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Preface 
Complex Automated Negotiations have been widely studied and are 

becoming an important, emerging area in the field of Autonomous Agents and 

Multi-Agent Systems.  In general, automated negotiations can be complex, 

since there are a lot of factors that characterize such negotiations. These factors 

include the number of issues, dependency between issues, representation of 

utility, negotiation protocol, negotiation form (bilateral or multi-party), time 

constraints, etc.  Software agents can support automation or simulation of such 

complex negotiations on the behalf of their owners, and can provide them with 

adequate bargaining strategies. In many multi-issue bargaining settings, 

negotiation becomes more than a zero-sum game, so bargaining agents have an 

incentive to cooperate in order to achieve efficient win-win agreements. Also, in 

a complex negotiation, there could be multiple issues that are interdependent. 

Thus, agent's utility will become more complex than simple utility functions. 

Further, negotiation forms and protocols could be different between bilateral 

situations and multi-party situations. To realize such a complex automated 

negotiation, we have to incorporate advanced Artificial Intelligence technologies 

includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs, 

predicting and learning methods. Applications could include e-commerce tools, 

decision-making support tools, negotiation support tools, collaboration tools, 

etc. We solicit papers on all aspects of such complex automated negotiations in 

the field of Autonomous Agents and Multi-Agent Systems, including but not 

limited to: 

- Complex Negotiations 

- Multi-Issue Negotiations 

- Concurrent Negotiations 

- Multiple Negotiations 



- Sequential Negotiations 

- Bilateral Negotiations 

- Multilateral negotiation 

- Negotiation and Coordination Mechanisms 

- Negotiation under Asymmetric Information 

- Large Scale Negotiation 

- Matchmaking and Brokering Mechanisms 

- Coordination for Local and Global Consistency  

- 2-sided Matching 

- Predicting Opponent's Behaviors in Negotiation. 

- Utility models and Preference models 

- Complexity aspects of Multi-issue negotiation 

- Negotiation Simulation 

- Negotiations in Social Networks 

- Preference Elicitation 

- Practices and Applications 

These issues are being explored by researchers  from different 

communities in Autonomous Agents and Multi-Agent systems. They are, for 

instance, being studied in agent negotiation, multi-issue negotiations, auctions, 

mechanism design, electronic commerce, voting, secure protocols, 

matchmaking & brokering, argumentation, and co-operation mechanisms. The 

goal of this workshop is to bring together researchers from these communities 

to learn about each other's approaches, form long-term collaborations, and 

cross-fertilize the different areas to accelerate progress towards scaling up to 

larger and more realistic applications. 

Out of the 16 paper submissions, 9 papers were finally selected as full 

papers and 6 papers were selected as short papers. Each paper was carefully 

reviewed by three reviewers, who are considered as experts in the topic.  

From 2010, ACAN is tightly cooperating with ANAC (Automated 

Negotiating Agents Competition). Based on the great success of ANAC2010, the 

ANAC2011 will be held at AAMAS2011 at Taiwan. This year, we, ACAN, have the 

ANAC special session, in which the finalists of ANAC will describe their 

negotiating agents. 
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ABSTRACT
Multiagent negotiation may be understood as a consensus
based group decision-making which ideally should seek the
agreement of all the participants. However, there exist sit-
uations where an unanimous agreement is not possible or
simply the rules imposed by the system do not seek such
unanimous agreement. In this paper we propose to use a
consensus policy based mediation framework (CPMF) to
perform multiagent negotiations. This proposal fills a gap
in the literature where protocols are in most cases indirectly
biased to search for a quorum. The mechanisms proposed to
perform the exploration of the negotiation space are derived
from the Generalized Pattern Search non-linear optimization
technique (GPS). The mediation mechanisms are guided by
the aggregation of the agent preferences on the set of al-
ternatives the mediator proposes in each negotiation round.
Considerable interest if focused on the implementation of the
mediation rules where we allow for a linguistic description
of the type of agreements needed. We show empirically that
CPMF efficiently manages negotiations following predefined
consensus policies and solves situations where unanimous
agreements are not viable.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms
Algorithms, Designs, Experimentation

Keywords
∗Visiting from Universidad de Alcala, Spain
†Visiting from Universidad de Alcala, Spain

multiagent negotiation, multiparty negotiation, consensus
policy, pattern search

1. INTRODUCTION
Most research in multiparty automated negotiation has been
focused on building efficient mechanisms and protocols to
reach agreements among multiple participants, being an ob-
jective to optimize some type of social welfare measurement
[6, 5, 7, 2, 15, 4, 8, 12, 13]. Examples of such measurements
would be the sum or product of utilities, the min utility,
etc... However, social welfare has not been usually placed
itself as an integral part of the negotiation process.

There are remarkable works which incorporate a social wel-
fare criterion within the search process [1, 3, 10]. In these
works, the authors build mechanisms to obtain fair agree-
ments by using fair direction improvements in the joint ex-
ploration of the negotiation space. Put simply, first a me-
diator proposes a solution and agents provide their utility
gradients in the solution, and finally the mediator proposes
a new contract in the bisector or in an arbitrary direction
which is considered fair enough. These proposals present
however several limitations. Firstly, they work only when
utility functions are derivable and quasi-concave. Secondly,
the absolute value of the gradient is not considered, and so,
the marginal utility obtained by the agents in each negoti-
ation round may not be fair. Finally, even considering that
the agents reveal also the gradient magnitude, the proto-
col is prone to untruthful revelation to bias the direction
generated by the mediator.

