig-
ure 10 (left hand side). A new test case (11, Submarine, 40years, $800, 000) would be



10 Emele et. al.

classified as deny using this decision node, because a submarine is a sea vessel and all
known sea vessels are labeled as deny. If the actual classification of the case is grant
instead of deny, the decision node would be updated as seen in Figure 10 (right hand
side), because generalisation of Submarine or Cruiser now results in a decrease in
the information gain.

Type=?

GroundVehicle SeaVessel

{1,2,3,4,5,6,7,8,9,10}

{1,2,3,4,5} {6,7,8,910}

Type=?

GroundVehicle Boat

{1,2,3,4,5,6,7,8,9,10,11}

{1,2,3,4,5} {6,7,8,9}

Cruiser Submarine

{10} {11}

Fig. 10. Decision nodes using the generalisation of cases in Figure 8 (left hand side) and after the
addition of a new case (11, Submarine, 40, 800, 000, grant) (right hand side).

4 Evaluation

In evaluating our approach, we employed a simulated agent society where a set of seeker
agents interact with a set of provider agents with regard to resourcing their plans over
a number of runs. Each provider is assigned a set of resources. Providers also operate
under a set of policy constraints that determine under what circumstances they are per-
mitted to provide resources to seekers. In the evaluation reported in this section, we
demonstrate that it is possible to use domain knowledge to improve models of others’
policies, hence increase their predictive accuracy, and performance. To do this, we con-
sider two experimental conditions (i.e. closed and open). There are five features that are
used to capture agents’ policies, namely resource type, affiliation, purpose, location,
and day. In the open scenario, each feature can have up to 20 different values, whereas
only 5 different values are allowed in the closed scenario. In each scenario, six agent
configurations (RS, SM , C4.5, kNN , SC, and STree) are investigated. In configura-
tion RS, random selection is used. In SM , simple memorisation of outcomes is used.
In C4.5, C4.5 decision tree classifier is used. In kNN , k-nearest neighbour algorithm
is used. In SC, sequential covering rule learning algorithm is used. Lastly, in STree,
agents use semantic-enriched decision trees to learn policies of others.

Seeker agents were initialised with random models of the policies of providers. 100
runs were conducted in 10 rounds for each case, and tasks were randomly created during
each run from the possible configurations. In the control condition (random selection,
RS), the seeker randomly selects a provider to approach. In the SM configuration, the
seeker simply memorises outcomes from past interactions. Since there is no generalisa-
tion in SM, the confidence (or prediction accuracy) is 1.0 if there is an exact match in
memory, else the probability is 0.5.

Figure 11 gives a graphical illustration of the performance of six algorithms we
considered in predicting agents’ policies in the closed scenario. The results show that
STree, SC, kNN , C4.5 and SM consistently outperform RS. Furthermore, STree,
SC and kNN consistently outperform C4.5 and SM. It is interesting to see that, with rel-
atively small training set, SM performed better than C4.5. This is, we believe, because
the model built by C4.5 overfit the data. The decision tree was pruned after each set
of 100 tasks and after 300 tasks the accuracy of the C4.5 model rose to about 83% to



Exploiting Domain Knowledge in Making Delegation Decisions 11

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Pe

rc
en

ta
ge

 o
f 

C
o

rr
ec

t 
Po

lic
y 

P
re

d
ic

ti
o

n
s 

(%
)

Number of Tasks

RS

SM

C4.5

kNN

SC

STree

Fig. 11. The effectiveness of exploiting domain knowledge in learning policies (closed).

tie with SM and from then C4.5 performed better than SM. Similarly, STree performed
much better than SC with relatively small training set. We believe, this is because STree
takes advantage of domain knowledge and so can make informed inference (or guess)
with respect to feature values that do not exist in the training set. After 400 tasks the
accuracy of SC reached 96% to tie with STree. We believe, at this point, almost all the
test instances have been encountered and so have been learned (and now exist in the
training set for future episodes).

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge
 o

f 
C

o
rr

ec
t 

Po
lic

y 
P

re
d

ic
ti

o
n

s 
(%

)

Number of Tasks

RS

SM

C4.5

kNN

SC

STree

50

55

60

65

70

75

80

85

90

0 100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge
 o

f 
C

o
rr

ec
t 

Po
lic

y 
P

re
d

ic
ti

o
n

s 
(%

)

Number of Tasks

C4.5

SC

STree

(i) (ii)

Fig. 12. The effectiveness of exploiting domain knowledge in learning policies (open).

Figure 12 illustrates the effectiveness of four learning techniques (C4.5, kNN, SC,
and STree) and SM in learning policies in the open scenario. The result shows that the
technique that exploits domain knowledge (STree) significantly outperforms the other
techniques that did not. The decision trees (i.e. STree and C4.5) were pruned after each
set of 100 tasks and after 300 tasks the accuracy of the STree model had exceeded 82%
while that of C4.5) was just over 63%.

Tests of statistical significance were applied to the results of our evaluation, and
they were found to be statistically significant by a t-test with p < 0.05. Furthermore,
in both the open and closed scenarios, the learning technique that incorporates domain
knowledge (STree) consistently yielded higher prediction accuracy (when training set
is relatively small) than those without domain knowledge. These results show that ex-
ploiting domain knowledge in decision making can help increase the performance of
agents. These results confirm our hypotheses, which state that exploiting appropriate



12 Emele et. al.

domain knowledge in learning policies mean that more accurate and stable models of
others’ policies can be derived more rapidly than without exploiting such knowledge.

5 Discussion

We have proposed an agent decision-making mechanism where models of other agents
are refined through argumentation-derived evidence from past dialogues, and these
models are used to guide future task delegation. Our evaluations show that accurate
models of others’ policies could be learned by exploiting domain knowledge. We be-
lieve that this research contributes both to the understanding of argumentation strategy
for dialogue among autonomous agents, and to applications of these techniques in agent
support for human decision-making.

Sycara et al. [5] report on how software agents can effectively support human teams
in complex collaborative planning activities. One area of support that was identified as
important in this context is guidance in making policy-compliant decisions. This prior
research focuses on giving guidance to humans regarding their own policies. Our work
complements the approach of Sycara et al. by allowing agents to support humans in de-
veloping models of others’ policies and using these in decision making. Our approach
extends decision trees with ontological reasoning. Zhang and Honavar have also ex-
tended C4.5 decision trees with Attribute-value taxonomies [7]. Their approach is sim-
ilar to STree, but it does not allow ontological reasoning during tree induction. Unlike
their approach, our approach can directly incorporate existing domain ontologies and
exploits these ontologies during policy learning.

In future, we plan to extend other matching learning methods with domain knowl-
edge and explore how much this extension improves policy learning and enhances
agents’ support for human decision-making.

References

1. Emele, C.D., Norman, T.J., Parsons, S.: Argumentation strategies for plan resourcing. In: Pro-
ceedings of AAMAS 2011. p. to appear. Taipei, Taiwan (2011)

2. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

3. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dialogues between
autonomous agents. Journal of Logic, Language and Information 12(2), 315 – 334 (2002)

4. Norman, T.J., Reed, C.: A logic of delegation. Artificial Intelligence 174(1), 51–71 (2010)
5. Sycara, K., Norman, T.J., Giampapa, J.A., Kollingbaum, M.J., Burnett, C., Masato, D., Mc-

Callum, M., Strub, M.H.: Agent support for policy-driven collaborative mission planning. The
Computer Journal 53(1), 528–540 (2009)

6. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edn. (2005)

7. Zhang, J., Honavar, V.: Learning decision tree classifiers from attribute value taxonomies and
partially specified data. In: Proceedings of the International Conference on Machine Learning
(2003)



Toward a methodology for agent-based data

mining and visualization

Elizabeth Sklar1,2, Chipp Jansen1,3, Jonathan Chan1 and Michael Byrd2

1 Brooklyn College, The City University of New York, USA
2 The Graduate Center, The City University of New York, USA

3 Hunter College, The City University of New York, USA
sklar@sci.brooklyn.cuny.edu,chipp@chipp.org,jonmchan@gmail.com,mbyrd1@gmail.com

Abstract. We explore the notion of agent-based data mining and vi-
sualization as a means for exploring large, multi-dimensional data sets.
In Reynolds’ classic flocking algorithm (1987), individuals move in a
2-dimensional space and emulate the behavior of a flock of birds (or
“boids”, as Reynolds refers to them). Each individual in the simulated
flock exhibits specific behaviors that dictate how it moves and how it
interacts with other boids in its “neighborhood”. We are interested in
using this approach as a way of visualizing large multi-dimensional data
sets. In particular, we are focused on data sets in which records contain
time-tagged information about people (e.g., a student in an educational
data set or a patient in a medical records data set). We present a system
in which individuals in the data set are represented as agents, or “data
boids”. The flocking exhibited by our boids is driven not by observation
and emulation of creatures in nature, but rather by features inherent in
the data set. The visualization quickly shows separation of data boids
into clusters, where members are attracted to each other by common
feature values.

1 Introduction

We are motivated to explore the notion of agent-based data mining visualiza-
tion, taking inspiration from the Artificial Life and Information Visualization
communities. Advances in computer graphics, processor speed and networking
bandwidth over last decade have made possible the application of dynamic tech-
niques for information visualization that were previously limited to high-end
graphics laboratory settings. In addition, the rapid rise in popularity of certain
types of data visualization environments, particularly those from the Geographic
Information Systems (GIS) community, have made commonplace otherwise ob-
scure techniques for examining vast multi-dimensional data sets. Google Earth
[2, 8, 6] is one example, which has brought to the masses the notion of zoomable
interfaces and allowed everyday computer users to explore 3-dimensional geo-
graphic data sets facilitated by, what are now considered to be, standardized



controls. Our work takes advantage of these trends by hypothesizing that when
any multi-dimensional data set is projected onto 2 or 3 dimensions, it can be
explored as if it were a geographic landscape. Such “data landscapes” could be
studied dynamically in interesting ways if points in the landscape are represented
as software agents that move in response to various stimuli.

The work presented here develops this idea, with the long term goal of provid-
ing a participatory agent-based data mining and visualization system in which
the user and the system collaboratively explore a data landscape. Classical statis-
tics and many machine learning methods are often fine (and the right choice)
when the user has some notion of what is in their data set and how they want
to analyze their data. Looking for a bell curve in a data set of student grades
is an example where a standard statistical method, like computing mean and
standard deviation, is an appropriate choice. Using K-means [9] when clustering
data into a known number of groups is an example where a standard machine
learning method is appropriate. But when the number of clusters and even the
selection of features on which to cluster the data are unknown a priori, other
techniques must be investigated. Our hypothesis is that a participatory system
in this type of situation can take advantage of superior human skills for quick vi-
sual understanding and intuition, facilitating a user to easily identify and nudge
an evolutionary data mining process into a desired direction.

This paper is organized as follows. Section 2 describes the related work in
this area, which was inspired by seminal work on “flocking boids” [16]. Sections
3 details our approach. Section 4 presents results from applying our approach to
a sample data set. Finally, we conclude in Section 5 with summary remarks.

2 Related Work

In 1987, Cliff Reynolds [16] produced the classic work on flocking in artificial sys-
tems. Reynolds’ model focuses on graphical aspects, and the aim was to produce
a realistic (from a graphical standpoint) simulation of a group of identical agents
(which Reynolds calls “boids”). Each agent is given the same behavioral rules,
which includes instructions for how to react to others in an agent’s “neighbor-
hood”. These interaction instructions consist of three independent rules. First,
there is a separation rule, which implements collision avoidance, preventing the
agents from bumping into each other. Second, there is an alignment rule, which
causes agents to move at the same velocity and heading as those around them.
Third, there is a cohesion rule, which encourages agents to gravitate towards a
common center. When put together, the composite set of agents exhibits emer-
gent group behavior that looks like flocking—in the same way that schools of
fish or flocks of birds or herds of land animals move together. This work has
proven to be highly influential and has inspired most of the subsequent research
in the area of artificial flocking.

Proctor and Winter [15] developed the notion of information flocking, about
10 years after Reynolds’ work. Their aim was to visualize patterns of behavior
of users visiting web sites. They simulated artificial “fish” and associated a fish



with each user, mining users’ clickstreams to provide input to their simulation.
A user clicking on a URL was interpreted as interest in the topic(s) displayed
on the page. A matrix of user interests was updated, and the fish responded by
grouping together—showing users who shared similar interests.

Moere [11] provides a comprehensive overview of decentralized data visual-
ization work conducted in the two decades since Reynolds’ original work. He
divides the work in the field into three categories: information particle anima-
tion; information flocking; and cellular ant methods. The first category involves
simulating a group of information particles, or “infoticles” (i.e., agents), in three-
dimensional space. Agents react to forces in the system, moving in response to
them. The forces can emanate from static points in the agents’ artificial land-
scape, acting as fixed point attractors (or repellers), as well as from dynamic
points—other agents. The forces influence the velocity and direction of move-
ment of each agent. With an infoticle, data values are assigned to each agent.
The forces acting on an agent are calculated according to the similarity (or dis-
similarity) of the agents’ data values in relation to those of other nearby agents
or fixed-point attractors in the landscape.

The second category, information flocking, describes the method introduced
by Proctor and Winter [15], discussed above. Picarougne et al. [12] extend the
work of Proctor and Winter by introducing the notion of an “ideal” distance
between agents that is proportional to the difference in feature values between
the agents. They compare to the K-means clustering method and state that
their results are similar. Another example that extends Proctor and Winter’s
work suggests using the visualization in tandem with other algorithms for data
classification [1]. Moere [10] offers a nice extension to the Proctor and Winter
work by applying the method to time-varying datasets and using financial stock
market data as an example. The data values (e.g., prices or “quotes” of a given
stock) are represented by agents, and the agents’ values change over time. Moere
introduces two additional behavior rules: data similarity, where agents stay close
to others with similar data values; and data dissimilarity, where agents move
away from others with different data values. The method highlights changes in
“data behavior”—as data values change over time, agents that have similarly
changing data values end up clustering together.

The third category combines ideas from artificial ant systems [4], ant for-
aging [3] and cellular automata [19]. The general idea is that artificial agents
(“ants”) move around a two-dimensional grid world and collect “food”—i.e.,
data. The aim is to bring like pieces of data together, emulating the way that
ants gather food particles and deposit them in shared nests. The agents’ move-
ment is constrained by cellular-automata-like rules in which they respond only to
neighboring grid cells. While an interesting alternative, many comment that this
approach takes more time to reach a solution than other methods. The reason
is that the agents’ movements are constrained (by the cellular automata rules),
and so even if an agent “knows” where it is going, it still has to find a path to get
there. The advantage, however, is that forcing the agent to explore an indirect
path will lead it to encounter other agents and new data (food) sources, which



may eventually result in a more robust solution (even if it takes longer to find).
Handl and Meyer [7] review ant-based clustering algorithms, comparing results
of different implementations and discussing approaches from an optimization
perspective.

Cui et al. [20] employ a flocking-based algorithm for document clustering
analysis. Each document object is represented as a “boid” and projects the
document’s TFIDF4 vector onto a two-dimensional space. The authors com-
pare their flocking-based clustering algorithm with K-means clustering and Ant
clustering. They found that the flocking algorithm ran faster than the Ant al-
gorithm, while K-means ran the fastest. However, the K-means method requires
an a priori estimate of the correct number of groups, whereas the flocking and
Ant-based methods do not. This makes the flocking algorithm the better choice
for a dynamically changing data set, like the one used by the authors.

Picarougne et al. [13] describe a biologically inspired clustering algorithm,
called FClust, which applies similar, but not identical, techniques to those of
Proctor and Winter. The authors also model agents as representations of data
points moving in a two-dimensional landscape. However, instead of applying
three forces to the agents’ motion, the authors apply two forces: one that at-
tracts agents with similar data values and one that repels agents with dissimilar
data values. They determine experimentally the threshold for similarity, show-
ing visually that different threshold values produce different clustering results,
as one would expect. They apply their method to several data sets and compare
results to K-means clustering methods. They also describe a component of their
system referred to as “interactive clustering” in which a user can select and la-
bel data elements on a visual display and the system will perform clustering on
the user-selected classes. The authors define an “entropy” measure (inspired by
Shannon [17]) for evaluating the stopping condition for the system.

The work we present in the remaining sections has been inspired and in-
formed by these and other examples, all of which were found primarily in the
Artificial Life and Information Visualization literature. Our approach is most
similar to that of Moere [10] and Picarougne et al. [13]. However, we take an
agent-based perspective. Each agent in our system can only compare its data val-
ues to others in its geographic neighborhood, much as a robot in a multi-robot
team can only respond to teammates that are within range of its visual or range
sensors or communication network. Where Moere and Picarougne et al. stress
two behavior rules (essentially data similarity and dissimilarity), we stick with
Reynolds’ original three behavior rules (separation, cohesion and alignment);
and we introduce an additional meta-level flocking step in which groups that
are similar emit an attractive force and tend to move towards each other. The
details are described in the next section.

4 Term Frequency, Inverse Document Frequency—a common metric used in Natural
Language Processing (NLP)



3 Approach

Our approach is built on the information flocking paradigm described in the
previous section, with modifications highlighted below. We associate a “data
boid”, or agent, with each record in an n-dimensional data set (i.e., a data set
with n features in each record). In our visual environment, the agent moves
around a two-dimensional geographic landscape, and its position is influenced
by the relative values of its data features compared with those of its neighbors.
Iterating over a number time steps, or “frames”, we animate the agents by first
applying the three standard flocking rules, then grouping agents based on their
feature value and geographic proximity, next executing a meta-flocking step that
pulls similar groups together, and finally applying a braking factor as clusters of
like agents converge.

The standard flocking procedure involves computing vectors representing
three forces acting on each agent, followed by combining the three forces us-
ing a weighting scheme. The three force vectors are computed as follows:

– Separation. A steering vector is computed that points away from agents in
the neighborhood with dissimilar feature values:

sep =
1

n

n∑
i=1

di(P − Pi) (1)

where n is the number of agents in the neighborhood within a specified fea-
ture distance (∆), di is the geographic distance to neighbor i, P is the (x, y)
position of the agent performing the computation, and Pi is the (x, y) posi-
tion of neighbor i.

– Cohesion. A steering vector is computed that points toward the center of
the group of agents in the neighborhood with similar feature values:

coh =
1

n

n∑
i=1

Pi (2)

where n is the number of agents in the neighborhood within a specified fea-
ture distance (∆) and Pi is the (x, y) position of neighbor i.

– Alignment. A velocity vector is computed to match the average speed and
heading of agents in the neighborhood with similar feature values:

ali =
1

n

n∑
i=1

Vi (3)

where n is the number of neighboring agents within a specified feature dis-
tance (∆) and Vi is the velocity of neighbor i.



The vectors are weighted and applied together to update the agent’s position:

velocity = ψ· sep+ α· ali+ γ· coh (4)

The weighting scheme amongst the three vectors is important, and there is a
delicate balance between them. For the results presented here, we used default
weights of ψ = 1.5, α = 1.0 and γ = 1.0.

The standard flocking algorithm only considers geographic distance (d) be-
tween agents, whereas we use geographic distance to determine an agent’s neigh-
borhood and distance in feature space (∆) to determine whether agents should be
attracted to or repel their neighbors. The distance in feature space is computed
as follows. Multi-featured data sets frequently contain a mixture of categorical
and quantitative types of features. We compute the distance between individual
features, based on their type and normalized to [0 . . . 1] (where 0 is most similar
and 1 is most dissimilar), and then calculate the average over all features. The
distance between two categorical feature values is:

δ(ai, bi) = (ai == bi ? 1 : 0) (5)

where ai and bi represent the values of the i-th feature for agents a and b,
respectively. The distance between two quantitative feature values is:

δ(ai, bi) =
|ai − bi|

maxi
(6)

where maxi is the range of possible values for feature i. The overall feature
distance between two agents is thus:

∆(a, b) =

∑n

i=1 δ(ai, bi)

n
(7)

After the standard flocking rules are applied to all the agents, a grouping step
takes place, followed by a meta-flocking step. Grouping is an organizational step
in which the agents are partitioned into virtual groups based on their locations
in geographic space. This is done using a recursive algorithm in which each agent
looks at its neighbors (other agents within a fixed physical distance), and those
neighbors look at their neighbors, and so on, adding to the group all neighbors
(and neighbors’ neighbors, etc.). Agents’ positions do not change during the
grouping step.

The meta-flocking step pulls together groups that have similar feature values.
For each group, a set of feature values is calculated that represents the center of
the group in feature space. For quantitative feature values, the center is the mean
over all group members. For categorical feature values, the center is the mode
(i.e., most popular) over all group members. A pairwise comparison is made
between all groups’ feature centers. A cohesion steering vector for the group is
computed that points toward the geographic center of mass of other groups with
similar feature values:

cohg =
1

n

n∑
i=1

Mi (8)



where n is the number of groups within a specified feature distance (∆) andMi is
the (x, y) position of the center of mass of group i. Note that this is different from
the standard (agent-level) cohesion rule for two reasons. First, it only takes into
account the feature distance between groups and does not use the geographic
distance. Second, it compares with every group in the system, not just groups
that are within close graphic distance proximity.

Finally a braking factor is applied to all members of groups whose feature
values within the group are similar. As group membership settles, the system
converges and the agents belonging to settled groups move more slowly and
eventually halt.

As the clusters of agents evolve, the system computes two metrics to assess
how the process is performing:

– pctGood computes the percentage of groups that fall within a pre-specified
“goodness” threshold. The aim is for this value to converge to 1.0. The
goodness of a group is a measure of the variance in group members’ feature
values. A goodness value close (or equal) to 0 indicates that the group mem-
bers are closely matched; a higher goodness value indicates a more diverse
group. Goodness is calculated as:

goodness =

n∑
i=1

∑
f∈Q

σ(f) +
∑
f∈C

(1−
match(f)

n
)

 (9)

where n is the number of agents in the group, Q is the set of each agents’
quantitative features, C is the set of each agents’ categorical features, σ(f)
is the standard deviation of (quantitative) feature f across all agents in the
group, and match(f) is the number of agents in the group with (categorical)
feature f matching the mode for that feature in the group.

– pctOverlap computes the percentage of groups that have overlapping feature
values. Since the system determines group membership dynamically, based
on which agents have come within small graphical distances of each other
while they float around in space, there is no guarantee that multiple groups
with the same feature values will not appear. The overall aim is to find
the minimal set of groups that have different feature values, since it is not
desirable to have different groups that overlap in feature space. The aim is
for this value to converge to 0.0.

4 Experiments and Results

We implemented our approach in a prototype system, developed using Process-
ing [14]. The system can run in an interactive mode, where the user selects
features on which to cluster, and the system responds in real-time. The user
can change feature selection during clustering, and the system will adjust. To
assess the efficacy of our method for clustering, we ran a series of experiments in



(a) 1 categorical feature (b) 2 categorical features
293 frames 1000 frames

pctGood = 1.0, pctOverlap = 0.0 pctGood = 0.92, pctOverlap = 0.08

(c) 1 categorical, 1 quantitative (d) all 5 features
1000 frames 1000 frames

pctGood = 0.83, pctOverlap = 0.08 pctGood = 0.99, pctOverlap = 0.0

Fig. 1. Screen shots at end of 4 different runs, each clustering on different sets of
features, as indicated above.

a batch mode, using a 5-dimensional sample set of university enrollment data,
gathered over a 4-and-a-half-year period. The data was partitioned into subsets,
each representing one term; on average, there are 375 data records per term.
Each record represents an instance of a student taking one class in a specific
term. The fields in each record are: a unique identifier for the student (cate-
gorical feature), a course number identifying which class was taken (categorical
feature), the student’s gender (categorical feature), a numeric code indicating
the student’s ethnic origin (categorical feature), and the grade earned by the
student in the class (quantitative feature). A subset of data for one term con-
tains all the students who took classes in that term. A student who took more
than one class in a given term is represented by multiple data records.

Figure 1 contains screen shots from 4 representative runs of the system,
captured at the end of each run. The end of a run is either the point at which
pctGood = 1.0 and pctOverlap = 0.0 or a maximum number of frames have
elapsed. We used 1000 as the maximum number of frames for the runs presented
here. The figure captions show the number of frames elapsed for each run, and
the final values of pctGood and pctOverlap. Figure 2 shows the improvement
in pctGood and pctOverlap rates through the course of each corresponding run.
When clustering on one categorical feature value, the system quickly converges
to the correct solution (in 293 frames); whereas in all the other cases, the system
timed out after 100 runs. Even so, the percentage of “good” groups was high,
ranging between 83% and 99%.



(a) 1 categorical feature (b) 2 categorical features
293 frames 1000 frames

pctGood = 1.0, pctOverlap = 0.0 pctGood = 0.92, pctOverlap = 0.08

(c) 1 categorical, 1 quantitative (d) all 5 features
1000 frames 1000 frames

pctGood = 0.83, pctOverlap = 0.08 pctGood = 0.99, pctOverlap = 0.0

Fig. 2. Improvement in evolution metrics: pctGood and pctOverlap

At the end of each run, we computed two scores to determine how well
the clustering process worked: within cluster score and between cluster score.
The “within cluster” score measures the disparity of the feature values in the
cluster. The goal is to minimize the “within” cluster score and to maximize the
“between” cluster score. The “within” cluster score is determined by calculating
the feature distance (equation 7) from the representative center of the group in
feature space (see the description of the meta-flocking step in Section 3) to each
member of the group. The “between” cluster score is determined by calculating
the average over all pairwise feature distances between representative (feature)
centers of each group. Using these two metrics, we compared our results to two
standard clustering algorithms from the data mining literature: K-means [9] and
Cobweb [5]. We ran these algorithms using WEKA [18] on our same data set.

Figures 3 and 4 compare the results of our agent-based data visualization
method to K-means and Cobweb. Each horizontal bar represents an average
over multiple runs5. The shaded bands within each bar represent the percentage
of runs in which either all three methods had the same (best) result (labeled

5 The number of runs varied between 4 and 31, depending on the number of features
being clustered.



Fig. 3. “Within Cluster” score comparison

“all”), versus the percentage of runs in which each method had the same result
(labeled “kmeans” or “cobweb” or “advis”). The bottom bar in each plot shows
the average results over all combinations of features. Reading up from the bot-
tom, the next 5 bars show the average results over combinations of 5, 4, 3, 2 or
1 feature. Then, the next 31 bars represent average results over specific combi-
nations of features. In general, K-means produces the best results for “within”
cluster score. For “between” cluster score, the results are split between Cobweb
and our agent-based data flocking method. The table below quantifies how far
off each method was when it was not categorized as the “best”:

kmeans cobweb advis
within cluster 0.87% 38.23% 47.39%

between cluster 1.58% 2.18% 1.12%

The values in the table are expressed as percentages and are computed as follows.
For example, in the kmeans column, in the cases where K-means did not produce
the best “within” cluster score, the difference is calculated between the score
computed by K-means and the score computed by whichever method was best
for that case. Then that difference is expressed as a percentage of the best
cluster score—to give a sense of the proportion of the error. In the cases when
our method (labeled “advis”) does not produce the best “between” cluster score,
it has the smallest error rate as compared with the cases where the other two
methods are not the best.

5 Summary

We have described preliminary work in the development of an agent-based data
mining and visualization method for clustering multi-dimensional data sets. Our



Fig. 4. “Between Cluster” score comparison

technique extends early work in the area of information flocking and introduces
several strategies that help the system converge on a clustering task. The first
strategy involves “grouping” and “meta-level” flocking steps in which groups of
data boids are identified and nudged toward each other, based on the similarity
between feature values amongst the groups. The second strategy is a “braking”
adjustment that causes the data boids to slow down as the system converges
on good clusters. Experiments were conducted on a sample data set, showing
promising results for “between cluster” scoring as compared with standard tech-
niques. The advantage that our method has over standard techniques is the
ability to adapt during clustering to changes in clustering criteria.

We plan to apply evolutionary machine learning techniques to evaluate var-
ious parameter settings, including weights (equation 4), “goodness” threshold
and geographic neighborhood distance, in order to improve clustering results.
Eventually, the aim is for the system to dynamically explore various combina-
tions of features while clustering, learning to converge on the set of features that
offer the best cluster scores. In addition, we also will apply our method to real-
time data streams, where the feature values in the data set change while the
clustering process is occurring. Because our method is highly dynamic, it should
be able to respond in near real-time (depending on the relative speed at which
new data comes in compared to the time it takes clusters to form).

6 Acknowledgments

This work was supported by a grant from the National Science Foundation
(#CNS-0722177).



References

1. Aupetit, S., Monmarché, N., Slimane, M., Guinot, C., Venturini, G.: Clustering and
dynamic data visualization with artificial flying insect. In: Proceedings of the 2003
International Conference on Genetic and Evolutionary Computation (GECCO),
Lecture Notes In Computer Science. pp. 140–141. Springer-Verlag (2003)

2. Butler, D.: Virtual globes: The web-wide world. Nature 439, 776–778 (2006)
3. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétian,

L.: The dynamics of collective sorting: Robot-like ants and ant-like robots. In: From
Animals to Animats: 1st International Conference on Simulation of Adaptative
Behaviour. pp. 356–363 (1990)

4. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics-Part
B 26(1), 1–13 (1996)

5. Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. Ma-
chine Learning 2, 139–172 (1987)

6. Google: Google earth. http://earth.google.com (2005)
7. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence

1(2), 95–113 (2007)
8. Lisle, R.J.: Google earth: a new geological resource. Geology Today (2006)
9. MacQueen, J.: Some methods for classification and analysis of multivariate obser-

vations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability. pp. 281–297 (1967)

10. Moere, A.V.: Time-varying data visualization using information flocking boids. In:
Proceedings of IEEE Symposium on Information Visualization. pp. 10–12 (2004)

11. Moere, A.V.: A model for self-organizing data visualization using decentralized
multiagent systems. In: Prokopenko, M. (ed.) Advances in Applied Self-organizing
Systems, Advanced Information and Knowledge Processing, vol. Part III, pp. 291–
324. Springer (2008)

12. Picarougne, F., Azzag, H., Venturini, G., Guinot, C.: On data clustering with a
flock of artificial agents. In: Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI). pp. 777–778 (2004)

13. Picarougne, F., Azzag, H., Venturini, G., Guinot, C.: A new approach of data
clustering using a flock of agents. Evolutionary Computation 15(3), 345–367 (2007)

14. Processing: http://www.processing.org/ (2010)
15. Proctor, G., Winter, C.: Information flocking: Data visualisation in virtual worlds

using emergent behaviours. In: Proceedings of Virtual Worlds. pp. 168–176.
Springer-Verlag (1998)

16. Reynolds, C.W.: Flocks, Herds and Schools: A Distributed Behavioral Model. In:
International Conference on Computer Graphics and Interactive Systems. pp. 25–
34 (1987)

17. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27, 379–423 (1948)

18. WEKA: http://www.cs.waikato.ac.nz/ml/weka/ (2010)
19. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424

(1984)
20. Xiaohui Cui, J.G., Potok, T.E.: A flocking based algorithm for document clustering

analysis. Journal of Systems Architecture 52(8-9), 505–515 (2006)



Opinion Formation in the Social Web: 
Agent-based Simulations of Opinion Convergence and 

Divergence in Sub-Communities 

Pawel Sobkowicz1, Michael Kaschesky1 and Guillaume Bouchard2 

 
1 Bern University of Applied Sciences, E-Government, Morgartenstrasse 2a, 

Bern, Switzerland 
{ pawelsobko@gmail.com, michael.kaschesky@gmail.com } 

2 Xerox Research Center Europe, 6 chemin de Maupertuis, 
Meylan, France 

{ guillaume.bouchard@xrce.xerox.com } 

 

Abstract. Recent research on opinion formation in the social web – particularly 
blogs, comments, and reviews – investigates opinion dynamics but reaches 
opposite conclusions whether consensus formation occurs or not. To address 
this issue, a model of consensus formation is described that takes into account 
not only factors leading to convergence of opinions, but also those that 
strengthen their divergence. Nonlinear interplay between these tendencies might 
lead to interesting results, and decoupling the technical basis of the interactions 
(e.g. network dynamics) from the human perspective of opinions and 
sympathies (e.g. social dynamics) is at the core of such an approach. 

Keywords: Opinion Research, Agent-based Simulations, Measurement, 
Economics, Reliability, Experimentation, Human Factors. 

1   Introduction 

Study of dynamics of opinion spreading is of important practical value in many 
diverse domains, from commercial marketing through judging effectiveness of 
government activities to counterterrorism. The field of study has been recently subject 
of intensive growth, drawing upon experiences from many disciplines. In addition to 
traditional sociological studies, tools borrowed from statistical physics, Bayesian 
statistical methods and agent-based computer modeling have become important. 
Moreover, the increased role played by the Internet based communication channels 
allowed the researchers to access massive amounts of data documenting people’s 
activities, expressed sentiments and interactions. This changes the perspective of the 
research field, enabling the use of datasets obtained from the Internet to improve 
theoretical models to the point of usability in predicting social behavior.  



Recent research on opinion formation in the social web – particularly blogs, 
comments, and reviews – investigates opinion dynamics but reaches opposite 
conclusions whether consensus formation occurs or not. Many standard opinion 
dynamic models postulate a form of averaging of opinions towards a mean value [6, 
11], others assume that as a result of the interaction between two agents one of them 
changes his or her opinion by adopting the other opinion [28]. Unfortunately in large 
part these studies concentrate on mathematical formalisms or Monte Carlo 
simulations, and not on descriptions of real-life phenomena. However, situations 
where consensus formation does not occur have also been observed [26]. Indeed, 
prolonged interactions may even increase the rift between participants. This effect 
should be studied in more detail, as it possibly suggests modifications of the models 
of consensus formation in other situations. The need of bringing simulations and 
models closer to reality has been realized and voiced quite a few times [9, 24]. 

The persistence of differences of opinions exhibited in online political discussions 
[26] stands in contrast to observations of Wu and Huberman [29], who measured a 
strong tendency towards moderate views in the course of time for book ratings posted 
on Amazon.com. However, there are significant differences between book ratings and 
expression of political views. In the first case the comments are generally favorable 
and the voiced opinions are not influenced by personal feuds with other 
commentators. Moreover, the spirit of book review is a positive one, with the official 
aim of providing useful information for other users. This helpfulness of each of the 
reviews is measured and displayed, which promotes pro-sociality and ‘good’ 
behavior. In the case of political disputes it is often the reception in one’s own 
community that counts, the show of force and verbal bashing of the opponents. The 
goal of being admired by supporters and hated by opponents promotes very different 
behavior than in the cooperative activities. For this reason, there is little to be gained 
by a commentator when placing moderate, well-reasoned posts – neither the 
popularity nor status is increased. These kinds of behavioral considerations must be 
taken into account by social modeling computer and particularly by models of opinion 
formation (for recent review see [4]). 

Both history and literature are full of examples of undying feuds, where acts of 
aggression follow each other, from Shakespearean Verona families to modern 
political or ethnic strife. Observations of the Internet discussions should therefore be 
augmented by sociological data on flesh-and-blood conflicts and arguments, and the 
dynamics of opinion shifts. But even before such studies are accomplished the basic 
assumptions of the sociophysical modeling of consensus formation should be 
expanded. This is a very interesting task, because ostensibly we are faced with two 
incompatible sets of observations: 

Using ‘facts’ and ‘evidence’ to support their viewpoint, participants in political 
discussions tend to reinforce their opinions, strengthening their resolve with each 
exchange. In this case, interactions do not lead to opinion averaging or switching. 

Most participants do have well defined opinions. These must have formed in some 
way. Specific opinions on concrete events or people cannot be explained by genetic or 
cultural coding – they must be reached individually in each case. 

We suggest the existence of two mechanisms: fast consensus formation within 
one’s own group (including adoption of common, stereotyped views and beliefs); and 
persistence of differences between groups. An interesting experimental confirmation 



of such phenomenon has been published by Knobloch-Westerwick and Meng [14], 
whose findings “demonstrate that media users generally choose messages that 
converge with pre-existing views. If they take a look at ‘the other side,’ they probably 
do not anticipate being swayed in their views. [. . . ] The observed selective intake 
may indeed play a large role for increased polarization in the electorate and reduced 
mutual acceptance of political views.” 

In the remaining paper, we address the question of how individual characteristics 
of individual opinion adoption can be incorporated into opinion formation modeling. 
We describe a model of consensus formation that takes into account not only factors 
leading to convergence of opinions, but also those that strengthen their divergence. 
Nonlinear interplay between these tendencies might lead to interesting results, and 
decoupling the technical basis of the interactions (e.g. network dynamics) from the 
human perspective of opinions and sympathies (e.g. social dynamics) is at the core of 
such an approach. 

2   Research Background 

Recent years have brought significant interest in interdisciplinary studies, 
combining tools and methods known from physics with social analyses. 
Computational models of opinion formation often combine results derived from 
statistical physics with agent based simulations. Within a simplified framework 
focusing on selected aspects (such as interpersonal communication network, 
susceptibility to influences, contrariness etc.) it is possible to derive general trends of 
behavior of large societal groups. However, one of the major problems with opinion 
modeling by computer simulation is the lack of real-life data. Recent works reiterate 
the need for a real data by emphasizing real-life evidence over conceptual models and 
theory and prediction, explanation and guiding data collection in opinion modeling 
observation.  Our task here is a challenge and innovation, using real data for large-
scale social observations, analyzing its past evolution, and simulating potential future 
developments. 

2.1   Research Problem 

Opinion modeling based on sociophysics typically focuses on global properties of 
the modeled system. However, to be able to provide practical insights and real-life 
tools for social monitoring and policy formulation, models must include factors 
absent from simplified viewpoints. An important way of extending such an approach 
is via agent-based simulations, which allow integration of agent descriptions 
(characteristics) that are more detailed on the micro-level of individual behavior and 
therefore enable the combination and cross-fertilization of observations across several 
levels of social organization, from the individual micro-levels to the aggregated 
macro-levels of society. 

Due to the rise of online media and user-generated content, opinion modeling has 
become very popular in recent years. The recent review by Castellano et al. 
summarizes many interesting results obtained via theoretical analyses and computer 



modeling [4]. There are several models of opinion formation (Sznajd-Weron [28], 
Deffuant [6], voter model, Krause-Hegelsman [11]), and a significant number of 
research papers based on these approaches. Other approaches have been proposed by 
Nowak and Latané [18, 19] and Kacperski and Hołyst [12, 13]. Many of these models 
suffer from three important deficiencies: 

• Most of them focus on achieving consensus and fail to account for divergences, 
such as persistence of minority groups, reluctance to accept policies, influence 
of individuals and subgroups etc. 

• There is a fundamental problem in relating ‘computer time’ (usually measured 
in simulation steps) with real time for social phenomena, which is important for 
predicting dynamic real situations. 

• Lastly, many current studies are abstracted from social reality, only a few 
attempts to explain concrete events or actions observed in the real world [24]. 

 
In addition, several works on propagation models for online information diffusion are 
based on simple infection models, which address one or more of the following issues: 

• Link structure between blogs to track flow of information. Classification-based 
technique to model opinion propagation (called “infection”) [1]; 

• Macroscopic topic model and microscopic propagation model [10]; 
• Tracing chain-letter data, propagation trees, small world network [17]. 

2.2   Existing Approaches 

Cascading models are better suited to track and simulate large-scale information 
cascades, which is at the core of Simoo research. In cascading threshold models, an 
agent (person) will adopt an opinion if a specified fraction of its neighbors have 
adopted that opinion. The network is initialized by “seeding” a small number of 
agents with new information. If it spreads throughout a significant portion of the 
network, it is referred to as an information cascade, resembling the spread of ideas 
and fads in real-world complex systems. As said earlier, the foundations were laid out 
by Thomas C. Schelling [21]. Some recent approaches include: 

• Modelling opinion formation as cascades based on efficient inference and 
learning algorithms [20]; 

• Cascades for modelling the propagation of recommendations for commercial 
products based on evolution of the recommendation network over time [13]; 

• Propagation of rumours and ideas based on a cascading model [16]. 
Research on the diffusion of information over time often assumes a prior model for 

information diffusion that is valid on every individual in the network. The goal of the 
inference technique is to recover the most probable graph that explains how 
information propagates in blogs, news feeds, emails, etc. There is a direct analogy 
between information diffusion and disease propagation. The most common approach 
is to model the population as a network of individuals fitting into one of three 
categories: Susceptible to the disease (S), currently Infected (I) and Recovered (R). In 
the case of information diffusion, the following analogy is made: 

• S-state is the state of the individual before hearing the news (or discovering the 
new product),  



• I-state corresponds to the state when user is keen to relay information/speak 
about the product, and  

• R-state means that the user does not speak about the news or the product 
anymore. 

 
When studying such models, researchers found interesting differences between 

classical disease diffusion and information propagation [10]: 
• network structure on the internet is different because it typically has a power-

law structure, 
• transmission model for information must account for decay in the infection rate 
• parameters of the diffusion model (such as information adoption rate) are 

dependent on individual characteristics, which are less important for disease 
contagion. 

 
Estimations and probability intervals for parameters in complex systems, such as 

communication networks, are best calculated with probabilistic inference techniques, 
sometimes called Bayesian inference although the modeling is not always Bayesian 
(i.e. assuming a distribution over the parameters). The literature on social or network 
learning can be distinguished according to two criteria: whether learning is adaptive 
or myopic, and whether individuals learn from communication of exact signals or 
from the payoff of others, or simply from observing others’ actions. Typically, 
probabilistic models focus on learning from past actions and communications, while 
most, but not all, myopic learning models focus on learning only from 
communications [3, 22]. In addition, research in engineering studies related problems, 
especially motivated by aggregation of information collected by decentralized 
sensors. These existing models and methods are used for modeling special aspects of 
social communicated networks. 

2.3 Agent-based Modeling of Opinions 

Among advances necessary to overcome existing shortcomings is providing better 
correspondence between parameters describing computer agents used in simulations 
and psychological and sociological characteristics of human participants, relevant to 
specific situations. Such mapping will account for, among others: 

• correlations between opinions held on various subjects (multidimensional 
opinion description); 

• dependence of individual opinion changes on pre-existing emotional states and 
on emotional formulation of the messages and policies; 

• variances of attention and of communication capacities of individuals; 
• tendencies to preserve one’s own opinions and selective attention to views 

differing from them. 
Therefore, the objectives of the proposed research approach are as follows: 
• opinion diffusion model, based on advanced agent-based modelling that could 

be used in variety of policy situations, especially in the context of analysis of 
data obtainable from online media; 



• analyze which factors describing individual and social situation are relevant for 
opinion change modeling, by comparing simulations with observations and 
analyses; 

• baseline computational algorithms for simulations of opinion formation and 
diffusion; 

• statistical learning algorithms for effective opinion simulations with predictive 
capabilities. 

 
There is a rich literature on agent-based modeling of opinions, but the main 

interest is often in finding conditions which lead to a society reaching unanimous 
opinion, either via internal interactions or due to external influences. For this reason 
the field is often called ‘consensus formation’. On the other hand, the real world 
examples of societies where full consensus is present are quite rare. In fact, where 
important issues are at stake, we observe extremely stable situations of opinion splits, 
ranging from relative parity (for example in political setup of many countries) to 
configurations where small minority persists despite strong social pressures (for 
example extremist views). 

Our goal is to study opinion formation taking into account some processes that are 
usually omitted, which, in our opinion play a crucial role in real social situations and 
increase the stability of split opinion configurations. We study changes of opinion in 
conjunction with other processes, such as segregation. Current ‘standard’ approaches 
to opinion formation modeling focus on changes of individual opinions due to 
encounters between agents. It is surprising that the tendency of voluntary social 
separation due to attitude or opinion similarities and differences, well known and 
recorded even in folklore (‘birds of a feather group together’) has been neglected in 
opinion simulations so far. Instead of the choice of withstanding the arguments of an 
opponent or surrendering to them, most of us have the choice of severing the 
relationships with them. This results in relatively closed sub-societies, with little 
interaction between them, especially when the issues under study are of crucial value. 
A classical example of social modeling study invoking the separation tendencies is 
the famous Schelling model of social segregation. 

It should be noted that the increased reliance of society members and organizations 
on Internet channels of communication provide unprecedented levels of flexibility of 
association. People are free to join groups of interest and express their views. The 
perceived anonymity and lack of face-to-face contact encourages expressions of 
extreme opinions. This leads to situation in which social networks, in addition to these 
built on similarity of opinions and interests, may also be built on differences and even 
hate [26]. Thus, social segregation, as seen through the Web media is more complex 
than traditional modals allow. 

Figure 1 below shows an example of changes in simulated opinion distribution and 
social network topology leading to opinion diffusion and network rearrangement. 
While the predominant opinion reaches an increasing number of previously undecided 
participants, minorities may remain untouched, separated from the main part of 
society. The left of Figure 1 shows the initial social state with a large majority of 
undecided participants without a specified opinion on the issue (grey), and smaller 
groups of proponents and opponents concerning the issue (respectively light grey and 
black). The social links enabling information flow and opinion influences exist 



between all groups. The right of Figure 1 shows the final state of simulated opinion 
diffusion with most of the participants having adopted the proponents’ position. 
However, small minorities persist at the outskirts of society, mainly because they 
have severed and cut most of the information links with the majority [24]. Their 
existence and vitality can be monitored for example, via internet media activity, 
especially when filtering for high negative emotions. This enables policymakers to 
adjust implementation to better integrate dissenters and communication to better 
target expected benefits and consequences, by monitoring the effects of activities of 
individual persons and leaders [25]. 

 

 
 

Figure 1: Initial state with large majority undecided (left) and final state of 
simulated opinion diffusion with majority adopting a mainstream opinion (right) 

3   Simulation Model with Predictive Capabilities 

The simulations presented here allow computer agents to cut the social links with 
those they disagree with and form a new links with agents sharing the same opinion. 
This changes the network structure. To take into account the fact that in real societies 
some links cannot be broken (e.g. family or work relationships) we have simulated 
situations where certain percentage of the links remain static, while the rest are free, 
allowing changes in topology of the social network. 

The first novel aspect of the simulations is direct inclusion of agents with no 
preferred opinion (neutral agents). This allows significant change from models where 
only committed agents are present, changing both the social network and opinion 
change dynamics. Appropriate real life examples of application of the simulation 
include political preferences and highly controversial opinions on topics such as 
abortion or evolution. Within the model, the strength of influence between agents 
decreases with their social separation, reflecting the fact that our opinions are swayed 
less by remote acquaintances or strangers than by the closest associates. 

Secondly, the opinion of a given agent may be changed in reaction to perceived 
cumulative social opinion of others, corresponding to a properly averaged ‘peer 



pressure’ rather than the individual encounters. Many of the classical models have 
stressed the importance of such individual contacts in opinion changes of agents, but 
in our belief the constant background of perceived opinions, resulting from numerous 
meetings (not necessarily related to the issue in question) and information on opinions 
held by other society members is more relevant. In a way, this can be described as 
each agent continuously measuring and responding to the ‘discomfort’ due to 
difference between its opinion and properly averaged opinions of other agents. In 
addition to this intrinsic pressure it is possible to simulate, via simple parameterized 
factor the external influence, aimed to describe propagandist efforts. 

The main features of the model can be summarized as follows [see 25]: 
• A set of N interacting agents forms a society. Agents are connected to form a 

scale-free Albert-Barabási network. Such networks are typical for many social 
environments, exhibiting fat-tailed, power-law distribution of social 
connectivity. One of the most important features is presence of highly connected 
hubs, which significantly influence information and opinion flow within society. 
Such networks were found in many empirical studies e.g. [2,8,7,5]. 

• Each agent i has, at a given time, his ‘opinion’ σ(i) (+1 , −1 or 0 ). The addition 
of the class of neutrals forms the crucial enhancement of the model.  

• The network is assumed to have a dynamic character. Depending on simulation 
parameters, certain ratio of links is assumed to be static, corresponding to 
family or workplace connections, which are difficult to break even if there is a 
difference in opinions of the connected agents. The rest of the links are free, and 
may be cut off when the agents have conflicting (+1/−1) opinions. To preserve 
the general network properties the process of destruction and creation of new 
links is performed in a way that keeps the number of connections constant. The 
creation of replacement links may happen within strict similarity scenario: new 
links form only between agents with the same opinion (+1/+1 and −1/−1) or in 
promiscuous scenario, when links may form between agents that are not in 
conflict.  

• Influence of agents on other agents is governed by their respective opinions as 
well as on their social distance. We measure this distance simply via the number 
of links separating the agents in the network. This is described in detail in later 
part of the paper. 

• Opinion of an agent is changed due to combined influence of all other agents. 
To describe the natural human tendency of resisting such external pressures, we 
have added in our simulations additional factor so, describing the influence of an 
agent on itself, always opposing the direction of external pressures. 

 
As the starting distribution of all the above mentioned parameters is random, it has 

little connection with real societies, with their correlated structures and patterns of 
opinions. To keep the model closer to reality, we start with a relatively small number 
of time steps (<5000, corresponding to 2.5 time steps per agent), during which the 
agents adjust the network links but are not allowed to change their opinions. This pre-
separates (if there are free links) the network in accordance with initial random 
distribution of opinions. The reason for such initial phase is to avoid spurious results 
that arise from fully random distributions. For simulations where all the links are 
assumed static, this phase simply does not change anything. Later simulations involve 



much larger number of steps (>200 steps per agent). In each of them first a randomly 
chosen agent is allowed to change opinion and then the same agent may adjust its 
network neighborhood by cutting a link with an opponent and adding one with a 
friendly agent. These two key processes of the simulation, modeling opinion adoption 
of agents and modeling network ties on opinion adoption, are described below. 

3.1   Modeling Opinion Adoption of Agents 

For a randomly chosen ‘initializing’ agent i we calculate the network separation 
for all other agents and separate them into the four spheres S1 to S4. These are 
composed of, respectively, the direct neighbors, the second neighbors, third neighbors 
and the rest of the society. The strength of the influence of an agent j on i depends on 
the sphere that j belongs to. For each agent j we calculate also a modification factor 
which reflects our human tendency to give more value to opinions of those who agree 
with us and to give less credibility to contrary opinions. Thus f(i,j)=2   if σ(i)=σ(j) and  
f(i,j)=1   otherwise. In Figure 1 below, S1 corresponds to nearest neighbors, S2 to next 
nearest neighbors etc. S4 holds the large majority of the “rest of society”. Influences 
of agents within each sphere are averaged and normalized, and the relative importance 
of the spheres is described by geometrically decreasing series with ratio d.  In this 
work we have used d=0.3, which leads to 70.5 percent of the weight of the influence 
originating from the immediate sphere of neighbors S1. 

 

 
 

Figure 2: Schematic division of social network into four spheres, following the 
distance from the chosen agent i.  

 
For each of the spheres SK we calculate the averaged, normalized influence over 

agent i as follows: 
 



  

    (1) 
 

where  measures individual strength of agent j. The denominator acts to 
normalize IK, so that if all agents j within SK are of the same opinion, then their effect 

has the maximum absolute value |I
K
|=1 . Allowing selected agents to have  much 

larger than the rest provides grounds for modeling leaders. 
The overall influence of the society on agent i is then calculated as a weighted sum 

of IK. To reflect the observation that close acquaintances have much more influence 
than strangers we have assigned geometrically decreasing weights, for the spheres of 
increasing distance. The total influence of the society on agent i is as follows: 

  

   (2) 
 
where d<1 and the last factor serves to provide normalization in addition to social 

pressure. Choice of d determines how important are close acquaintances in 
influencing agent’s opinion, for example choice of d=0.3 leads to 70.5 percent of 
influence coming from the nearest neighbors, and only about 2 percent from sphere 

, containing the large number of agents forming the “rest of society”. It is possible 
to include in T(i) and additional element describing external influence, such as media 
coverage, government propaganda etc. applied independently of agent-to-agent 
contacts. This is done by adding a constant term h, the same for all agents. The 
change of agent’s opinion is determined by comparing the external influences of the 
society and propaganda with self influence factor , which determines the general 
susceptibility of agents in simulation to such influences. It is one of the main 
simulation parameters, upon which the stability of social mix depends to a large 
degree. 

3.2   Modeling Network Ties on Opinion Adoption 

The second step in simulations is the modification of network connections. To 
maintain the number of links constant we have alternated cutting and adding links. 
The first of these processes is very simple. Keeping the previously chosen agent i, we 
pick another, ‘target’ agent t randomly from the set of nearest neighbors that disagree 
with i. The link between i and t is then cut off. Obviously, if all i’s neighbors agree 
with it, then we move to next simulation round. 

Creating new links is more complex. The target agent t is not chosen totally at 
random among the spheres but rather with probability decreasing on social distance 
between i and t, so that probability of forming a new link with agents from further 
spheres decreases geometrically. Again, we chose this form for conceptual simplicity, 



with the aim of getting a simple equivalent to the observations that we meet more 
often with our close social neighbors. The newly formed link between i and t is 
treated as a free one. The resulting network preserves, with only minor deviations, the 
general degree distribution characteristic for AB networks. 

When there are no neutral agents in the simulations the process leads very quickly 
to separation of subnetworks of +1 and −1 opinion holders if the free links are 
dominant. As Figure 3 below shows, there are only a few links between agents 
supporting different opinions, dividing the society into separate parts, with weak 
chances of achieving consensus of opinions, as each agent is surrounded socially by 
proponents of his own view. While the average number of links per agent remains 
unchanged and only minor changes in degree distribution are observed, other relevant 
network properties change radically, for example the shortest path distribution and 
clustering coefficient. This is especially important when all the links are free, because 
+1 and −1 opinion holders segregate to separate communities. If we calculate the 
network properties of these communities separately, then in the case of large majority 
we observe that there is similarity to the original configuration in such characteristics 
as clustering coefficient. On the other hand, the minority has much larger fraction of 
disconnected agents, so that there is significant difference in related network 
characteristics. 

As Figure 4 shows, even if a third of links between the separate communities are 
held static, there are more links between supporters of opposite views but social 
division remains. When including neutral agents into the simulations, significant 
changes in the network dynamics are observed. As Figure 5 shows, neutral agents, 
marked in gray serve as a link between the opposing opinion holders, shortening the 
average communication paths, even though there are no direct links between the two 
communities.  In short, presence of neutrals acts as social glue between the committed 
groups, even when all links are free.  

 

  

 

Figure 3: Social network 
resulting from simulation 
where no neutral agents are 
present and all links are 
free. 

Figure 4: Social network 
resulting from simulation 
where no neutral agents are 
present and 1/3 of the links 
are static. 

Figure 5: Social network 
resulting from simulation 
where neutral agents are 
present. 



4   Conclusion 

Changes in the social network influence opinion dynamics. In comparison to 
situations where only committed +1 and -1 agents are present [25], the range of 
situations where a mix of opinions persists within a society is extended. Depending on 
the  values and the ratio of free links within the network, we observed interesting 
regimes of opinion dynamics. For large enough , the initial social configuration 
remains stable, with only a few conversions. At the other extreme, for small , 
neutrals are quickly converted to majority opinion, but the time gained allows the 
opposing minority to separate itself from the rest of society. Interesting behavior may 
be observed for intermediate values. 

In a first phase, described by the exponential function   some 
neutral agents are converted by the majority while the number of minority agents 
remains almost constant. At some stage a second process may appear, described by 

logistic function centered at . During the second phase almost all neutrals adopt 
the majority opinion. The tempo of the change is relatively constant between various 
runs of simulations, but the onset of this process may varies over very wide range of 
values, so that some simulations remain in a three state society (such as the one 
depicted in Figure 5) even after many hundreds of thousands of time steps. 

The capacity to provide nontrivial behavior by the simulation model is an 
indication that despite model simplicity, there are enough features to suggest its 
usability for practical applications of understanding social behavior. Of course there 
are still many issues related to precise mapping of simulation environment to real life 
situations, but it has to be remembered that the ultimate goal of computer simulations 
is not in models per se, but in enabling to ask the right questions, improve 
observations of social phenomena and finally to provide predictions for evolution of 
specific social cases [13]. For these reasons the current model still needs 
improvements based on such mapping of simulation parameters to real life. 

References 

 
1. E. Adar & L.A. Adamic. Tracking information epidemics in blogspace. IEEE/WIC/ACM 

International Conference on Web Intelligence (WI'05), 2005. 
2. R. Albert and A. L. Barabási. Statistical Mechanics of Complex Networks. Review of 

Modern Physics, 74:67–97, 2002. 
3. S. Bikhchandani, D. Hirshleifer and I. Welch. Learning from the Behavior of Others: 

Conformity, Fads, and Informational Cascades. Journal of Economic Perspectives, 12(3), 
151-170, 1998. 

4. C. Castellano, S. Fortunato & V. Loreto. Statistical physics of social dynamics. 
Rev.Mod.Phys. 81, 591-646, 2009. 

5. A. Chmiel, K. Kowalska, and J.A. Hołyst. Scaling of human behavior during portal 
browsing. Physical Review E, 80(6):66122, 2009. 



6. G. Deffuant, D.  Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting 
agents. Advances in Complex Systems. 3, 87–98, 2000. 

7. F. Ding and Y. Liu. Modeling opinion interactions in a BBS community. The European 
Physical Journal B. 78(2), 245–252, 2010. 

8. S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Advances in Physics, 
51:1079–1087, 2002. 

9. J.M. Epstein. Why model? Journal of Artificial Societies and Social Simulation. 11(4), 12, 
2008. 

10. D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins. Information diffusion through blogspace. 
Thirteenth International World Wide Web Conference, ACM Press, New York, NY, May 
2004. 

11. R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, 
and simulation. Journal of Artifical Societies and Social Simulation (JASSS). 5(3), 2002. 

12. K. Kacperski and J.A. Hołyst. Phase transitions as a persistent feature of groups with leaders 
in models of opinion formation. Physica A. 287, 631–643, 2000. 

13. Kacperski, K.  and Hołyst, J.A.. Opinion formation model with strong leader and external 
impact: a mean field approach. Physica A. 269, 511–526, 1999. 

14. S. Knobloch-Westerwick, J. Meng, Communication Research. 36, 426, 2009. 
15. J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. ACM 

Trans. Web, May 2007. 
16. J. Leskovec, J, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Patterns of cascading 

behavior in large blog graphs. Society of Industrial and Applied Mathematics-Data Mining. 
Minneapolis, April 2007. 

17. D. Liben-Nowell and J. Kleinberg. Tracing information flow on a global scale using internet 
chain-letter data. Proceedings of National Academy of Sciences of the USA, 105(12), 2008. 

18. A. Nowak and M. Lewenstein. Modeling Social Change with Cellular Automata. In R. 
Hegselmann, U. Mueller, and K.G. Troitzsch (eds), Modelling and Simulation in the Social 
Sciences From A Philosophy of Science Point of View, 249–285. Kluver, Dordrecht, 1996. 

19. A. Nowak, J. Szamrej, and B. Latané. From Private Attitude to Public Opinion: A Dynamic 
Theory of Social Impact. Psychological Review. 97(3), 362–376, 1990. 

20. M. G. Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. 
Proceedings of ACM SIGKDD international conference on Knowledge discovery and data 
mining, New York, USA, 2010. 

21. T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: a study of binary 
choices with externalities. The Journal of Conflict Resolution. 17(3), September 1973. 

22. L. Smith and P. Sorensen. Pathological Outcomes of Observational Learning. Econometrica. 
68(2), 371-398, 2000. 

23. P. Sobkowicz. Effect of leader's strategy on opinion formation in networked societies with 
local interactions. International Journal of Modern Physics C (IJMPC). 21(6): 839-852, 
2010. 

24. P. Sobkowicz. Modeling opinion formation with physics tools: call for closer link with 
reality. Journal of Artificial Societies and Social Simulation. 12(1), 11, 2009. 

25. P. Sobkowicz. Studies of opinion stability for small dynamic networks with opportunistic 
agents. International Journal of Modern Physics C (IJMPC). 20(10), 1645–1662, 2009. 

26. P. Sobkowicz and A. Sobkowicz. Dynamics of hate based Internet user networks. The 
European Physical Journal B. 73(4), 633–643, 2010. 

27. T.F. Smith and M.S. Waterman. Identification of Common Molecular Subsequences. J. Mol. 
Biol. 147, 195-197, 1981. 

28. K. Sznajd-Weron and J. Sznajd. Opinion Evolution in Closed Community. Int. J. Mod. 
Phys. C. 11, 1157–1166, 2000. 

29. F. Wu and B.A. Huberman, in Proceedings of the Workshop on Internet and Network 
Economics (2008). 



Enhancing Agent Intelligence through Evolving
Reservoir Networks for Power Load and

Settlement Price Predictions in Power Stock
Markets

Kyriakos C. Chatzidimitriou, Antonios C. Chrysopoulos, Andreas L.
Symeonidis, and Pericles A. Mitkas

Electrical and Computer Engineering Department
Aristotle University of Thessaloniki

GR 54124, Thessaloniki, Greece
{kyrcha,achryso}@issel.ee.auth.gr

{asymeon,mitkas}@eng.auth.gr

http://issel.ee.auth.gr

Abstract. Time Series Analysis has bloomed during the last half of
the century as a result of the need for reliable methods to estimate and
predict the pattern, or behaviour, of events or systems. In recent years,
Time Series Prediction and clustering have been employed in hyperac-
tive and evolving environments, where temporal data play an important
role. Power Stock Markets are such highly dynamic and competitive auc-
tion environments, additionally perplexed by constrained power laws in
the various stages, from production to transmission and consumption.
As with all real-time auctioning environments, the limited time available
for decision making provides an ideal testbed for time series prediction.
Within the context of this paper we employ Recurrent Neural Networks
in the form of Echo State Networks, in order to generate power load and
settlement price prediction models, in typical Day-ahead Power Mar-
kets. The Echo State networks are encapsulated inside Cassandra plat-
form, a general-purpose Multi-Agent System that exploits Data Mining
techniques, and are autonomously adjusted to the problem at hand us-
ing Neuroevolution techniques, in order to increase the autonomy of the
platform and minimize user involvement. The system has been tested in
a real-world scenario, that of the Greek Energy Stock Market.

Keywords: Data Mining, Power Stock Markets, Reservoir Computing,
Multi-Agent System, Neuroevolution

1 Introduction

Agent Technology (AT) has been successfully employed in various aspects of
real-world trading and electronic markets [8]. In highly dynamic, uncertain and
multi-player markets, such as (Power) Stock Markets, decisions have to be made
continuously within limited time, while data are generated at extreme rates.



2 Chatzidimitriou et al.

Thus, agents are considered a suitable candidate for building efficient trading
mechanisms, where their intelligence is based on algorithms that are able to
adapt to the data at hand, using no or limited user input.

To this end and based on authors’ prior work, we argue that an agent de-
veloped can employ Data Mining (DM) techniques, in order to extract useful
nuggets of knowledge that could give him/her a predictive advantage over other
competitors. In the case of stock markets, one could apply time series analysis
on data in order to either identify the nature of the phenomenon represented by
the sequence of observations or forecast (predict future values of the time series
variable). In each of these cases it is necessary that the pattern of observed time
series data is identified and more or less formally described. Once the pattern is
established, we can then interpret and integrate it with other data (i.e., use it
in our theory of the investigated phenomenon, e.g., seasonal commodity prices).
Regardless of the depth of our understanding and the validity of our interpre-
tation (theory) of the phenomenon, we can extrapolate the identified pattern to
predict future events.

To this end we have fused AT and DM and developed a Multi-Agent System
(MAS) capable of efficiently handling the deluge of available data and of prac-
ticing various DM methodologies, in order to reach what seems to be an efficient
prediction of the prices of goods of interest. The testbed for our platform was
the Greek Power Stock Market, which is a dynamic, partially observable envi-
ronment, giving room for applying a wide variety of strategic approaches. The
fact that each decision made affects instantly the future moves or decision of the
platform and the Stock Market itself, makes this undertaking really challenging.

In order to capture the temporal and non-linear dynamics of the Power Stock
Market signals, we employed Echo State Networks (ESNs), a neural network
function approximator. In order to promote the autonomy of the platform, net-
works are adapted using neuroevolution. Short-term predictions are made for
load and price time-series and are tested against standard regression techniques
previously employed in the Cassandra system. Results with respect to load fore-
casting were excellent, while for price forecasting, which is a much more complex
time-series, promising.

2 Technologies Overview

In this section we provide a brief overview of the constituents of the proposed
learning method, as well as of the application domain.

2.1 Echo State Networks and NEAR

The idea behind reservoir computing (RC) and in particular Echo State Net-
works (ESNs) [9] is that a random recurrent neural network (RNN), created
under certain algebraic constraints, could be driven by an input signal to create
a rich set of dynamics in its reservoir of neurons, forming non-linear response
signals. These signals, along with the input signals, could be combined to form



Enhancing Agent Intelligence through Evolving Reservoir Networks 3

the so-called read-out function, a linear combination of features, y = wT · φ(x),
which constitutes the prediction of the desired output signal, given that the
weights, w, are trained accordingly.

A basic form of an ESN is depicted in Figure 1. The reservoir consists of a
layer of K input units, connected to N reservoir units through an N×K weighted
connection matrix W in. The connection matrix of the reservoir, W , is an N ×N
matrix. Optionally, an N × L backprojection matrix W back could be employed,
where L is the number of output units, connecting the outputs back to the
reservoir neurons. The weights from input units (linear features) and reservoir
units (non-linear features) to the output are collected into an L×(K+N) matrix,
W out. For this, the reservoir units use f(x) = tanh(x) as an activation function,
while the output units use either g(x) = tanh(x) or the identity function, g(x) =
x.

W
in

W W
back

W
out

Input

Units
Output

Units

Reservoir Units

Fig. 1. A basic form of an ESN. Solid arrows represent fixed weights and dashed arrows
adaptable weights.

One may refer to [9, 10] for best practices for generating ESNs, in the sense of
procedures for generating the random connection matrices W in,W and W back.
These could be briefly summarized in the following: (i) W should be sparse, (ii)
the mean value of weights should be around zero, (iii) N should be large enough
to introduce more features for better prediction performance, (iv) the spectral
radius, ρ, of W should be less than 1 to practically (and not theoretically) ensure
that the network will be able to function as an ESN. Finally, a weak uniform
white noise term can be added to the features for stability reasons.

In current work, we consider discrete time models and ESNs without backpro-
jection connections. As a first step, we scale and shift the input signal, u ∈ RK ,
depending on whether we want the network to work in the linear on the non-
linear part of the sigmoid function. The reservoir feature vector, x ∈ RN , is
given by Equation 1:

x(t+ 1) = f(Winu(t+ 1) + Wx(t) + v(t+ 1)) (1)



4 Chatzidimitriou et al.

where f is the element-wise application of the reservoir activation function and v
is a uniform white noise vector. The output, y ∈ RL, is then given by Equation 2:

y(t+ 1) = g(Wout[u(t+ 1)|x(t+ 1)]) (2)

with g, the element-wise application of the output activation function.
NeuroEvolution of Augmented Topologies (NEAT) [14] is a topology and

weight evolution of artificial neural networks algorithm, constructed on four
principles that have established it as a reference algorithm in the area of Neu-
roEvolution. First of all, the network, i.e. the phenotype, is encoded as a linear
genome (genotype), making it memory efficient with respect to algorithms that
work with full weight connection matrices. Second, using the concept of histori-
cal markings, newly created connections are annotated with innovation numbers.
During crossover, NEAT aligns parent genomes by matching the innovation num-
bers and performs crossover on these matching genes (connections). The third
principle is to protect innovation through speciation, by clustering organisms
into species in order for them to have time to optimize by competing only in
their own niche. Last but not least, NEAT initiates with minimal networks,
i.e. networks with no hidden units, in order to: (a) initially start with a mini-
mal search space and, (b) justify every complexification made in terms of fitness.
NEAT complexifies networks through the application of structural mutations, by
adding nodes and connections, and further adapts the networks through weight
mutation by perturbing or restarting weight values. The above successful ideas
could be used in other NE settings in the form of a meta-search evolutionary
procedure. Within the context of our approach, we adopt this model in order to
achieve an efficient search in the space of ESNs.

NeuroEvolution of Augmented Reservoirs (NEAR) utilizes NEAT as a meta-
search algorithm and adapts its four principles to the ESN model of neural
networks. The structure of the evolutionary search algorithm is the same like
in NEAT, with adaptations made mainly with respect to gene representation,
crossover with historical markings, clustering, thus including some additional
evolutionary operators related to ESNs. A major differentiation from NEAT is
that both evolution and learning are used in order to adapt networks to the
problem at hand. A complete description of NEAR can be found in [5].

2.2 Power Market Auctions

The deregulation of the Power Market has given room for the development of
Open Markets, where participants are able to choose between different energy
products in different periods of time and may negotiate on their “product port-
folio”. These portfolios can be negotiated under three different market regimes:

– The Long-term Market, where participants come to direct agreements in
form of long-term contracts.

– The Day-ahead Market, where buyers place their bids in 24 hourly auctions,
in order to establish a contract for the next day.



Enhancing Agent Intelligence through Evolving Reservoir Networks 5

– The Real-time Market, where buyers place their bids in order to establish a
contract for the next hour.

In Power Market Auctions, two are the most important entities:

1. The Market participants (or Players)
2. The Independent System Administrator (ISA)

A Player is defined as any financial entity that accesses the Power Market
[16]. In general, this entity may represent a group of Production Units and/or
a group of Consumers. Players participating in the Power Market as Produc-
ers submit their power supply offers in pre-specified time intervals. Each offer
contains the amount of supplying Power, as well as the minimum price one is
willing to accept. On the other hand, Players participating in the Power Market
as Consumers submit their power demands within the same time intervals, along
with the maximum price they are willing to pay for it.

The ISA is the administrator of the Power System, and also the Administra-
tor of the Power Stock Market (more entities may exist, but they are merged into
one for simplicity reasons). Among others, ISA is responsible for the Settlement
Price of the Power Market, taking into consideration the limitations of the power
system. ISA collects bids for each auction and has to calculate two curves: the
aggregate Supply Curve (ascending) and the aggregate Demand Curve (descend-
ing). In the simplified case where no transmission limitations exist, Settlement
of the Market is achieved at the intersection of the two curves (Figure 2). The
intersection point specifies the Settlement Price of the Market (SPM), as well as
the load to be provided/offered.

Though demand is mostly covered by Long-term and Day-ahead market
transactions, one should stress the following. The fact that power cannot be
stored for long periods of time, urged for dictates development of a mechanism
that can efficiently balance the supply and demand of power and can be easily
and constantly controlled. Such a balance between production and consumption
is ensured through the utilization of a Real-Time Market model. This model
bears the highest risk for participants, since the malfunction of an Electric node
or the shutting down of a Power line can bring exaggerated rising or falling
of loads and prices. Nevertheless, higher risks also imply profit maximization
potential for players willing to participate in this Market.

3 Related Work

Various approaches have been employed for analyzing the behavior of Power
Markets, some of which employ AT and DM primitives. These are discussed
next.

In the early 2000s, during the bloom of MAS utilization, the Electric Power
Research Institute (EPRI) developed SEPIA (Simulator for Electrical Power In-
dustry Agents), a multi-agent platform capable of running a plethora of comput-
ing experiments for many different market scenarios [2, 1]. The Argonne National



6 Chatzidimitriou et al.

Fig. 2. The Aggregate Power Supply and Demand Curves

Laboratory, on the other hand, developed EMCAS (Electricity Market Com-
plex Adaptive System) [6], an efficient implementation for handling the Electric
Energy Market. Through EMCAS, one may study the complex interactions be-
tween the physical entities of the market, in order to analyze the participants
and their strategies. Players’ learning is based on genetic algorithms, while EM-
CAS supports stock market transactions, as well as bipartite contracts. Finally,
Petrov and Sheble [12] introduced Genetic Programming in their simulation
and tried to model the bipartite Auctions for the Electric Energy Market, by
the use of agents. One of the players incorporates knowledge represented as a
Decision-Making Tree, which is developed by Genetic Programming. The rest of
the agent-players incorporate ruled-defined behaviors.

Special attention should be drawn to work by Melzian [11], who developed
EMSIM (Energy Market SIMulator), in an effort to derive a deeper understand-
ing of the bidding behaviour at the EEX (European Energy Exchange), the
impact of changes in market design and individual strategies of the participants.
Additionally, work by Bremer et al. [4] should also be denoted. They built an
agent-based environment for modeling and simulating adaptive household con-
sumers responding to dynamic electricity pricing. Focus was given on the anal-
ysis of household load shifting potential under different tariffs and negotiation
strategies.

Although efficient, related work is of narrow-scope and static. The solutions
implemented are focused on specific problems and most of them utilize a prese-
lected DM technique, with no ability to adapt and/or expand. This is the main
reason why Cassandra is built as a general-purpose prediction tool. Different
prediction types and different DM algorithms are supported, while Cassandra
can manipulate various data types and various datasets. New prediction models
can be easily generated to replace previous ones. In the case of time series, the
time window used for prediction can be modified (day, week, month, year), while
combination of prediction models with differing time windows can be performed,
in order to improve prediction performance.



Enhancing Agent Intelligence through Evolving Reservoir Networks 7

We demonstrate the power of Cassandra by focusing on the newly added
algorithms, ESNs and NEAR. With respect to power load forecasting, ESNs have
been studied in [13, 3], where data were drawn from the “World-wide competition
within the EUNITE network”1. Neither of the approaches optimizes all topology,
reservoir properties and weights at the same time, in order to adapt the function
approximator with minimum human intervention. Additionally, we deal with
settlement price forecasting as well, which is a much more demanding problem.

4 The Cassandra MAS

Cassandra is an Agent-Based Framework that employs DM For Prediction and
Rapid Problem Solving. Through Cassandra the user may select the appropriate
dataset(s), preprocess it, and select a Data Mining API to build his/her models
(WEKA and R are fully supported, other APIs are partially supported also).
Results are displayed and stored, while action can be taken (in an autonomous
or semi-autonomous manner), when deemed appropriate.

Fig. 3. Cassandra 4-Layer Architecture

1 http://neuron.tuke.sk/competition/index.php



8 Chatzidimitriou et al.

4.1 Architecture

Cassandra follows the IRF Architecture Model (Intelligent Recommendation
Framework) [15], which defines a 4-layer functional model for the agent system.
IRF is usually employed in enterprises for the optimization of the administra-
tion mechanism, since it can automate and integrate all the data producing or
data demanding facets of a company. Taking a closer look of the Power Market
through the IRF prism, one may identify several tasks that have to be tackled:

– Collection of the historical data from previous auctions and processing of
the data.

– Application of the suitable DM algorithms in order to build the necessary
forecasting models for the values in question.

– Integration of generated models in the Business Intelligence of the System
and evaluation of the results.

– Continuous monitoring of the PSM in order to validate the efficiency of the
platform.

As expected, Cassandra employs a modular architecture (Figure 3), where
each module is responsible for one of the aforementioned tasks. The platform
also provides a wrapper around all modules and ensures communication with
the system users. The modules comprising Cassandra are:

1. Data Collection Module (DCM): Collecting historical data, either from files
provided by the user, or directly from an API or the web.

2. Data Processing and Mining Module (DPMM): Processing datasets, prepar-
ing training sets and applying DM algorithms.

3. Decision Making Module (DMM): Aggregating all information in order to
make the optimal decision in any given occasion.

4. Graphic User Interface Module (GUIM): Interacting with the System Users.
It must be user-friendly, and easily comprehensive.

Power Load Time−Series for 2009

2009

Lo
ad

 (
M

W
)

0 2000 4000 6000 8000

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

(a) Load forecasting

Settlement Price Time−Series for 2009

2009

P
ric

e

0 2000 4000 6000 8000

20
40

60
80

(b) Price forecasting

Fig. 4. Load and price timeseries.



Enhancing Agent Intelligence through Evolving Reservoir Networks 9

5 Experiments

Figure 4 displays the two time series (power load and settlement prices) for year
2009. One may easily observe how irregularities are more intense in Figure 4(b)
than in Figure 4(a), indicating a much more difficult task, especially in the
absence of knowledge of the causes of these fluctuations.

Collected data span from the 1st of March 2003 to the 30th of September
2010. We have devised two tasks: a) to make a 1-day forecast and b) to make
a 1-week forecast, using only the trained data as known input and connecting
the outputs of the networks to the inputs for predictions beyond the training
data. For the first task, the goal was to predict data power load and prices
for September 30th, 2010, while for the second task, the week between 24-30
September, 2010. One year’s values were used as a washout sequence in order to
initialize the networks and the next year’s data were used as the training data. In
the NEAR case, fitness was calculated for the week prior to the prediction day
and week, respectively. The fitness function was defined as 1/MAPE, where
MAPE is the Mean Absolute Percentage Error. A population of 50 networks
evolved over 50 generations. The same initial neurons were used as in the ESN
standard case.

Table 1. MAPE and MAXIMAL error values for different algorithms with respect to
power load forecasting.

Method MAPE (%) 1-day MAXIMAL (MW) 1-day

ESN 2.26 279
NEAR 2.08 322
Linear Regression 2.55 389
M5’ 2.45 376
Pace Regression 2.55 388

Method MAPE (%) 7-days MAXIMAL (MW) 7-days

ESN 4.87 1188
NEAR 4.28 1238
Linear Regression 8.34 1336
M5’ 4.81 1507
Pace Regression 8.33 1337

Table 1 provides the Mean Absolute Percentage Error (MAPE) and the max-
imal error (MAXIMAL), which are given by equations:

MAPE = 100 ·
∑N

i=1

∑H
j=1

|LRij−LP ij |
LRij

N ·H

and
MAXIMAL = max(|LRij − LPij |)



10 Chatzidimitriou et al.

Table 2. ESN parameters.

ESN Parameter Value (Load) Value (Price)

Spectral Radius 0.85 0.5
Density 25% 25%
Reservoir Activation Function tanh tanh
Output Activation Function tanh identity
Reservoir Size 200 30
Noise level 10−5 10−7

where LRij is the real value at day i and at hour j and LPij the predicted value.
ESNs, and especially the NEAR methodology, exhibit optimal behavior for both
tasks. Due to their random initialization procedure, ESNs sometimes tend to
become unstable and provide bigger errors. NEAR, on the other hand, bias the
search towards ESNs that are able to generalize better.

The M5’, Pace and Linear Regression implementations are the ones provided
by the WEKA API [7]. For plain ESN, the parameters used can be found in
Table 2.

Table 3, displays the MAPE and MAXIMAL errors for settlement price fore-
casting using the ESN and NEAR algorithms.

Table 3. MAPE and MAXIMAL error values for ESN and NEAR algorithms with
respect to settlement price forecasting.

Method MAPE (%) 1-day MAXIMAL (MW) 1-day

ESN 11.96 21.68
NEAR 10.64 19.54

Method MAPE (%) 7-days MAXIMAL (MW) 7-days

ESN 18.08 41.49
NEAR 15.99 46.31

In Figure 5, we present the forecasts made for both power load and market
price on the 30th of September 2010 using the NEAR methodology. The actual
and predicted values in Figure 5(a) are indicative of the prediction model ESNs
are capable of capturing. In the second case, that of Figure 5(b), one may identify
that the prediction model is good in general, nevertheless cannot capture unex-
pected events. In order to do so, more information on the physical constraints
of the power system are needed.

6 Conclusions and Future Work

In this paper, we have explored the use of the ESN and NEAR methodologies as
autonomous adaptation methods of reservoir computing topologies, and applied



Enhancing Agent Intelligence through Evolving Reservoir Networks 11

5 10 15 20

45
00

50
00

55
00

60
00

65
00

70
00

75
00

Index

te
st

[, 
1]

(a) Load forecasting

5 10 15 20

60
70

80
90

Index

a[
, 2

]

(b) Price forecasting

Fig. 5. Load and price forecasting for the 30th of September 2010.

them in order to enhance the prediction ability of our MAS system with respect
to short term power load and market price values in the Greek power stock
market. Prediction of load and prices are very important to both the power
system administrators, in terms of the economy and system security, as well
as the players involved, giving them strategic advantage over their competitors.
Our methodology provides very small error for day-ahead power load forecasts,
while for price forecasting it significantly outperforms standard data mining
algorithms. We believe that with the incorporation of exogenous factors that
interfere with market prices, the prediction capability of the system will further
improve.

References

1. Amin, M.: Electricity Pricing in Transition, chap. Restructuring the Electric En-
terprise: Simulating the Evolution of the Electric Power Industry with Intelligent
Agents, pp. 27–50. Kluwer Academic Publishers (2002)

2. Amin, M., Ballard, D.: Defining new markets for intelligent agents. IEEE IT Pro-
fessional 2(4), 29–35 (Jul/Aug 2000)

3. Babinec, Š., Posṕıchal, J.: Optimization of echo state neural networks for electric
load forecasting. Neural Network World 2(7), 133–152 (2007)

4. Bremer, J., Andressen, S., Rapp, B., Sonnenschein, M., Stadler, M.: A modelling
tool for interaction and correlation in demand-side market behavior. In: First Eu-
ropean Workshop on Energy Market Modeling using Agent-Based Computational
Economics. pp. 77–91. Karlsruhe (March 2008)

5. Chatzidimitriou, K.C., Mitkas, P.A.: A NEAT way for evolving echo state networks.
In: European Conference on Artificial Intelligence. IOS Press (August 2010)

6. Conzelmann, G., Boyd, G., Koritarov, V., Veselka, T.: Multi-agent power market
simulation using emcas. In: IEEE 2005 Power Engineering Society General Meet-
ing. vol. 3, pp. 2829–2834 (June 2005)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural
Computing Series, Springer-Verlag (2003)

8. He, M., Jennings, N.R., Leung, H.: On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering 15(4), 985–1003 (Jul/Aug 2003)



12 Chatzidimitriou et al.

9. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPTT, RTRL,
EKF and the ‘‘echo state network’’ approach. Tech. Rep. GMD Report 159,
German National Research Center for Information Technology (2002), http:

//www.faculty.iu-bremen.de/hjaeger/pubs/ESNTutorialRev.pdf

10. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3, 127–149 (2009)

11. Melzian, R.: Bidding and pricing in electricity markets - agent-based modelling
using emsim. In: First European Workshop on Energy Market Modeling using
Agent-Based Computational Economics. pp. 49–61. Karlsruhe (March 2008)

12. Petrov, V., Shebl, G.: Power auctions bid generation with adaptive agents us-
ing genetic programming. In: 2000 North American Power Symposium. Waterloo-
Ontario, Canada (OCtober 2000)

13. Showkati, H., Hejazi, A., Elyasi, S.: Short term load forecasting using echo
state networks. In: The 2010 International Joint Conference on Neural Networks
(IJCNN). pp. 1–5. Barcelona (July 2010)

14. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

15. Symeonidis, A.L., Mitkas, P.: Agent Intelligence through Data Mining. Springer,
USA (2005)

16. Tellidou, A., Bakirtzis, A.: Multi-agent reinforcement learning for strategic bidding
in power markets. In: 3rd IEEE International Conference on Intelligent Systems.
pp. 408–413. London, UK (September 2006)



Agent Based Middleware for Maintaining User Privacy in
IPTV Recommender Services

Ahmed Mohamed, Dimtri Botich

Abstract. Recommender systems are currently used by IPTV providers to help
end users finding suitable content according their personalized interests,
increase content sales, gain competitive advantage over competing companies
and improve the overall performance of the current system by building up an
overlay to increase content availability, prioritization and distribution based on
users' interests. However current implementations are mostly centralized
recommender systems (CRS) where the information about the users' profiles is
stored in single server. That's why users usually consider CRS as malicious
service because in order to obtain accurate recommendations the user might
have to reveal information that is considered private such as watching history,
previous buying behavior and items ratings. This type of design poses a severe
privacy hazard, since the users' profiles are fully under the control of CRS and
they have to trust it to keep their profiles private. In this paper, we present our
efforts to build a private centralized recommender service (PCRS) using
collaborative filtering techniques by introducing an agent based middleware we
call AMPR for ensuring user profile privacy in recommendation process;
AMPR preserve the privacy of its users when using the system and allow
sharing data among different user in the network. We also introduce two
obfuscations algorithms embedded in AMPR that protect users' profile privacy
and preserve the aggregates in the dataset to maximize the usability of
information in order to get accurate recommendations. Using these algorithms
gives the user complete control on the privacy of his personal profile. We also
provide an IPTV network scenario and experimentation results

Keywords: privacy; clustering; IPTV; recommender system; Multi-Agent.

1 Introduction

Internet protocol television (IPTV) is one of the largest services in ICT; it broadcasts
multimedia content (e.g. movies, news programs and documentaries) in digital format
via broadband internet networks using packet switched network infrastructure.
Differently from conventional television, IPTV allows an interactive navigation of the
available items[1]. Recently IPTV providers employ automated recommender systems
by collecting information about users’ preferences for different items to create users’
profile. The preferences of a user in the past can help the recommender system to
predict other items that might be interested for him in the future.

Collaborative filtering (CF) technique is utilized for recommendation purposes as
one of the main categories of recommender systems. CF is based on the assumption
that people with similar tastes prefer the same items. In order to generate a
recommendation, CF cluster users with the highest similarity in their interests, then
dynamic recommendations are then served to them as a function of aggregate cluster



2 Ahmed Mohamed, Dimtri Botich

interests. Thus, the more the users reveal information about their preferences, the more
accurate recommendations provided to them. However at the same time the more
information is revealed to the recommender service about users’ profile, the lower
users’ privacy levels can be guaranteed. This trade-off acts also as a requirement when
recommended system process design is being conducted using CF technique. Privacy
aware users refrain from providing accurate information because of their fears of
personal safety and the lack of laws that govern the use and distribution of these data.
Most service providers would try their best to keep the user’s data private but
occasionally, especially when they are facing bankruptcy, they might sell it to third
parties in exchange of financial benefits. In the other side many services providers
might violate users’ privacy for their own commercial benefits. Based on a survey
results in [2, 3] the users might leave a service provider because of privacy concerns.
Privacy is the main concern for a significant number of users, these concerns range
from user discomfort with the fact that a system gathers information about his
preferences and purchase history at remote servers other than their own devices. This
information breaches the privacy of the users on two levels.

1. The user’s real identity is available to the central server; the server can associate
the user’s profile which contains his private information to his real identity. This is
an obvious privacy breach, considering that a user does not want the link between
his real identity and his profile to be revealed, yet he wants to use the service.

2. If the user is not known to the server, the server can try to deanonymize the user’s
identity by correlating the information contained in the user’s profile and some
information obtained from other databases [4] .

In this paper we proposed an agent based middleware for private recommendation
(AMPR) that bear in mind privacy issues related to the utilization of collaborative
filtering technique in recommender systems and allow sharing data among different
users in the network. We also present two obfuscations algorithms that protect user’
privacy and preserve the aggregates in the dataset to maximize the usability of
information in order to get accurate recommendations. Using these algorithms, gives
the user complete control on his personal profile, so he can make sure that the data
does not leave his personal Set Top Box (STB) until it is properly desensitized. In the
rest of this paper we will generically refer to news programs, movies and video on
demand contents as Items. In section II describes some related work. Section III we
introduce a combined IPTV network scenario landing our private centralized
recommender service (PCRS) using collaborative filtering techniques. Section IV
introduces the proposed obfuscation algorithms used in our framework. Section V
describes some experiments and results based on obfuscation algorithms for IPTV
network control. Section VI includes conclusions and future work. Finally some
relevant references are included.

2 Related Work

Existing Recommender systems are mostly based on collaborative filtering; others
focus on content based filtering based on EPG data. The majority of the literature
addresses the problem of privacy on collaborative filtering technique, Due to it is a
potential source of leakage of private information shared by the users as shown in [5].
[6] Propose a theoretical framework to preserve privacy of customers and the
commercial interests of merchants. Their system is a hybrid recommender that uses



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
3

secure two party protocols and public key infrastructure to achieve the desired goals. In
[7, 8] the author proposed a privacy preserving approach based on peer to peer
techniques, he suggests forming users’ communities, where the community will have a
aggregate user profile representing the group as whole and not individual users.
Personal information will be encrypted and the communication will be between
individual users and not servers. Thus, the recommendations will be generated at client
side. [9, 10] suggest another method for privacy preserving on centralized
recommender systems by adding uncertainty to the data by using a randomized
perturbation technique while attempting to make sure that necessary statistical
aggregates such as mean don’t get disturbed much. Hence, the server has no
knowledge about true values of individual rating profiles for each user. They
demonstrate that this method does not lower considerably the obtained accuracy of the
results. Recent research work [11, 12] pointed out that these techniques don’t provide
levels of privacy as were previously thought. [12] Pointed out that arbitrary
randomization is not safe because it is easy to breach the privacy protection it offers.
They proposed a random matrix based spectral filtering techniques to recover the
original data from perturbed data. Their experiments revealed that in many cases
random perturbation techniques preserve very little privacy. Similar limitations were
detailed in [11]. Storing user’s profiles on their own side and running the recommender
system in distributed manner without lying on any server is another approach proposed
in [13], where authors proposed transmitting only similarity measures over the network
and keep users profiles secret on their side to preserve privacy. Although this method
eliminates the main source of threat against user’s privacy, but they need high
cooperation among users to generate useful recommendations.

Fig. 1. Attack model for existing Techniques Fig. 2. Attack model for this work

In this paper, we propose agent based middleware (AMPR) to protect the privacy of
user’s profile form the attack model presented in [14]. The attack model for data
obfuscation is different from the attack model for encryption-based techniques, but no
common standard has been implemented for data obfuscation. Existing techniques has
primarily considered a model where the attacker correlates obfuscated data with data
from other publicly-accessible databases in order to reveal the sensitive information
(figure 1). In this work, we consider a model where the attacker colludes with some
users in the network to obtain some partial information about the process used to
obfuscate the data and/or some of the original data items themselves (figure 2). The
attacker can then use this partial information to attempt to reverse engineer the entire
data set.

3 Combined IPTV network scenario



4 Ahmed Mohamed, Dimtri Botich

Fig. 3. Illustration of proposed combined IPTV Network

We consider the scenario where PCRS is implemented as a third-party service and
users provide their profiles to that external service in order to get recommendations.
IPTV uses this business model to reduce the required computational power, expenses
or expertise to maintaining an internal recommender system. There are two
requirements should be satisfied when using this business model:

─ IPTV providers care about the privacy of their catalogue which is considered an
asset for their business. In the meantime they are willing to offer real users’
ratings for different masked items to offer better recommendations for their
users and increase their revenues.

─ In the other side, privacy aware users worry about the privacy of their profiles,
so sending their real ratings harm their privacy.

AMPR employ a set of algorithms by which the users can changes their profiles to the
privacy level they desire, and then submit it to the PCRS. We assume that PCRS
follow the semi-honest model, which is realistic assumption because the service
provider needs to accomplish some business goals and increase his revenues.
Intuitively, the system privacy is high if the PCRS is not able to construct the real
ratings for users based on the information available to it. Figure (3) shows our
combined solution of hierarchical IPTV architecture with our proposed PCRS service
and AMPR. The network consists of super head end (SHE) where all items are
collected and distributed, Video Hub office (VHO) that receives content from SHE and
distributes it to a number of video serving offices (VSO). VSO stores the content and
distribute it to user’s Set top box (STB). The Set top box is an electronic appliance that
connects to both the network and the home television, with the advancement of data
storage technology each STB is equipped with a mass storage device like Cisco STB.
We use the user’s Set top box (STB) storage to host AMPR at client side. In the other
side, PCRS is the entity operating the recommender system that is a third-party
recommender service provider makes recommendations by consolidating the
information received from multiple sources. The user’s profile is obfuscated using
AMBR then sent to PCRS for making recommendations, which are then sent back to
the corresponding user. We alleviate the user’s identity problems by using anonymous



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
5

pseudonyms identities for users. Figure 4 outlines the complete framework of our
proposed system.

3.1 PCRS Components

PCRS maintains a masked catalogue of items hashed using VHO key (or a group
key), obfuscated user profiles (users’ pseudonym and their obfuscated ratings). The
PCRS communicates with the user through a manager unit. The PCRS also maintains
peer cache which is an updated database for information about peers that participate
in previous recommendations formulation. The peer cache is updated from peer list
database at client side. The user is the client who wishes to receive recommendation
list from the PCRS about items that might be interesting for him to pay for view. The
clustering manager is the entity responsible for building recommendations model
based obfuscated centralized rating profiles.

Fig. 4. PCRS framework

3.2 AMPR Components.

The AMPR in the user side consists of different co-operative agents. Learning agent
captures user’s interests about items to build rating table and meta-data table
explicitly and implicitly, more details about learning unit will be published in future
work. The local obfuscation agent implements CBT obfuscation algorithm to achieve
user privacy while sharing the data with other users or the system. The global
perturbation agent executes G-algorithm on the locally obfuscated collected profiles.
This two stage obfuscation processes based on a new set of algorithms to achieve user
privacy, these algorithms act as wrappers that obfuscate item’s ratings before they are
fed to the PCRS. Since the databases are dynamic in nature, the local obfuscation
agent desensitizes the updated data periodically, then synchronize agent send it to
other users and PCRS. So the recommendations are made on the most recent ratings.
More details about the recommendation process described in the next sub-section.



6 Ahmed Mohamed, Dimtri Botich

3.3 The Recommendation process

The recommendation process based on the two stage obfuscation processes in our
framework can be summarized as following:

1. The target user broadcast a message to other users in the IPTV network to indicate
his intention to start recommendations process. He also used local obfuscation
agent to sanitize his local profile.

2. Individual users that decide to respond to that request use the local obfuscation
agent to obfuscate their local rating profiles based on CBT algorithm (mentioned
below). Then, they submit their locally obfuscated profiles to the requester.

3. If the size of group formation less than specific value, the target user contacts the
PCRS directly to gets recommendation from centralized rating profiles stored in it.
Otherwise, the target user incites his global perturbation agent to start G algorithm
(mentioned below) on the collected local rating profiles.

4. In order to hide items that the group are interested in from PCRS, the target user
masks the list of items rated by responding users using anonymous indexes which
are linked to the actual items indexes in the Video Hub office (VHO) through a
secret map  know only by target user see table 1. One important issue to
standardize this secret map is to use hashing functions using group generated key
or key generated by the VHO to hash or mask his catalogue from PCRS.

Table 1. Secret Map  Used by Target User

Due to that the PCRS will not be able to deal directly with items names but their
hash values or anonymous index. Additionally the users’ ratings are obfuscated
from both PCRS and VHO.

5. The target user sends the globally perturbed ratings profiles together with
pseudonyms of users participate in global perturbation process to PCRS.

6. The PCRS insert pseudonyms into user database and their ratings into obfuscated
rating database. PCRS updates its model using received ratings, then it produces a
list 1 2{ , ,......, }i yA A A A of anonymous indexes that users in the same cluster have
chosen in the past.

7. The target user then submits the globally perturbed users’ rating to the other users
that participate with him in the process, so they able to update their rating data.
Then he unmasks the list iA using his secret map  to get finally list iA , then he
selects the appropriate items for him from it.

4 Proposed obfuscation Algorithms

In the next sections we provide enhanced algorithms that used by agents to obfuscate
the user’ profiles in a way that obscures user’ ratings in the untrusted PCRS with
minimum loss of accuracy. In our framework, each user has two datasets representing
his profile local rating profile where each user perturbs his profile before merging it



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
7

with similar users’ profiles that desire to collaborate with him as part of the
recommendation process and centralized rating profile is the output of the two
obfuscation process where the user get recommendation directly from the PCRS
based on previously collected ratings. We perform experiments on real datasets to
illustrate the applicability of our algorithms and the privacy and accuracy levels
achieved using them.

4.1 Local Obfuscation Using CBT Algorithm

We propose a new obfuscation algorithm called clustering based transformation
(CBT) that have been designed especially for the sparse data problem we have here.
Based on the idea of block cipher in [15]. We present a new technique to build a
Transformation lookup table (TLUT) using clustering techniques then approximate
each point in the data set to the nearest representative value in the TLUT (core-point
for cluster it belong to) with the help of similarity measures. The output of our
obfuscation algorithm should satisfy two requirements:

1. Reconstructing the original data from the obfuscated data should be difficult, in
order to preserve privacy.

2. Preserve the similarity between data to achieve accurate results.

We use local learning analysis (LLA) clustering method proposed in [16] to create the
TLUT. It is important to attain an optimized TLUT because the quality of the TLUT
obviously affects the performance of the transformation. LLA builds an initial TLUT
and repeats the iteration till two conditions satisfied:

1. The distance function ( , )id x c between a point x and its corresponding value ic is
minimized.

2. The distortion function between each dataset and its nearest value becomes smaller
than a given threshold.

Our algorithm consists of following steps:

1. The users’ ratings stored in ratings component (RC) as dataset D of c rows, where
each row is sequence of fields 1 2 3X  x  x  x .xm  .

2. Users’ ratings dataset D is portioned into 1 2 3 D  D  D .Dn datasets of length L ,
if total number of attributes in original is not perfectly divisible by L then extra
attributes is added with zero value which does not affect the result and later it is
removed at step 5.

3. Generate TLUT using LLA algorithm, LLA takes Gaussian Influence function as
the similarity measure. Influence function between two data point ix and jx is

given as
2

2

( , )

2( )
i j

i

d x x

x
Gauss jf x e 


 ,

The field function for a candidate core-point given by:
2

2

( , )

2

1

( )
j isd x xk

D
Gauss j

s

f x e 








8 Ahmed Mohamed, Dimtri Botich

Clustering is performed on each dataset iD , resulting to k clusters

1 2 3, , ,....,i i i ikC C C C and each cluster is represented by its core-points, i.e. core-

point of thj cluster of thi dataset is ( ijC ) =  1 2 3, , ,..... Lc c c c .Every single row

portion falls in exactly one cluster. And The TLUT = (core-point( 1iC ) , core-

point( 2iC ) , core-point( 3iC ) ..,core-point ( ikC ))

4. Each dataset iD is transformed into new dataset '
iD using generated TLUT, each

portion iY = ( 1) 1 ( 1) 2 ( 1) 3x  x  x .xi L i L i L iL       replaced by the nearest cluster

core-point iZ = core-point ( ijC ) in which it falls.

transofrmed
i iY Z

The transformation function is: ( ) = { − ( ↔ ( , −( ) < ( , − ( ) ∀ }
5. Now all the n transformed portions of each point is joined in the same sequence as

portioned in step 2 to form a new k dimension transformed row data which
replaces the X in the original dataset. In this way perturbed dataset '

iD is formed
from original dataset D

6. Compute the privacy level by calculating the difference between the original
dataset and transformed dataset using Euclidean distance:

2

1 1

1
r =P

m n

ij iji j
ivacy Level x y

mn  
  

4.2 Global Perturbation using G Algorithm

After executing the local obfuscation process, the global perturbation phase starts.
The idea is cluster multidimensional data using fast density clustering algorithm, then
perturb each dimension in each cluster in such a way to preserve its range. In order to
allow obfuscation agent to execute G algorithm, we introduce enhanced mean shift
(EMS) algorithm which is tailored algorithm for the global perturbation phase that has
advantage over previous algorithm proposed in [17], that it requires low
computational complexity in clustering large data sets. we employ Gaussian KD-tree
[18] clustering to reduce the feature space of the locally obfuscated data. The G
algorithm consists of two steps:

Step1: Build different density based clusters.

1. We build the tree In a top down manner starting from a root cell similar to [18, 19].
Each inner node of the tree S represents a d-dimensional cube cell which stores the
dimension Sd along which it cuts, the cut value Scut on that dimension, the bounds
of the node in that dimension Smin and Smax, and pointers to its children Sleft and
Sright. All points in the leaf nodes of the k-d tree are then considered as a sample
and the kd-tree stores m samples defined as , 1,...,jy j m that construct the

reduced feature space of the original obfuscated data set.



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
9

2. Assign each record ix to its nearest jy based on kd-search, then compute a new

sample, we called it * , 1,...,jy j m .

3. Generated *
jy is a feature vector of d-dimensions, that is considered as a more

accurate sample of the original obfuscated data set that will be used in the mean
shift clustering.

4. The mean shift clustering iteratively performs these two steps:
 Computation of mean shit vector based on the reduced feature space as

following:

* *

* *

2*
*

( )

2*

( )

( ) , 1, 2 ..
i j

i j

j i
i

y N y

j j

j i

y N y

x y
y g

h
m x x j m

x y
g

h





  
 
   

  
 
 





Where '( ) ( )g x k x  defined when the derivate of function ( )k x exists,

and ( ),0 1k x x  is called kernel function satisfying:

 2

,( ) 0k dk x c k x  , 1x  and ( ) 1k x dx





 Update the current position 1jx  as following:

* *

* *

2*
*

( )

1 2*

( )

( ) , 1 , 2 . .
i j

i j

j i
i

y N y

j

j i

y N y

x y
y g

h
m x j m

x y
g

h







  
 
  

  
 
 





Until reaching the stationary point which is the candidate cluster center.

jx will coverage to the mode in reduced feature space, finally we got

approximate modes of original data defined as , 1,....,xz x k (proof in
appendix A).

5. Finally, the points which are in the mode are associated with the same cluster, and
then we interpolate the computed modes in samples to the original obfuscated data
by searching for the nearest mode xz for each point ix .

Step 2: Generating random points in each dimension range
For each clusterC , perform the following procedure.

1. Calculate the interquartile range for each dimension iA .
2. For each element ije A , generate a uniform distributed random number ijr in

that range and replace ije with ijr .

5 Experiments

The proposed algorithms is implemented in C++, we used message passing
interface (MPI) for a distributed memory implementation of G algorithm to mimic a
distributed reliable network of peers. We evaluate our proposed algorithms in two
aspects: privacy achieved and accuracy of results. The experiments presented here
were conducted using the Movielens dataset provided by Grouplens [20], it contains



10 Ahmed Mohamed, Dimtri Botich

Fig. 7. VI for different partion size

Fig. 5. Privacy level for different no.of core points

users’ ratings on movies in a discrete scale between 1 and 5. We divide the data set
into a training set and testing set. The training set is obfuscated then used as a
database for PCRS. Each rating record in the testing set is divided into rated items
and unrated items . The set , is presented to the PCRS for making predication ,
for the unrated items , . To evaluate the accuracy of generated predications, we used
the mean average error (MAE) metric proposed in [21].

The first experiment performed on CBT algorithm, we need to measure the impact of
varying portion size and number of core-points on privacy level of transformed
dataset. In order to compute it, we keep portion size constant with different number
of core-points and then we vary portion size with constant number of core-points.
Based on the results shown in figures (5) and (6); we can deduce that privacy level
increases with increase in portion size. In the other side, privacy level reduced with
increasing number of core-points as large number of rows used in TLUT; this can be
achieved by tuning different parameters in LLA algorithm. Note that low privacy
level reduces information loss when PCRS group different users but the transformed
data is very similar to original data so attacker can acquire more sensitive
information.

To measure the distortion of the results, we use variation of information (VI) metric.
Figure (7) shows VI for different number of core-points. it has been found that for
low number of core-points the value of VI is high but slowly it decreases with
increase in number of core-points.at certain point it gain rises to local maxima then it
gain decreases with some number of core-points. Finally the graph rises again with
increasing number of core-points. We analyzing the graph to understand its behavior,
and come up with these results:

─ High VI at low number of core-points because there is a high chance of points to
move from one core-point to another due to low number of core-points. As
show in figure (5) privacy level is high at low number of core-points so there
are more information loss.

Fig. 6. Privacy level for different partion
size

Fig. 8. VI for different no.of core points



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
11

─ High VI at high number of core-points because less number of points with each
core-point so there is little chance of a point to move from one core-point to
another due to high number of core-points that might be higher than optimal
number of natural core-points in the dataset.

The second experiment performed on G algorithm, we need to measure the impact
of sample size on accuracy level and the execution time for the global perturbation
process. In order to compute both, we should have a specific threshold value that
reflects minimum number of responding users to a target user to start the global
perturbation process. We set it to 500 users, otherwise use the PCRS obfuscated
ratings database. Figure (9) shows different execution time for step 1 of G algorithm
based on various sample size. The relation between execution time and number of
clusters in step 2 is shown in figure (10). We continue our experiments of G algorithm
to measure the effect of sample size in on accuracy level, figures (11) illustrate that.
We can note that the increase in sample size leads to high accuracy in the predications

Fig. 9. Execution time for step 1 Fig. 10. Execution time for step 2

Fig. 11. Relation between sample size and MAE

6 CONCLUSION AND FUTURE WOK

In this paper, we present our ongoing work on building a framework for private
centralized recommender system with agent based middleware. We give a brief
overview over the system components and recommendations process. Also we present
novel algorithms that give the user complete control over his profile privacy using
two stage obfuscation processes. We test the performance of the proposed algorithms
on real dataset and report the overall accuracy of the recommendations based on
different privacy levels. The experiential results shows that preserving users’ data
privacy for in collaborative filtering recommendation system is possible and the mean
average error can be reduced with proper tuning for algorithms parameters and large
number of users. We need to perform extensive experiments in other real data set

Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
11

─ High VI at high number of core-points because less number of points with each
core-point so there is little chance of a point to move from one core-point to
another due to high number of core-points that might be higher than optimal
number of natural core-points in the dataset.

The second experiment performed on G algorithm, we need to measure the impact
of sample size on accuracy level and the execution time for the global perturbation
process. In order to compute both, we should have a specific threshold value that
reflects minimum number of responding users to a target user to start the global
perturbation process. We set it to 500 users, otherwise use the PCRS obfuscated
ratings database. Figure (9) shows different execution time for step 1 of G algorithm
based on various sample size. The relation between execution time and number of
clusters in step 2 is shown in figure (10). We continue our experiments of G algorithm
to measure the effect of sample size in on accuracy level, figures (11) illustrate that.
We can note that the increase in sample size leads to high accuracy in the predications

Fig. 9. Execution time for step 1 Fig. 10. Execution time for step 2

Fig. 11. Relation between sample size and MAE

6 CONCLUSION AND FUTURE WOK

In this paper, we present our ongoing work on building a framework for private
centralized recommender system with agent based middleware. We give a brief
overview over the system components and recommendations process. Also we present
novel algorithms that give the user complete control over his profile privacy using
two stage obfuscation processes. We test the performance of the proposed algorithms
on real dataset and report the overall accuracy of the recommendations based on
different privacy levels. The experiential results shows that preserving users’ data
privacy for in collaborative filtering recommendation system is possible and the mean
average error can be reduced with proper tuning for algorithms parameters and large
number of users. We need to perform extensive experiments in other real data set

Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
11

─ High VI at high number of core-points because less number of points with each
core-point so there is little chance of a point to move from one core-point to
another due to high number of core-points that might be higher than optimal
number of natural core-points in the dataset.

The second experiment performed on G algorithm, we need to measure the impact
of sample size on accuracy level and the execution time for the global perturbation
process. In order to compute both, we should have a specific threshold value that
reflects minimum number of responding users to a target user to start the global
perturbation process. We set it to 500 users, otherwise use the PCRS obfuscated
ratings database. Figure (9) shows different execution time for step 1 of G algorithm
based on various sample size. The relation between execution time and number of
clusters in step 2 is shown in figure (10). We continue our experiments of G algorithm
to measure the effect of sample size in on accuracy level, figures (11) illustrate that.
We can note that the increase in sample size leads to high accuracy in the predications

Fig. 9. Execution time for step 1 Fig. 10. Execution time for step 2

Fig. 11. Relation between sample size and MAE

6 CONCLUSION AND FUTURE WOK

In this paper, we present our ongoing work on building a framework for private
centralized recommender system with agent based middleware. We give a brief
overview over the system components and recommendations process. Also we present
novel algorithms that give the user complete control over his profile privacy using
two stage obfuscation processes. We test the performance of the proposed algorithms
on real dataset and report the overall accuracy of the recommendations based on
different privacy levels. The experiential results shows that preserving users’ data
privacy for in collaborative filtering recommendation system is possible and the mean
average error can be reduced with proper tuning for algorithms parameters and large
number of users. We need to perform extensive experiments in other real data set



12 Ahmed Mohamed, Dimtri Botich

from UCI repository and compare the performance with other techniques, also we
need to consider different data partitioning techniques, identify potential threats and
add some protocols to ensure the privacy of the data against these threats.

References

[1]S. Hand and D. Varan, "Interactive Narratives: Exploring the Links between Empathy,
Interactivity and Structure," ed, 2008, pp. 11-19.

[2]L. F. Cranor, "'I didn't buy it for myself' privacy and ecommerce personalization," presented
at the Proceedings of the 2003 ACM workshop on Privacy in the electronic society,
Washington, DC, 2003.

[3]C. Dialogue, "Cyber Dialogue Survey Data Reveals Lost Revenue for Retailers Due to
Widespread Consumer Privacy Concerns," in Cyber Dialogue, ed, 2001.

[4]A. Narayanan and V. Shmatikov, "Robust De-anonymization of Large Sparse Datasets,"
presented at the Proceedings of the 2008 IEEE Symposium on Security and Privacy, 2008.

[5]F. McSherry and I. Mironov, "Differentially private recommender systems: building privacy
into the net," presented at the Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, Paris, France, 2009.

[6]A. Esma, "Experimental Demonstration of a Hybrid Privacy-Preserving Recommender
System," 2008, pp. 161-170.

[7]J. Canny, "Collaborative filtering with privacy via factor analysis," presented at the
Proceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, Tampere, Finland, 2002.

[8]J. Canny, "Collaborative Filtering with Privacy," presented at the Proceedings of the 2002
IEEE Symposium on Security and Privacy, 2002.

[9]H. Polat and W. Du, "Privacy-Preserving Collaborative Filtering Using Randomized
Perturbation Techniques," presented at the Proceedings of the Third IEEE International
Conference on Data Mining, 2003.

[10] H. Polat and W. Du, "SVD-based collaborative filtering with privacy," presented at the
Proceedings of the 2005 ACM symposium on Applied computing, Santa Fe, New Mexico,
2005.

[11] Z. Huang, et al., "Deriving private information from randomized data," presented at the
Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
Baltimore, Maryland, 2005.

[12] H. Kargupta, et al., "On the Privacy Preserving Properties of Random Data Perturbation
Techniques," presented at the Proceedings of the Third IEEE International Conference on
Data Mining, 2003.

[13] B. N. Miller, et al., "PocketLens: Toward a personal recommender system," ACM Trans.
Inf. Syst., vol. 22, pp. 437-476, 2004.

[14] R. Parameswaran and D. M. Blough, "Privacy preserving data obfuscation for inherently
clustered data," Int. J. Inf. Comput. Secur., vol. 2, pp. 4-26, 2008.

[15] M. Blaze and B. Schneier, "The MacGuffin block cipher algorithm," ed, 1995, pp. 97-110.
[16] A. M. Elmisery and F. Huaiguo, "Privacy Preserving Distributed Learning Clustering Of

HealthCare Data Using Cryptography Protocols," in 34th IEEE Annual International
Computer Software and Applications, Seoul, South Korea, 2010.

[17] K. Fukunaga and L. Hostetler, "The estimation of the gradient of a density function, with
applications in pattern recognition," Information Theory, IEEE Transactions on, vol. 21, pp.
32-40, 2003.

[18] K. Xu, et al., "Efficient affinity-based edit propagation using K-D tree," presented at the
ACM SIGGRAPH Asia 2009 papers, Yokohama, Japan, 2009.



Agent Based Middleware for Maintaining User Privacy in IPTV Recommender Services
13

[19] A. Adams, et al., "Gaussian KD-trees for fast high-dimensional filtering," ACM Trans.
Graph., vol. 28, pp. 1-12, 2009.

[20] S. Lam and J. Herlocker. MovieLens Data Sets [Online]. Available:
http://www.grouplens.org/node/73

[21] J. L. Herlocker, et al., "Evaluating collaborative filtering recommender systems," ACM
Trans. Inf. Syst., vol. 22, pp. 5-53, 2004.

Appendix A: Proof of Convergent

Theorem 1: if the kernel function g has a convex and monotonically decreasing

profile, the sequence  1,2....( ) jf j  will still convergent.

Using the kernel function * *

* *

2*
*

( )

1 2*

( )

, 1, 2..
i j

i j

j i
i

y N y

j

j i

y N y

x y
y g

h
x j m

x y
g

h







  
 
  
  
 
 





To prove convergence, we have to prove that 1( ) ( )j jf x f x 
2 2* *

1
1

1 1

( ) ( )
n n

j i j i
j j

i i

x y x y
f x f x g g

h h



 

         
   
   

 

But since the kernel is a convex function we have,
'

1 1( ) ( ) ( )( )j j j j jg x g x g x x x    Using it,
2 2 2* * *

1'
1

1

( ) ( )
n

j i j i j i
j j

i

x y x y x y
f x f x g

h h h





        
  
  



=  
2*

' 2 * *2 2 * *2
1 12

1

1
2 ( 2 )

n
j i

j i j i j i j i
i

x y
g x y x y x y x y

hh  


       
 
 



=  
2*

' 2 2 *
1 12

1

1
2( )

n
j i T

j j j j i
i

x y
g x x x x y

hh  


     
 
 



=  
2*

' 2 2
1 1 12

1

1
2( )

n
j i T

j j j j j
i

x y
g x x x x x

hh   


     
 
 



=  
2*

' 2 2 2
1 1 12

1

1
2( )

n
j i

j j j j j
i

x y
g x x x x x

hh   


     
 
 



=  
2*

' 2 2 2
1 1 12

1

1
2 2

n
j i

j j j j j
i

x y
g x x x x x

hh   


     
 
 



=  
2*

' 2 2
1 12

1

1
2

n
j i

j j j j
i

x y
g x x x x

hh  


     
 
 



http://www.grouplens.org/node/73


14 Ahmed Mohamed, Dimtri Botich

=  
2*

' 2 2
1 12

1

1
( 1) 2

n
j i

j j j j
i

x y
g x x x x

hh  


     
 
 



=  
2*

2'
12

1

1 n
j i

j j
i

x y
g x x

hh 


   
 
 



= 0
There we prove that the sequence  1,2....( ) jf j  is still convergent.



Pricing Analysis in Online Auctions using Clustering and 
Regression Tree Approach  

Submitted for Blind Review 

Abstract. Auctions can be characterized by distinct nature of their feature 
space. This feature space may include opening price, closing price, average bid 
rate, bid history, seller and buyer reputation, number of bids and many more. In 
this paper, a price forecasting agent (PFA) is proposed using data mining 
techniques to forecast the end-price of an online auction for autonomous agent 
based system. In the proposed model, the input auction space is partitioned into 
groups of similar auctions by k-means clustering algorithm. The recurrent 
problem of finding the value of k in k-means algorithm is solved by employing 
elbow method using one way analysis of variance (ANOVA). Based on the 
transformed data after clustering, bid selector nominates the cluster for the 
current auction whose price is to be forecasted. Regression trees are employed 
to predict the end-price and designing the optimal bidding strategies for the 
current auction. Our results show the improvements in the end price prediction 
using clustering and regression tree approach.  

Keywords: Online auctions, Price forecasting, Bidding strategies, Data mining, 
Clustering, Regression trees 

1 Introduction 

Predicting the end price of an auction has become an increasingly important area of 
research because buyers and sellers can be offered a great benefit by using the above 
predicted prices[1, 2, 5]. The online auctions are exchange mechanisms which produce 
a large amount of transaction data. This data can be exploited to forecast the final 
prices of the auction items, if utilized properly. Researchers’ efforts can be noticed in 
the area of forecasting end-price of an auction using machine learning techniques, 
functional data analysis, time series analysis [1-8] 

Software agent technology is one of the most popular mechanisms used in on-line 
auctions for buying and selling the goods. Software agent is a software component that 
can execute autonomously, communicates with other agents or the user and monitors 
the state of its execution environment effectively [9-11]. Agents can use different 
auction mechanisms (e.g. English, Dutch, Vickery etc.) for procurement of goods or 
reaching agreement between agents. Agents make decisions on behalf of consumer and 
endeavor to guarantee the delivery of item according to the buyer’s preferences. These 
are better negotiators than human being in terms of monitoring, remembering and 
emotional influence. In these auctions buyers are faced with difficult task of deciding 
amount to bid in order to get the desired item matching their preferences. This bid 



2 Error! No text of specified style in document. 

amount can be forecasted effectively by analyzing the data produced as an auction 
progresses (historical data). This forecasted bid can be exploited by the bidding agents 
to improve their behaviors. Also the analysis of plethora of data produced in the online 
auction environment can be done by using DM techniques [1, 4, 7, 8, 12].  

Predicting the end price depends on many factors, such as item type, type of 
auction, quantity available, opening price, number of bidders, average bid amount and 
many more. Price dynamics of the online auctions can be different even when dealing 
with auctions for similar items. Functional data analytical tools have been used to 
characterize different type of auctions that exhibit different price dynamics in [8]. In 
this paper, a price forecasting agent (PFA) is proposed using data mining techniques to 
forecast the end-price of an online auction for autonomous agent based system. A 
clustering based approach is used to characterize different type of auctions. In the 
proposed model, the input auctions are clustered into groups of similar auctions based 
on their characteristics using k-means algorithm. To decide the value of k in k-means 
algorithm is a recurrent problem in clustering and is a distinct issue from the process of 
actually solving the clustering problem. The optimal choice of k is often ambiguous, 
increasing the value of k always reduce the error and increases the computation speed. 
In this paper, we are exploring Elbow approach using one way analysis of variance 
(ANOVA) to estimate the value of k. Based on the transformed data after clustering 
and the characteristics of the current auction whose price is to be forecasted, bid 
selector nominates the cluster. Regression trees are employed to the corresponding 
cluster for forecasting the end-price and to design the bidding strategies for the current 
auction.  

The rest of the paper is organized as follows. In section 2 we discuss the related 
work to the topic. Section 3 illustrates the design of PFA- Price Forecasting Agent 
describing the data mining mechanism developed for forecasting the end-price and 
optimizing the bidding strategies for online auctions. Section 4 depicts the 
experimental results. Section 5 discusses the conclusions of the paper and presents 
directions for the future work. 

2 Related Work 

In the recent literature, different approaches have been presented for end price 
prediction in the online auctions environment. A data mining based multi-agent system 
has been designed in favor of a multiple on-line auctions environment for selecting the 
auction, in which the traded item will be sold at the lowest price [4]. The K-means 
clustering technique has been used to classify auctions into discrete clusters. Clustering 
operates dynamically on multiple auctions as bid price changes in running auctions. 
The results of the dynamic clustering are fed into the agents, and by employing 
probability-based decision making processes, agents deduce the auction that is most 
likely to close at the lowest price. Experimental results have demonstrated the 
robustness of the designed system for multiple on-line auctions with little or no 
available information.  



Pricing Analysis in Online Auctions using Clustering and Regression Tree Approach  
3 

Forecasting [3] has been proposed as a time series problem and has been solved 
using moving averages and exponential smoothing models. Authors in this paper also 
emphasized that there is no one best forecasting technique for a particular set of data. 
Authors used sequence mining to improve the decision mechanism of an agent for 
predicting bidding strategy of a set of trading agents [7]. Prediction are mostly based 
on the continuously growing high dimensional bid’s history, so authors identified that 
sequence mining technique can be employed to classify the high dimensional frequent 
patterns in the bid’s history. Also the sliding window concept has been used for 
feeding the continuous classifier. Classification and meta-classification are applied to 
predict the final bid.  

Predicting end price of an online auction has been stated as a machine learning 
problem and has been solved using regression trees, multi-class classification and 
multiple binary classification [2]. Among these machine learning techniques, posing 
the price prediction as a series of binary classification has been proved to be the best 
suited method for this task. In the literature, along with the machine learning 
techniques, traditional statistical methods have also been used to forecast the final 
prices of the auction item, but the experimental results demonstrated that the machine-
learning algorithms such as BP networks outperform traditional statistical models [5]. 
Seeking the effect of clustering of data was also the concern of the authors [5]. 
Clustering has increased the accuracy of the results in case of BP networks but 
decreased the accuracy in logistic regression. 

A support system for predicting the end-price of an online auction based on the 
item description using text mining and boosting algorithm has been proposed [6]. 
Emphasis is given by the authors on capturing the relevant information for 
incorporating into the price forecasting models for ongoing online auction [1]. A 
novel functional K-nearest neighbor (fKNN) forecaster based on functional and non-
functional distance has been proposed and has been proved to be effective particularly 
for heterogeneous auction populations. 

LS-SVM (Least Square Support Vector Machine) algorithm has been introduced 
by Zhou and Wang for forecasting in online electronic commerce [12]. Authors first 
improved the SVM to solve the sparsity and time lag problems existing in the 
traditional method and then they established the LS-SVM online forecast model based 
on the time factor elimination. Experimental results demonstrated almost same values 
for the forecasted and the actual price.  

3 PFA-Price Forecasting Agent 

A clustering based method is used to forecast the end-price of an online auction 
for autonomous agent based system. In the proposed methodology the input auctions 
are partitioned into groups of similar auctions depending on their different 
characteristics. This partitioning has been done by using k-means clustering 
algorithm. The value of k in k-means algorithm is determined by employing elbow 
method using one way analysis of variance (ANOVA). Based on the transformed data 
after clustering and the characteristics of the current auction, bid selector nominates 



4 Error! No text of specified style in document. 

the cluster for price forecasting. End-price is predicted and bidding strategies are 
designed by using regression trees for the nominated cluster.  

 The price forecasting and bidding agent is represented in Figure. 1. Formally our 
approach consists of four steps. First, data is extracted from the bid server as per the 
requirements to form the agents’ knowledge base for online auctions. Let A be the set 
of the attributes collected for each auction then A={ a1, a2….. aj}  where j is the total 
number of attributes. Then based on the auctions’ characteristics, similar auctions are 
clustered together. Secondly, k-estimator agent determines the best number of 
partitions for the overall auction data and then the set of similar auctions are clustered 
together in k groups. Let C be the set of clusters then C = {c1, c2…. ck} where k is the 
total number of clusters. Thirdly, based on the transformed data after clustering and 
the characteristics of the current auction, bid selector nominates the cluster for price 
forecasting.  Finally, regression tree is employed to forecast the end price and to 
design the bidding strategies for the selected cluster.  

 

 

Fig. 1. PFA-Price Forecasting Agent 

 

 

Forecasted bid 
and bidding 
Strategies 

 
K estimator 

Cluster Analysis 

Cluster1 Cluster2 

Bid Selector 

B
id

 S
er

ve
r 

Input 

Transformed data 

Cluster k 

End-Price and Bidding Strategies 

…
…



Pricing Analysis in Online Auctions using Clustering and Regression Tree Approach  
5 

3.1 K-means Cluster Analysis 

The main idea of k-means clustering is to define k centroids, one for each cluster. 
Initially k data are randomly chosen to represent the centroids. Each data point is 
assigned to the group that has the closest centroid. After assignment of each data point, 
positions of the k centroids are re-calculated as the average value of every cluster. 
These steps repeat until the centroids no longer move or minimizing the objective 
function J.  

 

� � ∑ ∑ ���
��	 
 ����
�������   (1) 

 

Where ���
��	 
 ����

 is a chosen distance measure between a data point ��
��	 and the 

cluster centre ��. It indicates the distance of the n data points from their respective 

cluster centers. 

 K-means clustering technique is used here to categorize different types of 
auctions based on some predefined attributes from the vast feature space of online 
auctions. The feature space may include average bid amount, average bid rate, no. of 
bids, item type, seller reputation, opening bid, closing bid, quantity available, type of 
auction, duration of the auction, buyer reputation and many more. In this paper, to 
classify different types of auctions, we focus on only a set of attributes; opening bid, 
closing price, number of bids, average bid amount and average bid rate.  Now 
A={OpenBi, ClosePi, NUMi, AvgBi, AvgBRi}  

Where A is the set of attributes for an auction. 
OpenBi  is the starting price of i th auction 
ClosePi  is the end price of i th auction 
NUMi is the total number of bids placed in i th auction  
AvgBi  is the average bid amount of i th auction and can be calculated as Avg(B1, 

B2,…..Bl) where B1 is the 1st bid amount, B2  is the second bid amount and Bl is the last 
bid amount for ith auction.  

AvgBRi is the average bid rate of ith auction and can be calculated as   

�

 ∑ �������

�������

���  . 

where ���� is the amount of (i+1) th bid,  �� is the amount of i th bid, ���� is the time 
at which  (i+1) th bid is placed and ��  is the time at which  i th bid is placed. 

3.2 K-estimator 

To decide the value of k in k-means algorithm is a recurrent problem in clustering 
and is a distinct issue from the process of actually solving the clustering problem. The 
optimal choice of k is often ambiguous, increasing the value of k always reduce the 



6 Error! No text of specified style in document. 

error and increases the computation speed.  The most favorable method to find k 
adopts a strategy which balances between maximum compression of the data using a 
single cluster, and maximum accuracy by assigning each data point to its own cluster. 
There are several approaches to decide the value of k: rule of thumb, the elbow 
method, information criterion approach, an information theoretic approach, choosing k 
using the Silhouette and cross-validation. In this paper, we are exploring Elbow 
approach using one way analysis of variance (ANOVA) to estimate the value of k. 
Number of clusters are chosen so that adding another cluster doesn't give much better 
modeling of the data. A graph has been plotted for percent of variance against the 
number of clusters. At some point the marginal gain will drop, giving an angle in the 
graph (Figure. 2). The number of clusters is chosen at this point.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Choosing the value of k 

 
Below is the mathematical model explained for the value of k. 

Percent of variance= 

∑ ∑ �������	��∑ ∑ �����������	� ��!�"�!� ��!�"�!�
∑ ∑ #��$���%� ��!�"�!�

  �2	 
Where k is the total no. of clusters 
Nn is total no. of elements in nth cluster 
 '
����  is the mean of distances of auctions from the cluster center in nth cluster 
'�
 is distance of i th auction in nth cluster from its cluster center 

0

5

10

15

20

25

30

0 2 4 6 8

No. of Clusters

 P
e

r
c

e
n

t
 o

f 
v

a
r

ia
n

c
e

Percent of variance



Pricing Analysis in Online Auctions using Clustering and Regression Tree Approach  
7 

3.3 Bid Selector 

In order to decide that the current auction belongs to which cluster, the bid selector 
is activated. Based on the transformed data after clustering and the characteristics of 
the current auction, bid selector nominates the cluster for the current auction whose 
price is to be forecasted.  

3.4 Extracting Bidding Strategies 

Regression Tree is an analytic procedure for predicting the values of a continuous 
response variable from continuous predictors. We can derive simple if-then rules from 
these predictions. In this paper, we are employing regression tree to predict the end 
price and to design the optimal bidding strategies for the targeted cluster. This 
targeted cluster is the cluster which bid selector nominates for the current auction 
whose end price is to be forecasted. Regression trees are built in two phases. The first 
phase is growing phase and the second phase is pruning phase. In the growing phase, 
the tree is grown until no error reduction on the training possible or a pre-defined 
threshold has been reached. The resulting model usually over-fits the data. This is 
overcome by the pruning the tree. The best tree is chosen when both the output 
variable variance and the cost-complexity factor are minimized. The trade-off between 
these two criterions should be considered. There are two ways to accomplish this. One 
is test-sample cross-validation and the other is v-fold cross-validation. In this paper, 
test-sample cross-validation method is used to determine the best pruned tree for 
designing the optimal bidding strategies of the online auction. 

4 Experimentation 

 In the proposed approach end-price is predicted and the bidding strategies are 
designed for an online auction by exploiting regressions trees on each cluster which are 
generated by applying k-means algorithm on the input auctions dataset. The outcome 
of the proposed model with clustering is compared with the classic (without clustering) 
model for price prediction. The improvement in the error measure for each cluster for a 
set of attributes gives support in favor of the proposed model using clustering. Optimal 
bidding strategies are designed by employing regression trees on each cluster and the 
model is evaluated by test-sample cross validation approach. Our dataset includes the 
complete bidding records for 149 auctions for new Palm M515 PDAs. All are 7-day 
auctions that were transacted on eBay between March and June, 2003 (a sample is 
available online at; 
http://www.rhsmith.umd.edu/digits/statistics/pdfs_docs/Palm_7day_149auctions.xls). 

The value of k for k-means algorithm is estimated by Elbow approach using one 
way analysis of variance (ANOVA). Percent of variance is calculated after performing 
clustering for subsequent values of k using k-means algorithm for estimating the point 
where marginal gain drops. In our experiment, this point occurs after five numbers of 
clusters as shown in Table 1 and Figure 2. So we divide the input space in five clusters 
considering a set of attributes i.e. opening bid, closing price, no. of bids, average bid 



8 Error! No text of specified style in document. 

amount and average bid rate for a particular auction. These five clusters contain 
20.27%, 34.46%, 18.92, 20.95 and 5.41% of auctions’ data.  

The prediction performance is evaluated using the root mean square error (RMSE) 
measure. This is used as a measure of the deviation between the predicted and the 
actual values. The smaller the value of RMSE, the closer is the predicted values to the 
actual values. Typically the RMSE is defined as  

RMSE�( �
) ∑ �*� 
 *+,	�)���       �3	 

Where *+,  is the forecasted bid for the ith auction based on the estimated model, *� is 
the actual bid amount for the i th auction and m is the total no. of auctions in the cluster. 

Table 1. Percent of variance after subsequent clustering 

No.of Clusters Percent of variance 

2 2.46 

3 5.8 

4 21.06 

5 24.75 

6 20.22 

The improvement in root mean square error after clustering for each of the five 
clusters are 16.43%, 29.47%, 20.76%, 31.17% and 64.91% respectively. This indicated 
that the proposed price forecasting agent can improve the accuracy of the forecasted 
price for online auctions. 

Optimal bidding strategies are designed by employing regression trees on each 
cluster. To find the best tree, we have used the test-sample cross validation approach. 
We randomly divide the data into 80% training and 20% validation set and applied the 
tree-growing algorithm to the training data and grows the largest tree which over-fits 
the data. Then the tree is pruned by calculating the cost complexity factor at each step 
during the growing of the tree and deciding the number of decision nodes for the 
pruned tree. The tree is pruned to minimize the sum of (1) the output variable variance 
in the validation data, taken a terminal node at a time, and (2) the product of the cost 
complexity factor and the number of terminal nodes.  In our experiments, we applied 
regression trees on the second cluster only and designed the bidding rules for the same. 
Regression tree for cluster 2 is shown in Figure 3. The non-terminal nodes present 
test/decisions on one or more attributes and the terminal nodes reflect the decision 
outcomes. Table 2 gives the rule set that sum up this regression tree.  

5 Conclusions  

In this paper we presented a clustering and regression trees based approach to 
forecast the end-price and to find the optimal bidding strategies of an online auction for 
autonomous agent based system. In the proposed model, the input auctions are 
partitioned into groups of similar auctions by k-means clustering algorithm.  



Pricing Analysis in Online Auctions using Clustering and Regression Tree Approach  
9 

<=87.5 

OpenB 

NUM 

>=87.5 

198.84 

<=33 

<=87.5 

>=33 

105.45 CloseP 

<=203 >=203 

122.38 142.31 

 
 
 

 
 
 

 

 

 

 

 

Fig. 3. Regression tree for cluster 2 

Table 2. Rule set for cluster 2 

1 If OpenB 
<=87.5 

And NUM 
<=33 

And CloseP 
<=203 

Then AvgB: 
 122.38 

2  If OpenB 
<=87.5 

And NUM 
>=33 

 Then AvgB: 
105.45 

3  If OpenB 
>=87.5 

  Then AvgB: 
198.84 

4  If OpenB 
<=87.5 

And NUM 
>=33 

And CloseP 
>=203 

Then AvgB: 
142.31 

 
The recurrent problem of finding the value of k in k-means algorithm is solved by 
employing elbow method using one way analysis of variance (ANOVA). Then k 
numbers of regression models are employed to estimate the forecasted price of the 
online auction. Based on the transformed data after clustering, bid selector nominates 
the cluster for the current auction whose price is to be forecasted. Regression trees are 
employed to the corresponding cluster for forecasting the end-price and to design the 
bidding strategies for the current auction. The outcome of the proposed model with 
clustering is compared with the classic model for price prediction. The improvement in 
the error measure for each cluster for a set of attributes gives support in favor of the 
proposed model using clustering. Optimal bidding strategies are designed by 
employing regression trees on each cluster and evaluating the model by test-sample 
cross validation approach. Further work will be focused in two directions; first, to 
improve the prediction model by exploiting decision trees and classification methods 
and secondly, study the importance of each attribute on the end price prediction for 
online auctions. 

 
 



10 Error! No text of specified style in document. 

References 
 
1. Zhang, S., Jank, W., Shmueli, G.: Real-time forecasting of online auctions via functional K-

nearest neighbors. In: International Journal of Forecasting (2010) 
2. Ghani, R., Simmons, H.: Predicting the end-price of online auctions. In: Proceedings of the 

International Workshop on Data Mining and Adaptive Modeling Methods for Economics 
and Management, held in conjunction with the 15th European Conference on Machine 
Learning (2004) 

3. Guo, W., Chen, D., Shih, T.: Automatic forecasting agent for e-commerce applications. In: 
20th international conference on Advanced Information Networking and Applications 
(AINA'06), pp.1--4 (2006) 

4. Kehagias, D.D., Mitkas, P.A.: Efficient E-Commerce Agent Design Based on Clustering 
eBay Data. In: IEEE/WIC/ACM International Conferences on Web Intelligence and 
Intelligent Agent Technology Workshops, pp. 495--498 (2007)  

5. Xuefeng, L., Lu, L., Lihua, W., Zhao, Z.: Predicting the final prices of online auction items. 
In:  Expert Systems with Applications, Vol. 31, pp. 542--550 (2006)  

6. Heijst, D., Potharst, R., Wezel, M.: A support system for predicting ebay end prices. 
Econometric Institute Report (2006)  

7. Nikolaidou, V., Mitkas, P.: A Sequence Mining Method to Predict the Bidding Strategy of 
Trading Agents. Agents and Data Mining Interaction, pp. 139--151 (2009)  

8. Jank, W., Shmueli, G.: Profiling price dynamics in online auctions using curve clustering. 
Technical report, Smith School of Business, University of Maryland, pp.1--28 (2005) 

9. Greenwald, A., Stone, P.: Autonomous bidding agents in the trading agent competition. In:  
IEEE Internet Computing, pp. 52--60 (2001) 

10. Byde, A., Preist, C., Jennings, N.: Decision procedures for multiple auctions. In: ACM First 
International Joint Conf. on Autonomous Agents and Multi-Agent Systems, pp. 613--620 
(2002)  

11. Anthony, P., Jennings, N.: Evolving bidding strategies for multiple auctions. In: Proc. of 
15th European Conf. Artificial Intelligence, pp. 178--182 (2002) 

12. Min, Z., Qiwan, W.: The On-line Electronic Commerce Forecast Based on Least Square 
Support Vector Machine. In:  ICIC '09. Second International Conference on Information 
and Computing Science, Vol. 2, pp. 75--78 (2009) 



Change Point Analysis for Intelligent Agents in
City Traffic

Maksims Fiosins⋆, Jelena Fiosina, and Jörg P. Müller

Clausthal University of Technology, Clausthal-Zellerfeld, Germany,
(Maksims.Fiosins, Jelena.Fiosina)@gmail.com,

Joerg.Mueller@tu-clausthal.de

Abstract. Change point (CP) detection is an important problem in
data mining (DM) applications. We consider this problem solving in
multi-agent systems (MAS) domains. Change point testing allows agents
to recognize changes in the environment, to detect more accurately cur-
rent state information and provide more appropriate information for
decision-making. Standard statistical procedures for change point detec-
tion, based on maximum likelihood estimators, are complex and require
construction of parametrical models of data. In methods of computa-
tional statistics, such as bootstraping or resampling, complex statistical
inference is replaced by a large computation volumes. However, these
methods require accurate analysis of their precision. In this paper, we
apply and analyze a bootstrap-based CUSUM test for change point de-
tection, as well as propose a pairwise resampling test. We derive some
useful properties of the tests and demonstrate their application in the
decentralized decision-making of vehicle agents in city traffic.

Keywords: Multiagent decision-making, data mining, change point de-
tection, resampling, variance, bootstrapping CUSUM test, traffic control

1 Introduction

Change point (CP) analysis is an important problem in data mining (DM), the
purpose of which is to determine if and when a change in a data set has occurred.
In multiagent systems (MAS) research, methods of CP analysis are applied,
but not widely. One of the most popular agent-related areas of CP analysis
application is web mining. Here, agents deal with automatic knowledge discovery
from web documents and services, including social networks. CP detection in
values of different parameters, such as number of messages, frequency of certain
actions, or number of active users in some blogs are relevant for a wide number
of applications, such as marketing, production, security. For example, Lu et. al.
[10] applied the CUSUM algorithm in combination with shared beliefs for agent-
oriented detection of network attacks, McCulloh [9] for detection of changes in
social networks.

⋆ Maksims Fiosins is supported by the Lower Saxony Technical University (NTH)
project ”Planning and Decision Making for Autonomous Actors in Traffic”



A traditional statistical approach to the problem of CP detection is maximum
likelihood estimation (MLE) [5],[8]. In this approach, an appropriate data model
is constructed, which includes a model of CP. Then a likelihood function for
model parameters (including CP) is designed and an estimator of for CP is
obtained as a result of the likelihood function minimization. Such an approach
requires assumptions about the data model and underlying distributions as well
as complex analytical or numerical manipulations with a likelihood function.

As an alternative to the classical approach, methods of computational statis-
tics, like bootstrap or resampling, are widely used [7]. In such methods, complex
analytical procedures are replaced by intensive computation, which is effective
with modern computers. However, these methods only provide approximate so-
lutions, and the analysis of their accuracy and convergence rate is very important
for their correct application.

One of the most popular methods of computational statistics, used for CP
analysis, is a cumulative sum bootstrapping test (CUSUM bootstrapping test)
[4]. This method does not require assumptions about data models and corre-
sponding distributions; the idea of the test is to construct so-called CUSUM
plots: one on the initial sample and one on each of a large number on per-
muted (bootstrapped) samples. The difference between the initial plot and boot-
strapped plots aids to spread regarding the CP existence. This test relies on a
visual assessment of whether there is a change in the slope of the CUSUM plot
(see Figure 3).

In previous publications, we applied the resampling method for analysis and
DM in different kinds of systems, including information, reliability, transporta-
tion logistics, software systems, including MAS [1],[3].

The purpose of this paper is twofold. First, we explain how non-parametrical
CP detection methods may be integrated into agent decision support by illustrat-
ing it on detecentralized traffic routing scenario. Second, we demonstrate how
to analyze a precision of the considered tests, taking expectation and variance
of resulting estimators as an efficiency criteria.

We discuss two CP tests based on methods of computational statistics: a
bootstrap-based CUSUM test, and a novel test, called pairwise resampling test.
We analyze the efficiency of both tests as well as show how these tests are applied
in MAS systems, focusing on the traffic applications. Case studies are presented
to demonstrate how CP analysis is incorporated into agents decision-making
processes to verify the potential effect of the proposed approach.

The paper is organized as follows. In Section 2, we describe how CP analysis is
incorporated in the decision module of agents. In Section 3, we formulate the CP
problem and explain a standard CUSUM bootstrapping approach. In Section 4,
we present proposed CP detection algorithms. In Section 5, we provide the most
important aspects of the tests efficiency analysis. Section 6 demonstrates a case
study, where the proposed methods are used in decentralized traffic scenario.
Section 6 contains final remarks, conclusions and outlook.



2 CP Based Decision Making for Agents in Traffic

Appropriate DM tools are very important for a class of MAS where the individual
agents use DM technologies to construct and improve a basis for local decision-
making and use communication, coordination and cooperation mechanisms in
order to improve local decision-making models and to provide a basis for joint
decision-making [11]. In order to make appropriate decisions, agents analyze
incoming data flows, construct relevant models and estimate their parameters.

The environment and behavior of other agents are subject to changes. Sup-
pose, some other agent decides to change its plans and start acting in a new
manner, some part of the environment may become unavailable for agents, new
agents may appear etc. So, the old behavior of the agent becomes inappropriate.

Let us consider a simple example from a traffic domain. Let a vehicle agent
plans its route through a street network of a city. The agent is equipped with
a receiver device, which allows obtaining an information about times needed to
travel through the streets. Based on this information, the vehicle agent makes
strategic decisions regarding its route. The vehicle does not use only messages
from TMC: rather it builds some model based on historical information (such a
model is considered by Fiosins et. al. [6]). In the simplest case, the vehicle agent
just calculates an average of some set of historical observations.

Now suppose that some change occurs (traffic accident, overloading of some
street etc.). The purpose of the agent is to detect this change and make appro-
priate re-routing decisions.

Let us describe an architecture of an intelligent agent from this point of view.
It receives observations (percepts) from the environment as well as communica-
tion from other agents (Fig. 1). Communication subsystem is responsible for
receiving input data, which then is pre-processed by an initial data processing
module. The information, necessary for decision-making, is obtained from initial
data by constructing corresponding data models (regression, time series, rule-
based etc.). A data models estimation/learning module is responsible for the
estimation of the model parameters or iterative estimation (”learning”), which
provides an information base for an agent. Mentioned blocks represent a DM
module of the agent. The information then is transformed to an internal state
of the agent, which is agent’s model of the real world. It represents the agent
knowledge about the environment/other agents. Based on the internal state, the
agent performs its decision-making. The efficiency (utility) functions measure an
accordance of the internal state as a model of the external (environment state)
with goals of the agent. Based on it, the agent produces (updates) its plan to
reach its goal; this process may include the internal state change. As well, the
efficiency function itself (or their parameters) can change under learning process.

The decision-making process includes strategic decisions of the agents [6],
which define plans of general resource distribution as well as tactical decisions,
including operative decisions regarding resource usage. For example, strategic
decisions of a vehicle agent may include the route choice, but tactical decisions
may include include speed/lane selection. As well, the agent plans its social
behavior, i.e. its interactions with other agents. The result of this process is a



construction of a plan (policy). The plan is given to an action module for the
actual action selection and execution.

Communication Subsystem

Initial Data Processing

Data Models Estimation / Learning

Data Models

Internal State

Efficiency Functions

Strategic/Tactical
Planning/Learning

Plans

Action/Social Interactions Manager

D
E

C
IS

IO
N

M
A

K
IN

G

E
N

V
IR

O
N

M
E

N
T,

O
T

H
E

R
A

G
E

N
T

S

actions, social
interactions

communication,
observations

Social Planning /
Learning

D
AT

A
M

IN
IN

G

Fig. 1. An agent architecture including DM and decision making modules

Consider an example of DM module of an autonomous vehicle agent.

Travel time

Change point

Decision

detection

data

making

Fig. 2. DM module for strategic (routing) information processing

The vehicle receives travel time data, which are pre-processed by the initial
data processing module. Then data is tested on the existence of CP. If it is
detected, only data after the last CP are used in future analysis, where the
current state (travel time) trough a given street is estimated. In the simplest
case an average of travel times after the last CP is used.

In the next Section we present a CP detection problem as well as describe a
standard bootstrap-based CUSUM test for CP detection.



3 CP Problem and CUSUM Test

Let us formulate a CP detection problem. Let X = {x1, x2, . . . , xn} be a random
sample. Let us divide this sample as X = {XB ,XA}, where
XB = {xB

1 , x
B
2 , . . . , x

B
k }, X

A = {xA
1 , x

A
2 , . . . , x

A
n−k}. We say that there is a CP

at position k in this sample, if elements XB are distributed according to a distri-
bution function (cdf) FB(x), but elements XA according to cdf FA(x) 6= FB(x).
The aim of a CP detection test is to estimate the value of k (clear that in the
case of k = n there is no CP). We are interested in a case when FB(x) and FA(x)
differ by a mean value.

Note that a CP is not always visually detectable. Figure 3 represents two
samples: left has exponential distribution, right has normal. Both have a CP
at k = 10: for the exponential distribution its parameter λ changes from 1/10
to 1/20; for the normal distribution its parameter µ changes from 5 to 7. One
should have an experience to see these CP visually.

0

20

40

60

5 10 15 20

0

5

10

15

5 10 15 20

Fig. 3. A sample of 20 observations from exponential (left) and normal (right) distri-
butions with CP at k = 10

A popular non-parametric approach for CP analysis is bootstrapping CUSUM
test. CUSUM presents the cumulative sum of the differences between individual
data values and the mean. If there is no shift in the mean of the data, the chart
will be relatively flat with no pronounced changes in slope. Also, the range (the
difference between the highest and lowest data points) will be small. A data set
with a shift in the mean will have a slope change at the data point where the
change occurred, and the range will be relatively large.

The cumulative sum Si at each point i is calculated by the sample X by
adding the difference between a current value and sample mean to the previous
sum as

Si =

i∑
j=1

(xj − X̄), (1)



where X̄ is the mean of the sample X, i = 1, 2 . . . n.

A CUSUM chart starting at zero will always end with zero as well: Sn = 0.
If a CUSUM chart slopes down, it indicates that most of the data are below the
mean. A change in the direction of a CUSUM indicates a shift in the average.
At the CP, the slope changes direction and increases, indicating that most of the
data points are now greater than the average.

In order to make a CP detection procedure more formal, a measure of the ini-
tial CUSUM line divergence from ”normal” lines for given data is calculated. It
is calculated using a technique known as bootstrapping, whereby N random per-
mutations X∗j , j = 1, 2, . . . , N of X are generated and corresponding CUSUMS
S
∗j
i are calculated by formula (1).

For a fixed point k the percentage of times where the cumulative sum for the
original data exceeds the cumulative sum for the randomized bootstrap data is
calculated as p∗k = #{j : S∗j

k ≤ Sk}/N .

For values of p∗k near 0 or near 1 we can say that the CP in k occurs. The

idea behind this is that values S
∗j
k approximate the distribution of CUSUMs

constructed till k under assumption that data is mixed (values may be taken
both before the CP and after the CP).

An example of a CUSUM test is presented on Figure 4.

-100

-50

0

50

100

5 10 15 20

-20

-10

0

10

20

5 10 15 20

Fig. 4. CUSUM test examples with CP at k = 10

Here we can see a minimum of original CUSUM line at point k = 10; for
other bootstrapped lines there is no minimum.

However, is this test reliable? Will the original CUSUM line be always outside
of bootstrapped CUSUM line range? If not, then what is an expected value of
the percentage of bootstrapped CUSUMS, which the original CUSUM exceeds?
How this percentage differs from its expected value? All these questions should
be answered during the method analysis phase; without the accurate analysis
the method cannot be correctly applied.



4 Resampling Based CP Tests

4.1 CUSUM Based Test

Let us describe an algorithm for a CUSUM-based test for a CP at the point k.
On r-th resampling step, we extract, without replacement, k elements from a
sample X of size n, forming the resample X∗r

k = {x∗r
1 , x∗r

2 , . . . , x∗r
k }. Then we

construct r-th resampling CUSUM

S∗r =
k∑

i=1

(x∗r
i − X̄) =

k∑
i=1

x∗r
i − kX̄, (2)

where X̄ is an average over the initial sample X.
Each CUSUM is compared with a pre-defined value x, obtaining an indicator

value ζ∗r = 1S∗r≤x.
We make N such realizations, obtaining a sequence of indicators

ζ∗1, ζ∗2, . . . , ζ∗N . These values in fact approximate a cdf of CUSUMS. We esti-
mate it as

F ∗(x) = P{S∗r ≤ x} =
1

N

N∑
r=1

ζ∗r. (3)

As a value of x we take a value of a CUSUM S, calculated by initial data.
So the probability of interest is F ∗(S).

Low or high value of this probability allows to spread about CP existence.
In principle, we can find maximal (close to 1) or minimal (close to 0) value of
this probability on all k and consider this point as a CP.

A corresponding calculation of the probability F ∗(S) is presented in Algo-
rithm 1.

Algorithm 1 Function CUSUM TEST

1: function CUSUM TEST(X, k,N)
2: S =

∑k
i=1(xi − X̄)

3: for r = 1 . . . N do
4: X∗r

k ← resample(X, k)
5: S∗r =

∑k
i=1(x

∗r
i − X̄)

6: if S∗r < S then ζ∗r = 1
7: else ζ∗r = 0
8: end for
9: return 1/N

∑N
r=1 ζ

∗r

10: end function

However, as the same elements can be used for calculation of ζ∗r on different
realizations r, it leads to a complex structure of dependency between ζ∗r. So we
should be accurate in results interpretation here. In Section 5 we provide the
most important aspects of this test analysis.



4.2 Pairwise Resampling CP Test

We propose an alternative resampling-based CP test; we call it pairwise resam-
pling test. It is based on calculation of the probability P{Y ≤ Z} that one
random variable (r.v.) Y is less than another r.v. Z [2]. Suppose that the sample
XB contains realizations of some r.v. Y , but the sample XA realizations of some
r.v. Z. Our characteristic of interest is the probability Θ = P{Y ≤ Z}.

On r-th resampling step we extract one value y∗r and z∗r from the samples
XB and XA correspondingly and calculate an indicator value ζ∗r = 1y∗r≤z∗r .

We make N such realizations, obtaining a sequence of indicators
ζ∗1, ζ∗2, . . . , ζ∗N . The resampling estimator of Θ is

Θ∗ =
1

N

N∑
r=1

ζ∗r. (4)

In order to check if there is a CP, we construct a confidence interval for Θ.
We produce v such estimators, denote them Θ∗

1 , Θ
∗

2 , . . . , Θ
∗

v . Let us order them,
producing an ordered sequence Θ∗

(1) ≤ Θ∗

(2) ≤ . . . ≤ Θ∗

(v).

Let us select a confidence probability γ for this interval (γ is usually selected
0.95 or 0.99). We accept [Θ∗

(⌊ 1−γ

2
v⌋)

;Θ∗

(⌊ γ

2
v⌋)

] as a γ confidence interval for Θ.

Note that in the case of CP absence the probability Θ will be equal to 0.5,
and the estimators Θ∗ will be close, but different from 0.5. However, is this
difference significant? In order to answer we check if value 0.5 traps into the
constructed confidence interval (Algorithm 2).

Algorithm 2 Function PAIRWISE CONFIDENCE

1: function PAIRWISE CONFIDENCE(X, k,N, v, γ)
2: XB = subsample(X, 1, k), XA = subsample(X, k + 1, n)
3: for j = 1 . . . v do
4: for r = 1 . . . N do
5: y∗r ← resample(XB , 1), z∗r ← resample(XA, 1)
6: if y∗r < z∗r then ζ∗r = 1
7: else ζ∗r = 0
8: end for
9: Θ∗

j =
∑N

r=1 ζ
∗r

10: end for
11: sortΘ∗

12: return [Θ∗

(⌊ 1−γ

2
v⌋)

;Θ∗

(⌊ γ
2
v⌋)]

13: end function

There is again a complex dependence structure between ζ∗r, and so between
Θ∗, because the same elements may be used in comparisons on different real-
izations. So true coverage probability of constructed interval will differ from γ.
The goal of the algorithm analysis is to calculate the true coverage probability
of this interval; then we can correctly apply the method.



5 Analysis of the CP tests accuracy

In this Section, we shortly highlight the most important aspects of the methods
efficiency analysis. The complete analysis can be found in our articles [1],[2],[3].

5.1 CUSUM Based Test

We are going to calculate an expectation and variance of the estimator (3). This
means that we calculate theoretically an average of the estimator and spread
of the percentage of cases, when the CUSUM constructed on the original data
exceeds CUSUMS constructed on the bootstrapped data.

Let yr be a number of elements, extracted fromXB ; then fromXA we extract
k − yr elements. Then the expectation of (3) can be expressed as

E[F ∗(x)] = P{S∗r ≤ x} =
k−1∑
yr=2

∫
∞

−∞

F
(yr)
B (x− u)dF

(k−yr)
A (u) · pyr

(p), (5)

where F (k)(x) is a convolution of the cdf F (x) with itself.
Variance of (3) can be expressed as

V ar[F ∗(x)] =
1

N
V ar

[
1{S∗r≤x}

]
+

(N − 1)

N
Cov

[
1{S∗r≤x}, 1{S∗p≤x}

]
, (6)

for r 6= p.
Only the covariance term depends on the resampling procedure, which can

be expressed using the mixed moment µ11 =
[
1{S∗r≤x} · 1{S∗p≤x}

]
.

In order to calculate µ11, we use the notation of α-pair [1],[3]. Let α =
(αB , αA), where αB and αA are the number of common elements extracted from
XB and XA correspondingly on two different resampling realizations.

Than µ11 can be expressed by fixing all possible values of α:

µ11 =
∑
α

µ11(α)P (α). (7)

For the case of exponential and normal distributions we can obtain explicit
formulas for the previous expressions.

5.2 Pairwise Resampling CP Test

In order to analyze properties of (4), we introduce a protocol notation [2]. Let
us order a sample XB , obtaining an ordered sequence {xB

(1), x
B
(2), . . . , x

B
(k)}. Let

ci = #{xA
j ∈ XA : xB

(i−1) ≤ xA
j ≤ xB

(i)}, x
B
(0) = −∞, xB

(k+1) = ∞. We call

k + 1-dimensional vector C = {c1, c2, . . . , ck+1} as a protocol.
For a fixed protocol C the conditional probability of the event {Y ≤ Z} is

qC = P{Y ≤ Z|C} =
1

k(n− k)

k∑
i=1

k∑
j=i

cj . (8)



The probability that one resampling estimator Θ∗

j will be less than Θ is given
by the binomial distribution with a probability of success (8):

ρC = P{Θ∗

j ≤ Θ|C} =
Θr−1∑
ζ=0

(
r

ζ

)
q
ζ
C(1− qC)

r−ζ . (9)

Finally the unconditional probability of coverage is calculated as
∑

C PC ·RC .

6 Case Study

We consider a vehicle routing problem in a street network, where vehicles receive
data about travel times and are applying the shortest path algorithm looking for
a fastest path to their destination. As travel times are subject to change, that’s
why CP analysis is performed. If CP is detected, only the data part after the
last CP is taken into account.

We suppose, that travel times trough the streets are normally distributed
and are subject to changes in the mean. An example of input data is shown in
Figure 5 (left). The vehicle analyses CPs in such data for all streets and selects
an appropriate fastest route; the route selection process is presented in Figure 5
(right).

Now consider the behavior of CP estimators. In Figure 6 (left) the CUSUM
test presented in the case of CP absence. In this case, we can see a big variance
of the probability F ∗(x) of interest (standard deviation = 0.29). This means,
that there exist a big risk of considering some point as a CP, if it is not one.
Figure 6 (right) demonstrates the CUSUM test in the case of CP existence. Here
we see very good CP detection with practically zero variance at the CP.

Now let us consider the pairwise test. In Figure 7 (left) we see this test in
the case of CP absence. Here we see smaller variance of the probability Θ∗ of
interest (standard deviation = 0.14 on the most of the interval). This means,
that a risk of considering some point as a CP, if it is not one, is lower than for
the CUSUM test. Figure 7 (right) demonstrates this test in the case of CP. Here
detection is not so bad as well, however the variance of the estimator is bigger,
so there is a risk to miss this CP.

We can conclude that the CUSUM test detects CP very well; however, it
may consider as CP some point, which is not one. In opposite, the pairwise test
is more reliable in the case of a CP absence; however, it can miss some CPs.

So for streets where CPs are rare, it is better to use the pairwise test; the
CUSUM test is better for streets with often occurred CPs in travel times.

7 Conclusions

CP detection is very important task of DM for MAS, because it allows agents to
estimate more accurate the environment state and prepare more relevant infor-
mation for decentralized planning and decision-making. As classical statistical



methods for CP estimation are relatively complex, it is better to apply methods
of computational statistics for this problem.

In this paper, we considered an application of CP detection as a part of
DM module of an intelligent agent. We considered two resampling-based CP
detection tests: CUSUM-based bootstrapping test and pairwise resampling test.
We described algorithms of their application as well as highlighted the most
important aspects of their efficiency analysis, taking expectation and variance
of the estimators as the efficiency criteria.

We demonstrated an application of CP detection for vehicle agents in city
traffic. This allows vehicles to detect CPs in street travel times and select more
appropriate path in a street network.

The first test demonstrated good detection of CPs, however has a big variance
in the case of CPs absence. The second test has smaller variance in this case,
however worse detects existing CPs.

First experiments show that the demonstrated approach allows reducing the
travel time of vehicles. In the future we will work on an application of computa-
tional statistics methods for different DM procedures in MAS. Another impor-
tant direction is an application of our approach for different domains.

References

1. Afanasyeva, H.: Resampling-approach to a task of comparison of two renewal pro-
cesses. In: Proc. of the 12th International Conference on Analytical and Stochastic
Modelling Techniques and Applications. pp. 94–100. Riga (2005)

2. Andronov, A.: On resampling approach to a construction of approximate confidence
intervals for system reliability. In: Proceedings of 3rd International Conference on
Mathematical Methods in Reliability. pp. 34–42. Trondheim, Norway (2002)

3. Andronov, A., Fioshina, H., Fioshin, M.: Statistical estimation for a failure model
with damage accumulation in a case of small samples. Journal of Statistical Plan-
ning and Inference 139(5), 1685 – 1692 (2009)

4. Antoch, J., Hušková, M., Veraverbeke, N.: Change-point problem and bootstrap.
Journal of Nonparametric Statistics 5, 123–144 (1995)

5. Ferger, D.: Analysis of change-point estimators under the null-hypothesis. Bernoulli
7(3), 487–506 (2001)

6. Fiosins, M., Fiosina, J., Müller, J., Görmer, J.: Agent-based integrated decision
making for autonomous vehicles in urban traffic. In: Proceedings of 9th Interna-
tional Conference on Practical Applications of Agents and MAS (2011)

7. Gentle, J.E.: Elements of Computational Statistics. Springer (2002)
8. Hinkley, D.V.: Inference about the change-point from cumulative sum tests.

Biometrika 58(3), 509–523 (1971)
9. McCulloh, I., Lospinoso, J., Carley, K.: Social network probability mechanics. In:

Proceedings of the World Scientific Engineering Academy and Society 12th Inter-
national Conference on Applied Mathematics. p. 319325. Cairo, Egypt (2007)

10. Peng, T., Leckie, C., Ramamohanarao, K.: Detecting reflector attacks by sharing
beliefs. In: In Proceedings of the IEEE GLOBECOM. pp. 1358–1362 (2003)

11. Symeonidis, A., Mitkas, P.: Agent Intelligence Through Data Mining (Multiagent
Systems, Artificial Societies, and Simulated Organizations). Springer (2005)



0

20

40

60

80

100

20 40 60

1

2

3

4

5

20 40 60

Fig. 5. Travel times on one street with 60 observations (left) and resulting route selec-
tion from 5 routes (right)

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20

Fig. 6. Results of the CUSUM test without CP (left) and with CP at k = 10 (right)
for a fragment of 20 observations. Straight line shows the expected value E[F ∗(x)] of
the estimator F ∗(x), dashed lines show the difference between the expected value and
standard deviation E[F ∗(x)]−V ar[F ∗(x)]1/2 of the estimator F ∗(x), dotted lines show
several realizations of F ∗(x)

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15 20

Fig. 7. Results of the pairwise test without CP (left) and with CP at k = 10 (right)
for a fragment of 20 observations. Straight line shows the expected value E[Θ∗] of
the estimator Θ∗, dashed lines show the difference between the expected value and
standard deviation E[Θ∗]− V ar[Θ∗]1/2 of the estimator Θ∗, dotted lines show several
realizations of Θ∗



A Data-driven Approach for Resource Gathering

in Real-time Strategy Games

Dion Christensen, Henrik Ossipoff Hansen, Jorge Pablo Cordero Hernandez,
Lasse Juul-Jensen, Kasper Kastaniegaard, and Yifeng Zeng

Department of Computer Science, Aalborg University, Denmark
{kogle,ossipoff,jorgecordero,ljuul,kkkas,yfzeng}@cs.aau.dk

Abstract. In real-time strategy games, resource gathering is a crucial
part of constructing an army and becoming victorious. In this paper we
present an algorithm for resource gathering that is developed based on
accumulated game data. The algorithm builds upon a queue system for
resource collecting agents and optimises resource gathering by utilising
travel times of agents in the game world. We implement the algorithm
in the testbed of StarCraft: Brood War and compare it with the built-in
method for resource gathering in this game. Experimental results show
a gain in the amount of resources gathered compared to the built-in
method. In addition, the results demonstrate better predictability when
our approach is used to gather resources in games.

1 Introduction

In real-time strategy (RTS) games, players engage each other in real-time battles
for map domination. This is done by collecting resources, building an army and
controlling the units to attack the opponent [2]. A typical RTS game requires
players to initially focus on resource gathering, in order to provide an economic
foundation for their armies.

Resource management in an RTS game is the act of collecting minerals and
converting them into new units. It is an important part of winning a match of
an RTS game, since resource management directly implies the ability to create
more units. Resource gathering is the concrete act of having agents moving to a
resource, spending time gathering the resource and returning to the resource de-
posit. Intuitively, resource gathering must play an important role in RTS games
since battles cannot be won without a steady income of resources. We did an
analysis of 200 StarCraft replays gathered from iCCup1 that suggests a correla-
tion between spending resources and winning the game. Fig. 1 shows the amount
of minerals spent by the winners along with their raze score–a score indicating
the number of buildings a player has destroyed. The figure shows a tendency to
an increased amount of minerals for higher raze scores. This suggests that it is
important to obtain a high amount of resources in order to win a match.

1 http://www.iccup.com/



Fig. 1. The amount of minerals gathered compared to the raze score. Data is gathered
from the winning players every 120 frames from a total of 200 replays.

Unfortunately, topics on resource management (e.g. resource gathering) have
not been well explored in the literatures. Previous work by Chen et al. [1] ne-
glects the importance of the time required for agents to travel in the game world.
Wintermute et al. [5] concern about strategies on preventing agents from collid-
ing when they are gathering resources. We take a step further to find out the
difficulty on designing a realistic approach on resource gathering. Essentially, it
is due to a large amount of uncertainty in RTS game [3]. As we recall, the de-
velopment of a resource gathering algorithm requires the computation of travel
time between a resource and a resource deposit. However the computation is
inaccessible since agents do not enjoy constant travel styles including speed,
acceleration and so on.

In this paper we take a data-driven approach to design the resource gathering
algorithm in an RTS game particularly in StarCraft: Brood War. We exploit the
accumulated gameplay data to compute travel times for agents in the algorithm
development. This is made possible due to an increasing amount of available
replay data. An example of this is iCCup that supports data for StarCraft,
Warcraft III and DotA. The use of replay data has already made an impact on the
strategy prediction in RTS games [4]. In addition, in order to track the movement
of agents in gathering resource, we implement a queue system to distribute agents
across resources in a game world. We evaluate the algorithm performance and
compare it with the resource gathering algorithm built in StarCraft: Brood War.

The rest of the paper is organized as follows. Section 2 introduces the al-
gorithm for resource gathering in RTS games. Section 3 shows the algorithm
performance in the experiments. Section 4 summarizes our contribution and dis-
cusses related research issues.



2 Efficient Resource Gathering

In RTS games, a player usually does not take a direct control on the agents
that have been assigned to gather resources. When an agent is ordered to gather
resources, the agent will gather the resources, return to the nearest resource
deposit, and then continue to gather resources until given a different order.

Depending on the RTS game, different numbers of agents are allowed to
gather a resource. If a resource becomes completely occupied when an agent is
returning to continue gathering, the agent may go to a different resource, if one
exist, or wait until the resource is available. Choosing a different resource may
lead to the appearance of an agent regretting their previous goal and choosing
a new goal. This will in some cases result in the agent leaving a resource that
is becoming available shortly for a resource that will be occupied shortly, thus
wasting time on traveling. Waiting for availability may cause an agent to waste
time waiting instead of moving to a new resource. Any time spent not moving
to the correct resource, or waiting for this resource, causes a loss compared to
the optimal behaviour.

The erratic movement may cause the resource income rate to spike or drop–
when an agent chooses a new path–making it difficult to predict the amount of
resources available at a later point in time. To avoid this, direct control can be
applied to the agents, where the future availability of the resource is considered
before moving.

2.1 Problem Definition

Given a set of agents A = {ai|i = 1, · · · , n} and a set of sites M = {mj |j =
1, · · · , l} located in a two-dimensional euclidean space (each site mj has an
attached amount of resources rj ∈ Z

+ and ∀j 6=krj = rk), choose a subset S ⊆ G
of gathering tasks G = {A×M} such that the total amount of resources R = l∗rj

is gathered in a minimal time T .
An amount of resources is gathered when an agent collected a resource from

a site and delivered it to a depot D. Consider that for each site mj there exists
exactly one queue Qj containing the agents that will gather this resource next.
A site queue is defined as an totally ordered set Qj = {ah|h = 0, · · · , m} ⊆ A,
where each element is an agent in the queue. The first element a0 ∈ Qj is
the agent that may use the resource first. Each agent is assigned to at most
one resource queue at a time. When an agent has finished gathering, they are
removed from the queue.

We model T as the total time that is required to execute every gathering task
si,j = (ai, mj) ∈ S in time ti,j . Specifically, a gathering task si,j is completed in
a round-trip time ti,j after agent ai travels from D to a site mj , potentially waits
in line on a queue, collects resources and goes back to D. Equation 1 shows the
aforementioned round-trip time calculation that we aim to minimize by applying
efficient resource gathering.

ti,j = ttij,D + max
[
0, rtj − ttij,D

]
+ C + ttiD,j , (1)



where ttij,D is the time required for the agent ai to travel from depot D to the
resource mj. rtj is the remaining time for site mj to become available after all
agents in queue Qj complete their work. Thus, the time agent ai would wait
in line is the remaining time rtj minus the time that has already been spent
on traveling. The constant collecting time C is also added along with the travel
time to return to the resource deposit ttiD,j.

By using site queues, it is possible to determine the best site to send agents
in order to minimize the time required for the agent to return to D with an
amount of resources. Equation 2 states the remaining time rtj as follows:

rtj = (m + 1) ∗ C, (2)

in other words, rtj is the time agent ai /∈ Qj waits for all m + 1 agents ah ∈ Qj

to finish collecting resources.

2.2 Algorithm Implementation

The equations presented in the previous section have lead to the development of
an algorithm based on the same principles. The algorithm is a practical utiliza-
tion of the equations.

Minimizing the round-trip time for an agent will cause the agent to always
pick the resource that will allow for the fastest delivery of an amount of resources
in a greedy fashion. The main mining algorithm, seen in Algorithm 1, uses a sub-
algorithm Work(Q,a).

Algorithm 1 Resource gathering algorithm

Declarations
Qj , . . . , Ql : resource queues
mj : resource site

1: time←∞
2: for all ai /∈

⋃l

j=0
Qj do

3: for h = 0 . . . m do

4: Qw ← Qh ∪ {ai}
5: if Work(Qw, ai) + tti

w,D < time then

6: time←Work(Qw, ai) + tti
w,D

7: best← h
8: end if

9: end for

10: Qbest ← Qbest ∪ {ai}
11: end for

The algorithm is run every time when new agents need to be assigned to a
resource queue. In line 2 the algorithm iterates through every agent that has not
yet been assigned to a queue, followed by a linear run through every resource,



lines 3-10 to find the resource that requires the least amount of time for the
agent to return with a deposit, and adds the agent to the queue.

Algorithm 2 takes as parameters a queue Qj and an agent a and returns the
total time spent on traveling to the resource site, waiting in line and gathering
from the resource. The algorithm works by recursively calculating the work load
of the agents ahead in the queue (lines 5-6) to calculate the time spent waiting in
line. Since the time spent on traveling is included in the return value in line 13,
the travel time will have to be subtracted from the waiting time in lines 8-12.

Algorithm 2 Work(Q,a)

Parameters
Qj : resource queue
a: agent
Declarations
p← h, where a = ah ∈ Qj , 0 ≤ h ≤ m : position of a in Q

1: if p = 0 then

2: return tti
j,D + C

3: end if

4: workLoad← 0
5: for h = (p− 1) . . . 0 do

6: workLoad← workLoad + Work(Qj , ah)
7: end for

8: if workLoad > tti
j,D then

9: workLoad← workLoad− tti
j,D

10: else

11: workLoad← 0
12: end if

13: return tti
j,D + workLoad + C

Consider the scenario on Fig. 2 in which three agents, A, B and C must
gather resources from m0 and m1 by transporting resources from these positions
to the drop-off location R. By applying Algorithm 1 to this scenario the actions
of the agents can be observed in Table 1. Each queue is initially empty and each
agent is initially not assigned to a resource.

The first three lines in the trace displays each agent being assigned to their
first resource. The algorithm takes into account the distance to be travelled
for each agent as well as the remaining time for agents that have already been
assigned to a resource. When an agent returns to R, Algorithm 1 is run again,
to assign the agent or agents to their next resource. Over the course of a session,
each agent may be assigned to different resources, depending on their availability.



m1

m0

D

A B C

(i)

m1

m0

DA

B

C

(ii)

m1

m0

DA

B

C

(iii)

m1

m0

DA

B

C

(iv)

m1

m0

DA

B

C

(v)

m1

m0

DA

B

C

(vi)

Fig. 2. (i) None of the agents have moved. A is assigned to m1, B to m0, C to m1. (ii)
A is done using m1, B is gathering m0, C starts gathering m1. (iii) B is done using m0,
A is moving to D, C is still gathering m1. (iv) C is done using m1, A is still moving to
D, B is moving to D. (v) A delivers to D and is assigned to m1, B is still moving to
D, C is moving to D. (vi) B delivers to D and is assigned to m0, A is moving to m1,
C is still moving to D.

Time Agent Action Queues Resources

0 A Move to m1 Qm0
= ∅ 0

(110) Qm1
= {A0[work ← 190]}

0 B Move to m0 Qm0
= {B0[work ← 206]} 0

(126) Qm1
= {A0[work ← 190]}

0 C Move to m1 Qm0
= {B0[work ← 206]} 0

(126) Qm1
= {A0[work ← 190], C1[work ← 80]}

190 A Move from m1 Qm0
= {B0[work ← 16]} 0

(90) Qm1
= {C0[work← 80]}

206 B Move from m0 Qm0
= ∅ 0

(108) Qm1
= {C0[work← 64]}

270 C Move from m1 Qm0
= ∅ 0

(90) Qm1
= ∅

280 A Deliver & move to m1 Qm0
= ∅ 8

(90) Qm1
= {A0[work ← 170]}

314 B Deliver & move to m0 Qm0
= {B0[work ← 188]} 16

(108) Qm1
= {A0[work ← 136]}

Table 1. A sample trace for the scenario on Fig. 2. From the left is the current time,
the affected agent, the action of the agent, the current state of both resource queues
and the amount of gathered resources.



2.3 Algorithm Analysis

In StarCraft: Brood War, agents do not move at a constant speed. An agent,
given a movement order while standing still, will first accelerate towards a max-
imum speed and decelerate before reaching its destination. Since the testbed of
the algorithm, StarCraft: Brood War, is a closed source, access to the algorithm
used for pathfinding in the game is restricted. To compensate for this, travel
times are measured and stored.

Every time an agent moves between the resource deposit and a resource, the
time of the travel is recorded. Information on the travel is saved in a lookup
table, including the starting position, the destination and the time. As the func-
tion will only be used to decide the travel time between a resource deposit and
the stationary resource, the amount of starting position/destination pairs are
limited, making this approach possible.

Whenever another agent is moving in a path equal to a recorded path, the
original value is used and potentially revised. Given enough data, all possible
paths an agent may use when mining resources, is known for a specific map.

The information has been gathered by using the resource gathering algorithm
where the travel function is defined as a function that returns a previously calcu-
lated value. If no data matching the source and destination exists, the function
returns a low value to allow the agent to take the path and thereby gather
previously unknown data.

The complexity of Algorithm 1 is O(n3 + TIME(Travel)) bounded by the
number of agents n, where TIME(Travel) is the time required to run the travel-
function. As we use a lookup table to compute travel time thereby making the
complexity as O(n3) assuming a lookup can be made in constant time.

Algorithm 1 is general in the sense that it can be applied for RTS games
having the following rules.

– Several resources are present
– A resource contains several units of the resource
– Agents move between a resource and a drop-off location
– Agents do not collide
– Only one agent may use the resource at a time

The travel time between positions must either be known or it must be possible
to estimate this value. A general algorithm for calculating travel time has not
been presented, as the value is very dependant on the environment. If an estimate
for the value is used, the algorithm does not guarantee to use the lowest round-
trip time for each agent.

3 Experiments

We evaluated our algorithm against the built-in method used for resource gath-
ering in StarCraft: Brood War. StarCraft: Brood War is a science-fiction RTS
game developed by Blizzard Entertainment in 1998. This particular game was



Fig. 3. In-game screenshot from a match in StarCraft: Brood War featuring a range
of agents and buildings.

chosen as the testbed for various reasons: it is the best selling RTS game of our
time2, incorporates all the general features of an RTS and is accessible through
open source APIs.

3.1 StarCraft Game

The StarCraft game features three distinct races each of which has individual
tech trees. The race has a unit type that is capable of gathering resources and
constructing buildings. Two types of resources exist–minerals and gas–which
are gathered by an agent traveling to the resource, spending time gathering
the resource and then returning to a resource deposit to deliver the gathered
resources. Fig. 3 shows an example of a match in StarCraft. The middle building
is the resource deposit of the Terran race. The blue crystals contain the mineral
resource while the top left building is an extractor for the gas resource.

All communication with StarCraft is done using the Brood War Application
Programming Interface3 (BWAPI), an open source C++ framework allowing
two-way communication with StarCraft. BWAPI allows communication through
objects and function calls, as opposed to input via human input devices. In effect,
this allows the user to, among other things, observe events in the game and react
upon these.

2 According to VGChartz, http://www.vgchartz.com/
3 http://code.google.com/p/bwapi



Currently, StarCraft has implemented an automatic resource gathering sys-
tem that is responsible for resource management in the game. The method is
initialized by selecting an agent and invoking the gather command on a specific
resource. The agent will then move to and gather the resource, return to the
resource depot with a deposit, move to the resource again, and so forth. If a re-
source is occupied on arrival, the agent will move to the closest resource available
and start gathering that instead.

3.2 Experimental Setting

We implemented our algorithm and compared on the performance with the built-
in resource gathering method in StarCraft. We used both methods to train 18
agents on the map Astral Balance. Though the difference of starting positions
for agents is usually considered negligible, in order to ensure fairness, all tests
were performed in the upper right corner. We put the starting positions next to
a mineral cluster consisting of eight mineral fields, each holding 1500 minerals,
as well as a single gas geyser. We evaluate the performance of both algorithms
on two aspects. One is an average resource collected by agents over game frame
and the other is a standard deviation of gathered resources as time passes.

3.3 Experimental Results

0 1000 2000 3000 4000 5000 6000 7000 8000

Fremes

0

1000

2000

3000

4000

M
in

er
al

s

Our algorithm Built-in method

Fig. 4. Comparison between two methods, showing the amount of minerals gathered
over time.

Fig. 4 shows a comparison between two methods on the amount of collected
minerals in the course of 8000 frames. The data is based on 10 runs and averaged
according to minerals for both algorithms. Clearly, our algorithm increases the



income of the player compared to the built-in method. Furthermore, the smooth-
ness of the curve for our algorithm as opposed to the built-in method indicates a
higher predictability. The predictability is further elaborated in Fig. 5, picturing
the standard deviation in the course of 10 runs. Fig. 5 shows that the standard
deviation of the minerals collected by both methods grows as time passes. There
is a clear tendency that the deviation of the built-in method grows faster than
that of the proposed algorithm.

0 1000 2000 3000 4000 5000 6000 7000 8000

Frames

0

10

20

30

40

50

M
in

er
al

s

Our algorithm Built-in method

Fig. 5. Comparison on the standard deviation of the both methods.

4 Discussion

Exploiting game data to compute travel times facilitates the design of a resource
gathering algorithm in spite of an unknown pathfinding method. Experiments
show that the algorithm provides an increase in the amount of resources gath-
ered, compared to the built-in approach. Furthermore the experiments show that
our algorithm is more predictable. The predictability can be used to predict the
amount of resources collected within some time frames.

Currently our algorithm is more selfish in the sense that each agent makes
decisions that allow for the fastest mineral gain for itself, but not necessarily
the best for all of agents in a team. It might be beneficial to run the algorithm
over a group of agents by having them act as a team and optimizing the group
income instead of the individual income over time.

The increased predictability of income using our algorithm makes it eligible
for use in other aspects of an RTS game. An example is to develop a scheduler
for construction of, for example, military units. By using our algorithm it is
possible to predict the time when the scheduled production line is finished, even
if the resources for the units should first be gathered. The algorithm enables the



possibility of acquiring an accurate estimate on the potential gain from utilizing
resources from other areas in the game world. This is interesting for RTS games
in which new resource deposits may be created by a player.

Notice that the algorithm depends on the implementation for computing
travel times, which need to consider the agent collision. In some RTS games,
the travel time is insignificant due to the distance from a resource to a resource
deposit, the number of agents or other game specifics. In RTS games similar to
StarCraft we expect to observe similar performance of our proposed algorithm.

References

1. H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura. Online Planning for Resource
Production in Real-Time Strategy Games. In Proceedings of the Seventeenth Inter-

national Conference on Automated Planning and Scheduling, pages 65–72, Septem-
ber 2007.

2. S. Rabin, editor. Introduction to Game Development, chapter 1.1 – A Brief History
of Video Games, pages 3–36. Charles River Media Inc., 2005.

3. M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and A. Ram. Transfer
Learning in Real-Time Strategy Games Using Hybrid CBR/RL. In In Proceedings

of the Twentieth International Joint Conference on Artificial Intelligence, 2007.
4. B. Weber and M. Mateas. A Data Mining Approach to Strategy Prediction. In Com-

putational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on, 2009.
5. S. Wintermute, X. Joseph, and J. E. Laird. SORTS: A Human-Level Approach

to Real-Time Strategy AI. In Proceedings of the Third Artificial Intelligence and

Interactive Digital Entertainment Conference. The AAAI Press, 2007.



A Multi-Agent Based Approach To Clustering:
Harnessing The Power of Agents

Santhana Chaimontree, Katie Atkinson and Frans Coenen

Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.
{chaimontree,atkinson,coenen}@liverpool.ac.uk

Abstract. A framework for multi-agent based clustering is described
whereby individual agents represent individual clusters. A particular fea-
ture of the framework is that, after an initial cluster configuration has
been generated, the agents are able to negotiate with a view to improv-
ing on this initial clustering. The framework can be used in the context
of a number of clustering paradigms, two are investigated: K-means and
KNN. The reported evaluation demonstrates that negotiation can serve
to improve on an initial cluster configuration.
keywords: Multi-Agent Data Mining, Clustering

1 Introduction

Data Mining and Multi-Agent Systems (MAS) are well established technologies
which are finding increasing application. One of the current challenges of data
mining is how to cope with the ever increasing size of the data sets that we wish
to mine. A highlevel answer is to adopt and apply greater computational power.
This can be achieved in a number of manners. One approach is to make use
of distributed [6, 8, 10, 21, 22, 25] or parallel [13, 26, 27] processing techniques so
that several processors can be applied to the problem. This of course assumes
that appropriate “farms” of processors are available. However, a more specific
disadvantage is that of centralised control and lack of generality. Distributed and
parallel data mining techniques typically assume a “master” process that directs
the data mining task, therefore control is centralised at the master process and
consequently these systems lack robustness. Further, distributed and parallel
approaches tend to be directed at specific data mining applications and are diffi-
cult to generalise (because of the centralised control inherent to these systems).
MAS offer an alternative to handling large quantities of data by harnessing the
power of numbers of processors, with the added advantages that control is not
centralised and consequently such systems can be much more robust and versa-
tile.

A MAS is essentially a collection of software entities (agents) that are in-
tended to cooperate in some manner so as to undertake some processing task.
An important aspect of this cooperation is that the agents behave in an au-
tonomous manner; they negotiate with one another to complete a given task
rather than being directed to do so by some master process. The idea of adopt-
ing MAS technology for data mining is therefore an attractive one. Multi-agent



2 Chaimontree, Atkinson, Coenen

Data Mining (MADM) or Agent Assisted Data Mining (AADM) also allows for
distributed data to be mined effectively without the need to first move the data
into a data warehouse. This offers advantages where it is not easy or not possible
for data to be first collated. MADM also supports the creation of frameworks
that can be allowed to grow in an almost anarchic manner, agents can be easily
incorporated into such frameworks as long as they comply with whatever proto-
cols have been specified. The nature of these protocols remains a research issue.
A number of Agent Communication Languages (ACLs) have been proposed but
often these are difficult to fit to particular applications; it is therefore frequently
necessary to extend or partially replace the set of performatives that are specified
as part of these ACLs in order to taylor them to the specific scenario.

This paper describes an MADM framework, a set of agent communication
performatives and supporting protocol, directed at unsupervised learning (clus-
tering). The framework comprises four general categories of agent: user agents,
data agents, clustering agents, validation agents (there are also house keeping
agents, but these can be considered to be orthogonal to the task of data mining).
Some of these agents are persistent while others are spawned as required, and
have a lifetime equivalent to the duration of a given clustering task. To support
the desired MADM communicates a dedicated set of performatives have been
derived. A particular feature of the framework is that it supports negotiation
between agents. This negotiation process allows for the enhancement of clusters
once an initial cluster configuration has been established.

2 Previous Work

This section presents a review of some related work to that described in this
paper. The section commences with some general background to MADM and
then continues with a brief review of some parallel work on MAS clustering,
highlighting the distinction between this work and the proposed MAS clustering
approach.

There are two main paradigms for the interaction and integration between
agent and data mining [4]: (i) data mining-driven agents which is the use of
data mining to support the abilities of agents such as adaptation, coordination,
learning, reasoning, etc. and (ii) agent-driven data mining, commonly known
as Multi-Agent Data Mining (MADM), is the use of a collection of agents to
perform data mining tasks. Surveys of agent-based distributed data mining can
be found in [12, 17, 20].

PADMA [14] and PAPYRUS [2] are two of the earliest (late 1990s) reported
multi-agent clustering systems. These systems aimed to achieve the integration
of knowledge discovered from different sites with a minimum amount of net-
work communication and a maximum amount of local computation. PADMA
uses a facilitator (or coordinator) agent to direct interaction between the mining
agents. As such, it is based on a centralised architecture. PADMA agents are
used to access local data and perform analysis. The local clusters are collected
centrally to generate the global clusters. In addition, PADMA can be used to



A Multi-Agent Based Approach To Clustering 3

generate hierarchical clusters in the context of document categorisation. On the
other hand, PAPYRUS differs from PADMA in that it is a distributed clustering
system. PAPYRUS adopted a Peer-to-Peer model where both data and results
can be moved between agents according to given MAS strategies. A more recent
multi-agent clustering system is KDEC [16]. KDEC is a distributed density-
based clustering algorithm also founded on the Peer-to-Peer model. In KDEC
density estimation samples are transmitted, instead of actual data values so as to
preserve data privacy and minimize communication between sites. A multi-agent
clustering system directed at documents has been proposed in [24]; the objective
here is to improve the accuracy and the relevancy of information retrieval pro-
cesses. Kiselev et al. [15] proposed a clustering agent based system dealing with
data streams in distributed and dynamic environments whereby input data sets
and decision criteria can be changed at runtime (clustering results are available
at anytime and are continuously revised to achieve the global clustering).

The above systems use agents to facilitate data privacy and support dis-
tributed data clustering (mining). There is little reported work on an agent
based clustering systems that support intra-agent negotiation in order to refine
(enhance) cluster configurations. In [1] Agogino et al. proposed an agent-based
cluster ensemble approach to generate a best cluster configuration. Reinforce-
ment learning, to maximise a utility function with respect to the original cluster-
ing results, is used to achieve the desired best clustering. However, the approach
proposed in the paper operates in a different manner by using negotiation among
agents to improved the quality of clustering result. It is argued that this approach
harnesses the true power of agents.

3 The MADM Framework

The proposed MADM framework, as noted above, comprises four categories of
agent:

1. User agents.
2. Data agents.
3. Clustering agents.
4. Validation agents.

User agents are the interface between end users and the MADM environment.
The agents are responsible for obtaining the input from the user, spawning clus-
tering agents in order to perform the clustering task and presenting the derived
clustering result. To the above list of specific MADM agents we can also add a
number of housekeeping agents that are utilised within the MADM framework.

Data agents are the “owners” of data sources. There is a one-to-one relation-
ship between data agents and data sources. Data agents can be thought of as
the conduit whereby clustering agents can access data.

Clustering agents are the “owners” of clusters. Groups of clustering agents
can be though of as representing a clustering algorithm. With respect to this
paper the K-means and K-Nearest Neighbour (KNN) clustering algorithms have



4 Chaimontree, Atkinson, Coenen

been adopted; however, our collections of clustering agents could have been con-
figured to perform some alternative form of clustering (for example hierarchical
clustering). A number of clustering agents will be spawned, as required, by a
user agent in order to perform some clustering task. Thus, each clustering agent
represents a cluster and is responsible for selecting a record from a data set and
determining whether that record would belong to its cluster or not. The number
of clustering agents, therefore depends on the number of clusters (K). In the
case of the K-means algorithm the number of clusters is predefined; thus, by
extension, the number of clustering agents that will be spawned will also be pre-
defined. In the case of the KNN approach only one initial clustering agent will be
spawned; then, as the KNN algorithm progresses further clustering agents may
be created. Details concerning the operation of K-means and KNN with respect
to the proposed MADM framework will be presented in Section 5. Clustering
agents collectively have two principal functions: (i) initial generation of a “start”
cluster configuration, and (ii) cluster refinement.

Clustering 
Agent 1

DB

Clustering 
Agent 2

Clustering 
Agent 3

Clustering 
Agent N

User
Agent 

Validation
Agent Data

Agent 

User House Keeping 
Agents

Fig. 1. Proposed MADM Framework

Validation agents are a special type of agent that performs validation opera-
tions on clustering results. Each validation agent is the “owner” of a technique
for measuring the “goodness” of a given cluster configuration. In the current
system validation agents consider either cluster cohesion or cluster separation or
both.

A possible configuration for the proposed MADM framework, incorporating
the above, is presented in Figure 1. The Figure includes a User Agent, a collec-
tion of Clustering Agents, a Data Agent, a Validation Agent and some house-
keeping agents. The directed arcs indicate communication between agents. Note
that communication can be bidirectional or unidirectional and that the Data
Agent directly communicates with each Clustering Agent. Intra-communication



A Multi-Agent Based Approach To Clustering 5

between Clustering Agents takes follows a protocol that permits negotiation
about cluster exchange to take place.

The framework has been realised using the Java Agent Development Envi-
ronment (JADE) [3]. The house keeping agents provided by JADE, include the
AMS (Agent Management System) agent and the DF (Directory Facilitator)
agent. The AMS agent is responsible for managing and controlling the lifecycle
of other agents in the platform, whereas the DF agent provides a “yellow pages”
service to allow agents to register their capabilities.

4 Agent Communication within the Framework

The agents within our framework need to be able to communicate to carry
out their tasks. JADE provides a communication mechanism that makes use of
the FIPA ACL performatives [9]. However, as has been discussed previously in
[19], the FIPA ACL has limited applicability to dialogues not involving purchase
negotiations. Given that we wish to permit the agents in our system to engage in
dialogues about the exchange of items between cluster configurations, we need
a more expressive language to support this communication. As such, we have
defined and implemented a set of performatives to enable our agents to engage in
negotiations about the suitability of moving items/merging between clusters. At
the highest level, the performatives are categorised as follows: holding a dialogue;
performing the clustering task, negotiating about the movement of items between
clusters; informing others about the clustering results.

The performatives are defined axiomatically in terms of the pre-conditions
that must hold for an agent to be able to use the performatives and the post-
conditions that apply following the use of the performatives. The agents use
the performatives as part of a protocol that governs the exchange of information
between the agents. For reasons of space we do not include here the details of the
semantics of the performatives, but instead describe the communication protocol
that the agents follow when using the communication language. We indicate in
italics the performatives used at each stage.

A dialogue opens (mining request) which triggers a mining request to the
data, cluster and validation agents to join. Once the recipient agents have entered
the dialogue (join dialogue), the clustering task is performed (inform data). On
completion of the initial clustering, the agents evaluate the cohesion and seper-
ation of their clusters and as a result may broadcast to other agents that items
be moved between clusters (propose item move). The recipients of the proposal
can then reply by accepting (accept item move) or rejecting the proposed move
(reject item move). We also permit retraction of a proposed item move (retract
item move) if it is subsequently found to yield an unsuitable configuration. When
the items have been moved between clusters and the agents are happy to accept
the results, the clustering agents inform the validation agent of the new config-
urations (inform cluster). The overall cluster configuration is then sent to the
user agent (inform cluster configuration), after which moves are made for agents
to exit the dialogue (leave dialogue) and subsequently end it (close dialogue).



6 Chaimontree, Atkinson, Coenen

The way in which the reconfiguration of clusters happens is dependant upon
the clustering algorithm used, as will be described in the next section.

5 Operation

The operation of the proposed MADM clustering mechanism is described in
this section. As noted in the foregoing, Clustering Agents are spawned by a
User Agent according to the nature of the end user’s initial “clustering request”.
Fundamentally there are two strategies for spawning Clustering Agents: the K-
means strategy and the KNN strategy. In the K-means strategy the user pre-
specifies the number of clusters, K, that are required; in which case K Clustering
Agents are spawned. In the case of the KNN strategy the MADM process de-
cides how many clusters are required, thus initially only one Clustering Agent
is spawned (more may be generated later as required). The operation of the
proposed MADM clustering mechanism comprises two phases: a bidding phase
and a refinement phase. During the bidding phase Clustering Agents compete for
records by “bidding” for them in an “auction” setting where the Data Agent acts
as the auctioneer. For each record the Clustering Agent that poses the best bid
wins the record and includes it in its cluster (see Sub-sections 5.1 and 5.2). Dur-
ing the refinement phase each Clustering Agents tries to pass unwanted records
(records that no longer fit within its cluster definition) to other agents. This can
also be conceptualised in terms of an auction; each Clustering Agent acts as a
local auctioneer and tries to sell its unwanted records by inviting other cluster-
ing agents to bid for them. The operation of the refinement phase is entirely
independent of the spawning strategy adopted. However the operation of the
bidding phase differs according to the nature of the spawning strategy. The rest
of this section is organised as follows. In Sub-sections 5.1 and 5.2 the operation of
the biding phase with respect to the K-means and KNN spawning strategies are
described. Sub-section 5.3 then describes the operation of the refinement phase.

Table 1. Bidding phase founded on K-means Spawning Strategy

Phase I: Bidding using K-means

Input: Dataset (D = {d1, d2, · · · , dn}), the desired number of clusters (K)
Output: An initial clustering configuration

1. User Agent spawns K Clustering Agents (D = {c1, c2, · · · , cK})
2. Each Clustering Agent sends a data request to the indicated Data Agent
3. Data Agent sends first K records ({d1, d2, · · · , dK}) to the K Clustering Agents;

d1 to c1, d2 to c2, and so on.
4. Each Clustering Agent calculates its cluster centroid
5. ∀di ∈ D (i = K + 1 to n)
6. ∀cj ∈ K (j = 1 to K)
7. bidDistance = di − centroid cj
8. Allocate di to cj so as to minimise bidDistance



A Multi-Agent Based Approach To Clustering 7

Table 2. Bidding phase founded on KNN Spawning Strategy

Phase I: Bidding using KNN

Input: Dataset (D = {d1, d2, · · · , dn}), threshold t
Output: An initial clustering configuration

1. User Agent spawns a single Clustering Agent (c1)
2. K = 1
3. ∀di ∈ D (i = 2 to n)
4. ∀cj ∈ K (j = 1 to K)
5. bidDistance = nearest neighbour to di
6. IF ∃cj ∈ C such that bidDistance < t, allocate di to cj so as to minimise

bidDistance
7. ELSE K = K + 1, spawn Clustering Agent cK , allocate di to cK

5.1 Biding Phase founded on the K-means Spawning Strategy

The operation of the bidding process with respect to the K-means strategy is
presented in Table 1. K clustering agents are spawned to represent the clusters
(line 1). Each Clustering Agent is then allocated a single record, by the identified
Data Agent, and this record is used to represent the centroid of each cluster (lines
2 to 4). The clustering agents then bid for the remaining records in D (lines 5
to 8). In the current implementation the bidDistance equates to the “distance”
of di to the nearest neighbour of di in the cluster. At the end of the process
the K clustering agents will collectively hold an initial cluster configuration.
Note that, in common with standard K-means clustering, the “goodness” of this
initial configuration is very much dependent on the nature of the first K records
selected to define the initial clusters.

5.2 Biding Phase founded on the KNN Spawning Strategy

The biding phase founded on the KNN spawning strategy, as noted above, com-
mences with a single Clustering Agent (Ci). The operation of this bidding pro-
cess is presented in Table 2. Note that the process requires a nearest neighbour
threshold, t, as a parameter. The threshold is used to determine the “nearest
neighbour”. If the bidDistance is less than the threshold, this record in question
is allocated to the “closest” cluster (line 6). If there is no “closest” cluster a new
Clustering Agent is spawned (line 7). Note that the chosen value of t can signif-
icantly affect the number of Clustering Agents that are spawned. The authors
proposed a method to identify the most appropriate value for t in [5].

5.3 Refinement (Negotiation) Phase

The refinement process is presented in Table 3. The refinement process is driven
using individual cluster cohesion values and an overall cluster configuration



8 Chaimontree, Atkinson, Coenen

seperation value. We wish to generate a configuration which minimises the co-
hesion values and maximises the separation value. The refinement phase com-
mences (line 1) with each Clustering Agent determining its own cluster cohesion
value and the set of Clustering Agents collectively determining a separation
value. Cluster cohesion (the compactness of a cluster) can be determined, by
each clustering agent, simply by considering the distance between the members
of its cluster. In order to determine the degree of separation (the distinctiveness
of each cluster with respect to each other cluster) agents must communicate
with one another. For this latter purpose each Cluster Agent defines its clus-
ter in terms of its centroid and these values are then transmitted to all other
clustering agents so that an overall separation value can be determined. With
respect to the framework described in this paper the Within Group Average Dis-
tance (WGAD) and the Between Group Average Distance (BGAD) metrics were
adopted to determine cluster cohesion and separation respectively (alternative
methods could equally well have been adopted). These metrics are described in
Section 6. The cohesion and separation values are sufficient if the cohesion values
are below a specified cohesion threshold and the separation value is above a pre-
specified separation threshold. If this is not the case the cluster associated with
each Clustering Agent (ci) will be be split into two sub-clusters: a major sub-
cluster and a minor sub-cluster. The splitting is achieved by applying a standard
K-means algorithm (with K set to 2) to the records held by ci. The cluster with
the smallest number of records is then designated to be the minor sub-cluster
and these records are then put up for auction. The auction proceeds in a similar
manner to that described for the bidding phase founded on the K-means strat-
egy (see Sub-section 5.1) with the distinction that the WGAD value is used as
the bidDistance. This process repeats until satisfactory cohesion and separation
values are reached. Note (line 8) that on any given iteration, if a record cannot
be allocated to a class (because its WGAD value is too high) it is allocated to
an outlier cluster.

6 Cluster Configuration Metrics

In order for agents to bid for examples some appropriate metric must be adopted.
The process for deciding when and how to move a record also requires recourse to
some metric, as does deciding when to split and merge clusters. Essentially there
are three ways of measuring the “goodness” of a proposed cluster configuration.
We can measure intra-cluster cohesion, we can measure inter-cluster separation
or we can adopt both metrics. This section presents a review of some of the
metrics that may be used to measure the goodness of a cluster configuration and
the metrics used in the context of the work described in this paper.

In context of the work described the authors have adopted the Within Group
Average Distance (WGAD) [23] and the Between Group Average Distance (BGAD)
metrics:

WGAD =

∑i=|C|
i=1 dist(xi, c)

|C|
. (1)



A Multi-Agent Based Approach To Clustering 9

Table 3. Algorithm for refinement phase

Algorithm Phase II: Refinement

Input: a cluster
Output: an improved clustering result

1. For all clusters calculate cluster cohesion and separation values
2. DO WHILE there exists cluster cohesion value > cohesion threshold

or cluster separation value < separation threshold
3. ∀ci ∈ C (i = 1 toK)
3. Split a cluster ci into two sub-clusters, cmajor and cminor using K-means
4. ∀d ∈ cminor

5. ∀cj ∈ C (j = 1 to K and j 6= i)
6. bidDistance = WGADj (see Section 6)
7. IF ∃cj ∈ C such that bidDistance < cohesion threshold, allocate d

to cj so as to minimise bidDistance
8. ELSE Allocate d to “outlier cluster”
9. IF no “successful” bids end loop

BGAD =

i=K∑
i=1

dist(ci, c) . (2)

where |C| is the number of objects in a cluster (i.e. the size of a cluster), c is the
cluster centroid, and dist(xi, c) is the distance between object xi and the cluster
centroid. K is the number of clusters.

The lower the WGAD value the greater the cohesiveness of the cluster,
whereas the higher the BGAD value the greater the separation of the clusters
from one another. We wish to minimise the WGAD and maximise the BGAD
to achieve a best cluster configuration. The target WGAD value, the cohesion
threshold, is the average WGAD across the identified set of clusters multiplied
by a factor p (0 < p < 1.0). The target BGAD value, the separation threshold,
is the BGAD value for the initial cluster configuration multiplied by a factor q
(1.0 < q < 2.0). Our experiments indicate that values of p = 0.8 and q = 1.2
tend to produce good results.

7 Evaluation

To evaluate our approach we experimented with a selection of data sets taken
from the UCI machine learning repository [11]. We compared the operation of
our MADM approach with the well known K-means [18] and KNN [7] clustering
algorithms. In each case we recorded the accuracy of the clustering operation,
with respect to the known (ground truth) clustering. For the K-means algorithm
the number of desired clusters must be pre-specified in order to spawn an appro-
priate number of clustering agents. For this purpose we have used the number



10 Chaimontree, Atkinson, Coenen

Table 4. Comparison of the result accuracy provided by K-means task distribution
before and after cluster configuration improvement.

No. Data Set Num Accuracy Accuracy Cohesion Seperation
Classes Phase I Phase II threshold threshold

1 Iris 3 0.89 0.97 1.41 2.03
2 Zoo 7 0.76 0.78 1.94 1.95
3 Wine 3 0.68 0.70 204.95 296.73
4 Heart 2 0.55 0.59 33.87 106.28
5 Ecoli 8 0.76 0.80 0.42 0.54
6 Blood Transfusion 2 0.76 0.76 794.16 4582.29
7 Pima Indians 2 0.65 0.66 65.08 290.60
8 Breast cancer 2 0.79 0.85 283.16 1729.93

of classes given in the UCI repository. The t parameter used for KNN was se-
lected, for evaluation purposes, according to the nature of the input so as to
be compatible with the specified number of clusters. The results using K-means
and KNN are reported in Tables 4 and 5 respectively. The columns in the tables
describe: the number of identified clusters (classes), the accuracy after the ini-
tial Phase I clustering (i.e. the accuracy that would be achieved using K-means
or KNN without any further negotiation), the accuracy after refinement (Phase
II), and the calculated cohesion and separation thresholds. Accuracy values are
calculated as follow:

Accuracy =

∑i=K
i=1 Ci

m
(3)

Where K is the number of clusters, m is the number of records and Ci is the
size (in terms of the number of records) of the majority class for cluster i. Note
that the ground truth is only used here to evaluate the outcomes.

Table 5. Comparison of the result accuracy provided by KNN task distribution before
and after cluster configuration improvement.

No. Data Set Num t Accuracy Accuracy Cohesion Seperation
Classes Phase I Phase II threshold threshold

1 Iris 4 0.99 0.84 0.87 1.90 1.93
2 Zoo 7 2.24 0.82 0.73 2.42 2.55
3 Wine 3 164.31 0.65 0.65 281.49 282.98
4 Heart 2 115.29 0.55 0.60 21.96 62.51
5 Ecoli 7 0.42 0.64 0.67 0.38 0.26
6 Blood Transfusion 2 3500.83 0.76 0.76 1222.54 3090.16
7 Pima Indians 2 149.08 0.65 0.65 133.77 152.08
8 Breast cancer 2 826.75 0.75 0.79 205.51 847.98

From the tables it can be seen that in the majority of cases (shown in bold
font) agent negotiation serves to enhance the initial clustering, with the K-
means approach tending to outperform the KNN approach. Interestingly, in the



A Multi-Agent Based Approach To Clustering 11

case of the Zoo data set when using the KNN approach, negotiation had an
adverse effect; the research team conjecture that this is something to do with
the large number of classes (and hence the large amount of “splitting”) featured
in this data set. In the remaining cases the situation remained unchanged, either
because a best configuration had been identified immediately, or because the
WGAD and BAGD values could not be reduced). It should also be noted that
the number of class values given in Table 4 (column three) are the ground truth
values; the KNN approach does not always produce the correct number of classes
and hence this is why the accuracy values are not always as good as in the case
of the K-means approach.

8 Conclusion

A MADM framework to achieve multi-agent based clustering has been described.
A particular feature of the framework is that it enables agents to negotiate so
as to improve on an initial clustering. The framework can be used in a number
of ways. Two approaches were considered: K-means and KNN. Evaluation using
a number of datasets taken from the UCI repository indicates that in most
cases (and especially when using the K-means approach) a better clustering
configuration can be obtained as a result of the negotiation process.

References

1. Agogino, A., Tumer, K.: Efficient agent-based cluster ensembles. In: Proceedings
of the fifth international joint conference on Autonomous agents and multiagent
systems. pp. 1079–1086. AAMAS ’06, ACM, New York, NY, USA (2006)

2. Bailey, S., Grossman, R., Sivakumar, H., Turinsky, A.: Papyrus: A system for data
mining over local and wide area clusters and super-clusters. IEEE Supercomputing
(1999)

3. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE: a java agent develop-
ment framework. In: Bordini, R.H. (ed.) Multi-agent programming : languages,
platforms, and applications, p. 295. New York : Springer (2005)

4. Cao, L., Gorodetsky, V., Mitkas, P.A.: Guest editors’ introduction: Agents and
data mining. IEEE Intelligent Systems 24(3), 14–15 (2009)

5. Chaimontree, S., Atkinson, K., Coenen, F.: Best clustering configuration metrics:
Towards multiagent based clustering. In: Proc 6th Int. Conf. Advanced Data Min-
ing and Applications (ADMA’10). pp. 48–59. Springer LNAI (2010)

6. Coenen, F.P., Leng, P., Ahmed, S.: T-trees, vertical partitioning and distributed
association rule mining. pp. 513–516 (2003)

7. Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification tech-
niques. IEEE Computer Society Press, Las Alamitos, California (1991)

8. Dasilva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed
data mining and agents. Engineering Applications of Artificial Intelligence 18(7),
791–807 (2005)

9. FIPA: Communicative Act Library Specification. Tech. Rep. XC00037H, Foun-
dation for Intelligent Physical Agents (2001), available from the website
http://www.fipa.org.



12 Chaimontree, Atkinson, Coenen

10. Forman, G., Zhang, B.: Distributed data clustering can be efficient and exact.
ACM SIGKDD Explorations Newsletter 2, 34–38 (2000)

11. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

12. Giannella, C., Bhargava, R., Kargupta, H.: Multi-agent systems and distributed
data mining. vol. 3191, pp. 1–15 (2004)

13. Kargupta, H., Chan, P. (eds.): Advances in Distributed and Parallel Knowledge
Discovery. MIT Press, Cambridge, MA, USA (2000)

14. Kargupta, H., Hamzaoglu, I., Stafford, B.: Scalable, distributed data mining using
an agent based architecture. In: Proceedings the Third International Conference
on the Knowledge Discovery and Data Mining. pp. 211–214. AAAI Press (1997)

15. Kiselev, I., Alhajj, R.: A self-organizing multi-agent system for online unsupervised
learning in complex dynamic environments. In: Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence. pp. 1808–1809. AAAI Press (2008)

16. Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The KDEC
scheme. In: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in
Computer Science). vol. 2586, pp. 104–122 (2003)

17. Klusch, M., Lodi, S., Moro, G.: The role of agents in distributed data mining: Issues
and benefits. In: IAT ’03: Proceedings of the IEEE/WIC International Conference
on Intelligent Agent Technology. p. 211. IEEE Computer Society, Washington, DC,
USA (2003)

18. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability. pp. 281–297 (1967)

19. McBurney, P., Parsons, S., Wooldridge, M.: Desiderata for agent argumentation
protocols. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002). pp. 402–409. ACM Press: New York, USA, Bologna, Italy (2002)

20. Moemeng, C., Gorodetsky, V., Zuo, Z., Yang, Y., Zhang, C.: Data Mining and
Multi-agent Integration, chap. Agent-Based Distributed Data Mining: A Survey,
pp. 47–58 (2009)

21. Park, B.H., Kargupta, H.: Distributed data mining: Algorithms, Systems, and Ap-
plications. In: Data Mining Handbook. pp. 341–358. IEA (2002)

22. Provost, F.: Distributed data mining: Scaling up and beyond. In: In Advances in
Distributed and Parallel Knowledge Discovery. pp. 3–27. MIT Press (1999)

23. Rao, M.: Clustering analysis and mathematical programming. Journal of the Amer-
ican statistical association 66(345), 622–626 (1971)

24. Reed, J.W., Potok, T.E., Patton, R.M.: A multi-agent system for distributed clus-
ter analysis. In: Proceedings of Third International Workshop on Software En-
gineering for Large-Scale Multi-Agent Systems (SELMAS’04) W16L Workshop -
26th International Conference on Software Engineering. pp. 152–155. IEE, Edin-
burgh,Scotland, UK (2004)

25. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. vol. 1, pp. 629–640 (2004)

26. Zaki, M.J., Ho, C.T. (eds.): Large-Scale Parallel Data Mining, vol. 1759. Springer
Verlag (2000)

27. Zaki, M.J., Pan, Y.: Introduction: Recent developments in parallel and distributed
data mining. Distributed Parallel Databases 11, 123–127 (2002)



Data Cloud for Distributed Data Mining via Pipelined 
MapReduce 

Wu Zhiang, Cao Jie, Fang Changjian 

Jiangsu Provincial Key Laboratory of E-business 

Nanjing University of Finance and Economics, Nanjing, P.R. China 

e-mail: zawuster@gmail.com, caojie690929@163.com, jselab1999@163.com  

Abstract—Distributed data mining (DDM) which often applies autonomous agents 
is a process to extract globally interesting associations, classifiers, clusters, and 
other patterns from distributed data. As datasets double in size every year, moving 
the data repeatedly to distant CPUs brings about high communication cost. In this 
paper, data cloud is utilized to implement DDM in order to transform moving the 
data into moving computation. MapReduce is a popular programming model for 
implementing data-centric distributed computing. Firstly, a kind of cloud system 
architecture for DDM is proposed. Secondly, a modified MapReduce framework 
called pipelined MapReduce is presented. We select Apriori as a case study and 
discuss its implementation within MapReduce framework. Several experiments 
are conducted at last. Experimental results show that with moderate number of 
map tasks, the execution time of DDM algorithms (i.e., Apriori) can be reduced 
remarkably. Performance comparison between traditional and our pipelined Ma-
pReduce has shown that the map task and reduce task in our pipelined MapReduce 
can run in a parallel manner, and our pipelined MapReduce greatly decreases the 
execution time of DDM algorithm. Data cloud is suitable for a multitude of DDM 
algorithms and can provide significant speedups. 

Keywords: distributed data mining (DDM); Cloud Computing; MapReduce; Apri-
ori; Hadoop 

1. Introduction 

The last decade has witnessed the successful development of agents and data min-
ing techniques which have been applied to a variety of domains — marketing, 
weather forecasting, medical diagnosis, and national security [1]. As data mining 
become more pervasive, the amount of data is increasing larger. The great amount 
of data is often partitioned into many parts and distributed in many sites. Distri-
buted data mining (DDM) is a process to extract globally interesting associations, 



2  

classifiers, clusters, and other patterns from distributed data, where data can be par-
titioned into many parts either vertically or horizontally [2,3].  

Agents are scatted to many sites for handling distributed problem-solving, co-
operation and coordination. A high performance DDM system is designed to con-
trol agents and exploit the synergy of agents. Traditional DDM system has been de-
signed to take advantage of powerful, but shared pools of CPUs. Generally 
speaking, data is scattered to the processors, the computation is performed using a 
message passing, the results are gathered, and the process is repeated by moving 
new data to the CPUs [4]. As CPU cycles become cheaper and data sets double in 
size every year, the main challenge for efficient scaling of applications is the loca-
tion of the data relative to the available computational resources - moving the data 
repeatedly to distant CPUs is becoming the bottleneck [5].  

On the basis of cluster computing, P2P, Grid computing and Web 2.0, cloud 
computing rapidly emerges as a hot issue in both industrial and academic circles [6]. 
Cloud computing has been adhering to the belief that moving computation is 
cheaper than moving data since its birth. Therefore, cloud computing is suitable for 
solving computation-intensive and data-intensive problems in DDM. MapReduce 
has emerged as an effective method to implement the data-centric belief held by 
cloud computing. MapReduce has been applied to a multitude of domains for data 
processing, such as machine learning, satellite data processing, PageRank, scientif-
ic data analysis, etc. Since traditional MapReduce stores all middle results in file 
system and most of DDM applications produce a large amount of middle results, 
preserving storage for temporary files is extremely expensive and inefficient. 
Moreover, in traditional MapReduce framework, the reduce task does not start run-
ning until all map tasks are finished. This sequential execution manner between 
map task and reduce task increases the job completion time. 

Motivated by the above remarks, this paper proposes a kind of data cloud sys-
tem architecture for DDM. We make an improvement in the traditional MapReduce 
framework, namely, pipelined MapReduce framework. The dataflow and the fault 
tolerance strategy of pipelined MapReduce are addressed in detail. We then discuss 
the implementation of Apriori algorithm, which is a well-known algorithm for tack-
ling this problem, in MapReduce framework. At last, experimental evaluation of 
our work is presented. 

2. Related Work 

In 2007 IBM and Google first proposed cloud computing. Currently, providers 
such as Amazon, Google, Salesforce, IBM, Microsoft and Sun Microsystems have 
begun to establish new data centers for hosting cloud computing applications in 
various locations around the world to provide redundancy and ensure reliability in 
case of site failures [7]. Data cloud, which is proposed by R. Grossman and Y. Gu 
in 2008, refers to a class of cloud systems that provide resources and/or data ser-
vices over the Internet [4].  
The Google’s MapReduce programming model, which serves for processing large 
data sets in a massively parallel manner, is a representative technique in cloud 
computing [8]. Hadoop developed by the Apache Software Foundation is an open 
source MapReduce framework [9].  The key components of Hadoop are HDFS 



3 

(Hadoop Distributed File System) and MapReduce framework. HDFS is a distri-
buted file system designed to run on hardware, and it also manages all files scat-
tered in nodes and provides high throughput of data access. MapReduce provides 
a programming model for processing large scale datasets in distributed manner. 
Jobs submitted to Hadoop consist of a map function and a reduce function. Ha-
doop breaks each job into multiple tasks. Firstly, map tasks process each block of 
input (typically 64MB) and produce intermediate results, which are key-value 
pairs. These are saved to disk. Next, reduce tasks fetch the list of intermediate re-
sults associated with each key and run it through the reduce function, which pro-
duces output.  Hadoop is selected as core middleware in data cloud proposed in 
this paper. 

 “Market-Basket Analysis” problem, a classic DDM application, is taken as a 
case study. The supermarket owners may be interested in finding associations 
among its items purchased together at the check-stand [10]. An example associa-
tion rule could be that, “90% of customers buying product A also buy product B”.  
Apriori is a seminal algorithm for finding frequent itemsets using candidate gener-
ation [11]. It is characterized as a level-wise complete search algorithm using anti-
monotony of itemsets, “if an itemset is not frequent, any of its superset is never 
frequent”.   

Since Apriori is time consuming and the transaction database is currently dis-
tributed in many sites, it is necessary to apply parallel and distributed methods to 
Apriori. However, the major difficulty lies in that computing support of an itemset 
should scan the whole database, but each node only stores a split of the whole da-
tabase. To tackle this difficulty, two kinds of methods have been presented. The 
first method takes pre-treatment on database to decompose the database into sev-
eral fragments, and then each node could run totally independently on each frag-
ment of database to compute frequent itemsets using a classical sequential algo-
rithm of Apriori. At last, final results are obtained from these nodes. Although V. 
Fiolet has suggested three fragmentation methods [10], these methods are time 
consuming and none of them can be applied to all databases. Furthermore, the pre-
processing on database leads to restore data, and data should be moved among 
clusters (or PC servers), which violates the essence of cloud computing—moving 
computation is cheaper than moving data. The second method is called CountDi-
stribution which is incorporated in this paper. In cloud environment, assuming that 
the database is initially distributed in a horizontal split, namely non-overlapping 
subsets of records are randomly stored in clusters (or PC servers). Each node can 
thus independently get partial supports of the candidates from its local database 
fragmentation. Reducer then executes reduce function to compute the sum of sup-
ports with the same key. Note that only the partial counts need to be communi-
cated, rather than the records of the database. Since the partial counts are 
represented as <key, value> pairs in MapReduce, this method can minimize 
communication. 

 



4  

3. Data Cloud System Architecture for DDM 

Based on campus grid environments we have designed and implemented 
layered data cloud system architecture as figure 1 depicted. Physical cloud re-
sources along with core middleware form the basis of the system. The user-level 
middleware aims to provide PaaS (platform as a service) capabilities. The top 
layer focuses on application services by making use of services provided by the 
lower layer services. Emerging DDM applications such as social security, enter-
prise, stock markets and scientific workflows can operate at the highest layer of 
the architecture. The representative data mining algorithms used by DDM applica-
tions such as Apriori, PageRank, kNN and k-Means can be implemented in data 
cloud system, and some of them even can be implemented in MapReduce frame-
work to improve their performance. 
• System level: Physical resources integrated by data cloud system consist of two 
clusters each with 32 blade servers and several PC servers. The total number of 
CPU reaches 140. 
• Core middleware: This layer is comprised of two sub-layers: VM (virtual ma-
chine) and Hadoop. VM management and deployment transparently virtualizes 
these servers and shares their capacity among virtual instances of servers. These 
VMs are isolated from each other, which aid in achieving fault tolerant behavior 
and isolated security context. On the top of VMs, Hadoop framework is deployed, 
on which Java programs based on MapReduce model can be executed. All data are 
stored on HDFS. The master node called JobTracker is the point of interaction 
where the user submits jobs, along with location of the input data on the HDFS. 
The JobTracker assigns and distributes the map and reduce tasks to the TaskTrack-
ers which assumes the role of worker nodes. The TaskTracker performs the task 
and updates the status to the JobTracker. In the MapReduce framework of this ar-
chitecture, pipeline is added between Mapper and Reducer. The new MapReduce 
framework is called Pipelined MapReduce framework which will be discussed in 
the next section. 

Security M
anagem

ent

R
esource M

onitoring

 
Figure 1.  Data cloud system architecture for DDM 



5 

• User-level middleware: This layer provides Web 2.0 programming paradigms 
such as JavaScript with AJAX, Ruby with Ruby on Rail, and PHP etc. Users can 
utilize Web APIs to create novel browser-based applications. This layer also pro-
vides the programming environments and composition tools that facilitate the crea-
tion, deployment, and execution of applications in clouds. 
• Security management: This module provides authentication and permission con-
trol for cloud users. Single sign-on is adopted by cloud system architecture pro-
posed in this paper. Cloud user obtains long-term certificate from Certificate Au-
thority (CA), and user can encrypt this long-term certificate to generate temporary 
proxy certificate which is used to identify user by data cloud. The deadline of proxy 
certificate is often short (i.e. 12 hours in our data cloud) to decrease the harm 
created by various network attacks. 
• Resource monitoring: This module monitors all resources in data cloud including 
clusters, servers, software and jobs.  Chukwa, a component of Hadoop, is an open 
source data collection system for monitoring large distributed systems. Chukwa is 
built on top of the HDFS and MapReduce framework, and it also includes a flexi-
ble and powerful toolkit for displaying, monitoring and analyzing results to make 
the best use of the collected data. 

4. Pipelined MapReduce Framework 

In the data cloud system proposed in this paper, we make an improvement in 
the traditional MapReduce framework, namely, Pipelined MapReduce Frame-
work. In traditional MapReduce framework, the output of each Mapper is ma-
naged by the OutputCollector instance and stored in an in-memory buffer. The 
OutputCollector is also responsible for spilling this buffer to disk (i.e., HDFS in 
Hadoop) when the output reaches capacity of memory. The execution of a reduce 
task includes three phases: shuffle phase, sort phase and reduce phase. The shuffle 
phase fetches intermediate results from each Mapper. However, a reducer cannot 
fetch the output of a mapper until JobTracker informs that the mapper is finished. 
The output produced by Reducers may be required by the next map step, which is 
also written to HDFS. There are at least two disadvantages within the traditional 
MapReduce framework. 

(1) HDFS should maintain enough storage for temporary files. Since each file 
has three copies in HDFS in default manner and most of DDM applications will 
produce a large amount of middle results, preserving storage for temporary files is 
extremely expensive and inefficient. 

(2) Because Mapper and Reducer execute in a serial manner, and both Mappers 
and Reducers should spend plenty of time in reading middle data from HDFS, the 
execution speed of the traditional MapReduce framework is very slow. 

To solve these above-mentioned disadvantages, pipeline is added between 
Mapper and Reducer. Middle data is stored in pipeline files and only final results 
are written to HDFS. Moreover, when the Mapper is executing, it simultaneously 
pushes middle data to Reducer via pipeline. Reducers then pull the middle data 



6  

synchronously. Pipelined MapReduce Framework makes Mappers and Reducers 
execute in a parallel manner and also enhance the robustness of the fault tolerance. 
A. The dataflow of the Pipelined MapReduce framework 

 Figure 2 compares the dataflow between traditional and pipelined MapReduce 
framework. The dataflow on the right depicts the approach utilized by the pipe-
lined MapReduce framework. Each Mapper obtains its input data from HDFS, and 
when the Mapper is executing, it simultaneously pushes middle data to pipeline. It 
is noted that when the intermediate data exceeds the memory size, the interme-
diate data should also be written to HDFS. Each Reducer synchronously pulls data 
from pipeline and starts running. The middle data produced by the Reducer, which 
may be required by the next map step, is also pushed to pipeline. Final result pro-
duced by the Reducer is written to HDFS.  

The precondition that reducers and mappers can run concurrently is that the re-
duce function of the application is incrementally computable. The applications ex-
ist commonly, such as sorting, graph algorithms, Bayes classification, TF-IDF 
(Term Frequency – Inverse Document Frequency), Apriori, and so on. 

The pipeline between Mapper and Reducer is implemented through utilizing 
TCP socket. Each Reducer contacts every Mapper upon initiation of the job, and 
opens a socket which will be used to pipeline the output of the map function. As 
each map output is produced, the Mapper determines which partition the record 
should be sent to, and immediately sends it via the appropriate socket. A Reducer 
accepts the pipelined data that it has received from each Mapper and then stores it 
an in-memory buffer. The Reducer may start running on the basis of these partial 
data. Once the Reducer learns that all Mappers have completed, it continues to 
perform the remaining task and writes the output to pipeline or to HDFS. 

One practical problem in the above-mentioned method is that when the number 
of mappers becomes large, each reducer should maintain a large number of TCP 
connections. To reduce the number of concurrent TCP connections, we restrict the 
number of connections with mappers at once. The reducer obtains data from the 
remaining map tasks in the traditional Hadoop manner. 

Overflow

Overflow

 
Figure 2.  The dataflow comparison between traditional and pipelined MapReduce framework 



7 

B. The fault tolerance strategy of the Pipelined MapReduce framework 
It is known that the role of cluster node is divided into master and worker. Both 

mappers and reducers are worker nodes. Although Hadoop could handle master 
failure, the case unlikely exists [12]. The master detects worker failure via period-
ic heartbeats. New fault tolerance strategy is implemented in the pipelined Ma-
pReduce framework. The reducer treats the output of a pipelined map task as “ten-
tative” until the JobTracker informs the reducer that the mapper has committed 
successfully. The reducer merges together spill files generated by the same un-
committed mapper. Log is added to reducer to record which mapper produced 
each pipelined spill file. Thus, if a mapper fails, each reducer can ignore any tenta-
tive spill file produced by the failed map attempt. The JobTracker will then restart 
a new mapper. 

If a Reducer fails and a new copy of the task is started, all the input data that 
was sent to the failed reducer must be sent to the new reducer. To prevent mappers 
from discarding their output after sending it to pipeline, mappers should retain 
their output data until the entire job is completed successfully. This allows the 
output of mappers to be reproduced if any reducer fails. 

5. Case Study 

Finding frequent itemsets from a transaction database and deriving association 
rules is called “Market-Basket Analysis” problem which is one of the most popular 
data mining problems. This section takes “Market-Basket Analysis” problem as a 
case study. Although “Market-Basket Analysis” problem has been described in 
many papers, to make it clear and easy for understanding, we briefly describe it. 

Given a transaction database D, the number of its records is denoted as |D|. We 
assume there are n distinct items in D, denoted as I={i1,i2,…,in}.  

Definition 1 support: The support of an itemset X is the percentage of records 
in the database D, which contains this itemset X. The support measures how inter-
esting the itemset is, that is, its frequency in the database. The support of the item-
set X can be calculated by equation (1). 

D(X)support(X)=
|D|

                                 (1) 

where D(X) is the number of records containing itemset X in database D, and 
|D| is the total number of records of database D. The “Market-Basket Analysis” 
problem is to find out all association rules whose support is greater than the given 
thresholds. The support threshold is defined by user.  
A. Apriori algorithm within the framework of MapReduce 

A well-known algorithm for the computation of frequent itemsets is the Apriori 
algorithm which is used as follows: 

• to compute the supports of items, and then to identify frequent items (fre-
quent 1-itemsets) 

• to generate candidate 2-itemsets, to count their supports, and then to identi-
fy frequent 2-itemsets 



8  

• to generate candidate 3-itemsets, to count their supports, and then to identi-
fy frequent 3-itemsets, and so on… 

To compact the search space of Apriori, the guiding principle “every subset of a 
frequent itemset has to be frequent” is utilized.  

As section 2 described, this paper incorporates CountDistribution method to 
implement Apriori within the framework of MapReduce. In cloud environment, 
assuming that the database is initially distributed in a horizontal split, namely non-
overlapping subsets of records are randomly stored in clusters (or PC servers).  
These nodes which store the splits of the database execute map function and be-
come Mappers. A program implementing the map function of Apriori is sent to all 
mappers. Each mapper can thus independently get partial supports of the candi-
dates from its local database fragmentation. All partial results from mappers are 
collected to one or several nodes called Reducer(s). And then, Reducer executes 
reduce function to compute the sum of supports with the same key and global fre-
quent itemsets Fk-1 are obtained. Note that only the partial counts need to be com-
municated, rather than the records of the database. Since the partial counts are 
represented as <key, value> pairs in MapReduce, this method can minimize com-
munication. Figure 3 depicts the MapReduce framework of Apriori. 

Since Apriori algorithm utilizes iteration to obtain all frequent itemsets, it 
needs to scan database at most n+1 times when the maximum size of frequent 
itemsets is set at Fn. Therefore, mappers should be started at most n+1 times. 
Within the framework of MapReduce, though reduce operation also can be run in 
parallel manner, reducer of Apriori is run in a single node because the reduce op-
eration of Apriori only needs to carry out simple count operation. The pseudocode 
of map and reduce function executed by mappers and reducer respectively for the 
Apriori is as follows. 

 
Figure 3.  MapReduce framework of Apriori 



9 

The map function for the Apriori
Input: the split of database and the last globle frequent itemset Fk-1 
Output: <key, value> pairs, where key is itemset and value is its corresponding support 
1: Ck←AprioriGen (Fk-1) 
2: for each element c in Ck 
3:  scan the split of database and count support for c 
4:  generate pair <c,c.support> 
5: end for 
6: return ∪<c,c.support> 

 
The reduce function for the Apriori 
Input: < c, c.support > pairs generated by Mapper nodes 
Output: the globle frequent itemset Fk 
1: for all <c, c.support> pairs with same c 
2:  compute the sum of their support 
3:  denote the sum as <c, sum_support> 
4: end for 
5: Fk←{all <c, sum_support> pairs | c.sum_support≥min_sup} 
6: return ∪Fk 

 
In the Map function, AprioriGen function generates new candidates denoted as 

Ck based on the last global frequent itemset Fk-1. Each mapper scans its split of da-
tabase and counts support for all elements in Ck. In the Reduce function, all 
<key,value> pairs from all mappers are grouped by key and supports of the pairs 
with the same key are added. The pairs whose sum of support is greater than thre-
shold are selected into the current global frequent itemset Fk. 

This case study indicates that the MapReduce framework provided by data 
cloud system architecture exhibits good scalability to other DDM algorithms. We 
needn’t take any pre-treatment on database and needn’t move data among clusters. 
Only map function and reduce function of DDM algorithms need to be provided. 
Data cloud can automatically move programs containing map function to a multi-
tude of nodes storing the input data. 
B. Performance evaluation 

We have built a data cloud system based on the architecture shown in figure 1. 
Machines integrated by this data cloud system consist of two clusters each with 32 
blade servers in SEUGrid (Southeast University Grid) and an army of PC servers in 
our laboratory. Two VMs are created in each PC servers with 2.03GH and 1GB of 
RAM. Two clusters in SEUGrid utilize Red Hat Enterprise 4.0 and all VMs in PC 
servers utilize Fedore Core 11, and on the top of Linux, Hadoop 0.20.1 is installed 
and configured as core middleware.  

The transaction database contains two attributes: one is the transaction identifier 
and the other is the list of items.  

In the first experiment, we investigate the effect of the number of mappers on 
the execution time to obtain all frequent itemsets utilizing Apriori. A transaction 
database is created with 100,000 records and 500 kinds of items. The transaction 
database is split on average according to the number of Mapper nodes. In other 
words, equal number of records is stored in all mapper nodes. Figure 4 shows the 
effect of number of mappers on execution time. It indicates that with the increase 
of the number of mappers, the execution time decreases. At the beginning, the ex-



10  

ecution time decreases dramatically with the increase of the number of mappers. 
When the number of mappers reaches a threshold (i.e. 16 in figure 4), the execution 
time varies moderately or even increases slightly (i.e. 24, 28 and 32 in figure 4). 
The reason for the above-mentioned phenomenon is that with the increase of map-
pers, the number of records stored in each mapper node decreases. When the num-
ber of records reduce to a threshold, the time of scanning the database is hard to 
further decline.  Therefore, the time of Reducer and communications is rising, thus 
playing the major role in the whole execution time. 

The second experiment compares pipelined MapReduce with traditional Ma-
pReduce. We analyze map progress and reduce progress in an iteration of Apriori 
(i.e. computing Fk based on Fk-1). Hadoop provides support for monitoring the 
progress of task executions. As each task executes, it is assigned a progress score 
in the range [0,1], based on how much of its input that the task has consumed. 
There are 80,000 records split on 8 mappers including 500 kinds of items. The first 
iteration computing F1 based on the input from HDFS is selected as a statistical ob-
ject. Figure 5 describes the progress score of map task and reduce task along with 
the timelapse. The map tasks in both traditional and pipelined MapReduce are same 
for their input is read from HDFS. There exists obviously difference between the 
progress of traditional reduce and the progress of pipelined reduce. Traditional re-
duce task starts after the map task and it consumes more time than pipelined reduce 
task. However, pipelined reduce task starts immediately after the map task starts, 
and they are running in a parallel manner (i.e. from 0s to 10s). These results sug-
gest that pipelined MapReduce framework can substantially reduce the response 
time of a job. 

4 8 12 16 20 24 28 32
400

500

600

700

800

900

1000

1100

1200

1300

E
xe

cu
tio

n 
tim

e 
(s

)

Number of Mappers

0 20 40 60 80 100
0

20

40

60

80

100

P
ro

gr
es

s(
%

)

Time (s)

 Map
 Traditional Reduce
 Pipelined Reduce

 

Figure 4.  Effect of number of Mappers  
on execution time 

Figure 5.  Comparison of map and reduce task 
completion times between traditional and 

pipelined MapReduce 
 
In the third experiment, we implement other applications in Hadoop and inves-

tigate the speedup as we scale the number of processor cores. The following are 
brief descriptions of the selected applications: 

 WordCount: It counts the frequency of occurrence for each word in a set 
of files. Mappers process different sections of the input files and return interme-
diate data that consist of a word (key) and a value of 1 to indicate that the word 
was found. The reducers add up the values for each word (key). 



11 

 Kmeans: It implements the popular Kmeans algorithm to group a set of 
input data points into clusters [10]. Since Kmeans is iterative, in each iteration, 
mappers find the distance between each point and each mean and assign the point 
to the closest cluster. For each point, we  emit the cluster ID as the key and the da-
ta vector as the value. Reducers gather all points with the same cluster ID, and 
finds their mean vector. 

 Reverse Index: It traverses a set of HTML files, extracts all links, and 
compiles an index from links to files. Each mapper parses a collection of HTML 
files. For each link it finds, it outputs an intermediate pair with the link as the key 
and the file info as the value. The reducer combines all files referencing the same 
link into a single linked-list. 

We evaluate the speedup of four algorithms as we scale the number of proces-
sor cores used in data cloud. The concept of speedup stems from high-
performance computing (HPC). Speedup is defined as the ratio of the execution 
time of an algorithm on one node to the execution time of the same algorithm on 
several nodes. Figure 6 presents the experimental result. Data cloud provides sig-
nificant speedups for all processor counts and all algorithms. With a large number 
of cores, the speedup of some applications cannot be improved further (i.e., 
WordCount, Kmeans, Apriori), where the reason is similar to the analysis in the 
first experiment. The speedups of Kmeans and Apriori are smaller than other algo-
rithms, because they contain iteration process. Fitting iterative algorithms into the 
MapReduce framework leads to major overheads compared to sequential code and 
reduces the overall speedup. 

 
Figure 6.  Speedup of four algorithms with increase of processor cores 

6. Conclusion 

The increasing amount of data has led to concerns regarding the execution effi-
ciency of DDM. The data-centric belief held by cloud computing can be utilized 
to enhance the execution efficiency of DDM. In this paper, we propose a kind of 
data cloud system architecture for DDM. Pipelined MapReduce framework is pre-
sented and implemented in data cloud. We then take Apriori algorithm as a case 



12  

study and implement Apriori within the framework of MapReduce. This case 
study indicates that data cloud system architecture proposed in this paper exhibits 
good scalability to various DDM algorithms. The fragmentation (or pre-treatment) 
methods of database needn’t to be considered. Users should only provide map 
function and reduce function of DDM algorithms to data cloud. Data cloud can 
move computation in terms of the initial data location.  

We conduct several experiments in order to evaluate our work. The experimen-
tal results indicate that the execution time can be reduced remarkably with mod-
erate number of mappers. Performance comparison between traditional MapRe-
duce and our pipelined MapReduce has shown that: (1) the map task and reduce 
task in our pipelined MapReduce can run in a parallel manner; (2) our pipelined 
MapReduce greatly decreases the execution time of DDM algorithm. Data cloud is 
suitable for a multitude of DDM algorithms and can provide significant speedups. 

Acknowledgments This research is supported by National Natural Science Foundation of China 
under Grants No.71072172, the program for New Century Excellent Talents in university under 
Grants No.NCET-07-0411, the Natural Science Foundation for key basic research of the Jiangsu 
Higher Education Institutions of China under Grants No.07KJA52004, Jiangsu Provincial Key 
Laboratory of Network and Information Security under Grants No. BM2003201and the joint re-
search for Forward Looking Production, Teaching & Research in Jiangsu under Grants 
No.by20091005. 
 
References 
[1] L. Cao, V. Gorodetsky, P.A. Mitkas. Agent Mining: The Synergy of Agents and Data Min-

ing. IEEE Intelligent Systems, Vol. 24, Issue 3, May 2009, pp. 64-72 
[2] X. Yi, Y. Zhang. Privacy-preserving naïve Bayes classification on distributed data via 

semi-trusted mixers. Information Systems, Vol. 34, Issue 3, May 2009, pp. 371-380 
[3] L. Cao. Domain-Driven Data Mining: Challenges and Prospects. IEEE Transactions on 

Knowledge and Data Engineering, Vol. 22, No. 6, pp. 755-769, June 2010 
[4] R. Grossman and Y. Gu. Data mining using high performance data clouds: experimental 

studies using sector and sphere. Proceeding of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. pp. 920-927, 2008 

[5] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu. The Importance of Data Locality in Distri-
buted Computing Applications. NSF Workflow Workshop 2006 

[6] Above the clouds: A Berkeley View of Cloud computing. UCB/EECS-2009-28 
[7] Buyya R, Yeo CS, Venugopal S, Broberg J and Brandic I. Cloud computing and emerging 

it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future 
Generation Computer Systems, 25(6):599–616, 2009 

[8] L. Ralf. Google’s MapReduce programming model — Revisited. The Journal of Science 
of Computer Programming. Vol. 70, Issue 1, pp. 1-30, January, 2008 

[9] Hadoop. The Apache Software Foundation. http://hadoop.apache.org/core 
[10] V. Fiolet and B. Toursel. Distributed Data Mining. Scalable Computing: Practice and Ex-

perience. Vol. 6, No. 1, pp. 99-109, 2005 
[11] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. Mclachlan, A. Ng, 

B. Liu, P.S. Yu, Z. Zhou, M. Steinbach, D.J. Hand and D. Steinberg. Top 10 algorithms in 
data mining. Knowledge and Information Systems. Vol. 14, No. 1, pp. 1-37, 2008 

[12] T. White. Hadoop: The Definitive Guide. O’ Reilly Publishers, 2010 