We argue that the type of consensus by which an agreement
meets in some specific manner the concerns of all the nego-
tiators should be considered as an integral part within the
multiparty negotiation protocols. To study this hypothesis
this paper proposes CPMF, a Consensus Policy Based Medi-
ation Framework for Multi-Agent Negotiation. CPMF relies
on a novel distributed agreement exploration protocol based
on the Generalized Pattern Search optimization technique
(GPS) [9], and on the use of Ordered Weighted Averaging
(OWA) operators [17]. This framework allows to search for
agreements following predefined consensus policies, which
may take the form of linguistic expressions in order to sat-
isfy system requirements or to circumvent situations where
unanimous agreements are not possible.
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Next section presents first the GPS algorithm for uncon-
strained optimization and then the basic operation of the
negotiation protocol. Section 3 focuses on the mechanisms
used by the mediator to aggregate agents’ preferences and
Section 4 presents the agreement search process. The last
section summarizes our conclusions and sheds lights on some
future research.

2. THE MEDIATION PROTOCOL
We shall assume a set of n agents A = {Ai|i = 1, . . . , n}
and a finite set of issues X = {xl|l = 1, . . . , s}, where
each issue xl can be normalized to a continuous or discrete
range dl = [xminl , xmaxl ]. Accordingly, a contract is a vector
x′ = {x′l = 1, . . . , s} defined by the issues values. Further-
more, we assume that each agent Ai has a real or virtual
mapping Vi : X → R function that associates with each
contract x a value Vi(x) that gives the payoff the agent as-
signs to a contract. The exact nature of this mapping need
not be known. All that we want to assume is that each agent
has some means for formulating a preference function over
a set of alternatives. Thus, the preference function can be
described as any mapping function between the negotiation
space contracts and the set of real numbers. We make a
general assumption that the preference of each agent can be
non-monotonic and non-differentiable. We only require the
preferences to be rational:

Definition 2.1. The ordinal preference -i of agent Ai in
the negotiation domain is rational if it satisfies the following
conditions:
1. Strict preference is asymmetric: There is no pair of x
and x′ in X such that x ≺i x′ and x′ ≺i x;
2. Transitivity: For all x, x′, and x′′ in X, if x .i x′ and
x′ .i x′′, then x .i x′′;
3. Completeness: For all x and x′ in X, either x .i x′ or
x′ .i x;
where x .i x′ (or x ≺ x′) indicates that the offer x′ is at
least as good as (or better than) x for agent i.

The aim of the agents will be to reach an agreement on a con-
tract x′, maximizing their individual payoff and minimizing
the revelation of private information.

Next, we describe in detail the GPS for unconstrained opti-
mization, which is used in the construction of the negotiation
protocol. GPS belongs to the familiy of Direct Search Based
optimization algorithms [9]. Note, however, that our nego-
tiation protocol is not a single-objetive or multi-objective
centralized optimization process.

2.1 Generalized Pattern Search Algorithm for
Unconstrained Optimization

The optimization problem can be defined as max f(x), where
f : Rm → R, x ∈ Rm. At an iteration k of the protocol,
we have an iterate x(k) ∈ Rm and a step-length param-
eter 4k > 0. We successively look at the points in the
mesh x+(k) = x(k)±4kej , j ∈ {1, . . . ,m}, where ej is the
jth standard basis vector, to search for a contract x′(k) in
x+(k) for which f(x′(k)) > f(x(k)). We will use the no-
tation x+o(k) to designate the mesh at round k including
the current point x(k). Figure 1 illustrates the set of points

x(k)

∆
k

x
+
(k)

Figure 1: An illustration of Generalized Pattern
Search for unconstrained optimization.

among which we search for m = 2. This set of points or
mesh is an instance of what we call a pattern, from which
pattern search takes its name. If we find no x′(k) such that
f(x′(k)) > f(x(k)), then we reduce4k by half and continue;
otherwise, we leave the step-length parameter alone, setting
4k+1 = 4k and x(k + 1) = x(k). In the latter case we
can also increase the step-length parameter, say, by a factor
of 2, if we feel a longer step might be justified. We repeat
the iteration just described until 4k is deemed sufficiently
small. One important feature of pattern search that plays a
significant role in a global convergence analysis is that we do
not need to have an estimate of the derivative of f at x(k)
so long as included in the search is a sufficient set of direc-
tions to form a positive spanning set for the cone of feasible
directions, which in the unconstrained case is all of Rm. In
the unconstrained case the set {±ej |j = 1, . . . ,m} satisfies
this condition, the purpose of which is to ensure that if the
current iterate is not a stationary point of the problem, then
we have at least one ascendent direction.

The set ej is defined by the number of independent variables
in the objective function m and the positive standard basis
set. Two commonly used positive basis sets in pattern search
algorithms are the maximal basis, with 2m vectors, and the
minimal basis, with m + 1 vectors. For example, if there
are two independent variables in the optimization problem,
the default for a 2m positive basis consists of the following
pattern vectors: e1 = {1, 0}, e2 = {0, 1} and −e1 = {−1, 0},
−e2 = {0,−1}. An m + 1 positive basis consists of the
following standard basis set: e1 = {1, 0}, e2 = {0, 1} and
only a negative vector −e1 = {−1,−1}. In our approach
we will take the 2m positive basis. We will use the notation
xej (k)|j = 1, . . . , 2m to describe each point in a mesh, and
x(k) or xe0(k) to designate the current point. For example,
xe1(k) specifies the contract generated by the current con-
tract x(k) and the vector e1 for the current step-length 4k,
while xem+1(k) points to the negative version of xe1(k).

2.2 Basic Operation of the Negotiation Proto-
col

The basic protocol of the proposed negotiation process is the
following:
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1. The mediator proposes a mesh from an initial contract
xini(1) for a step-length parameter 41. The point
xini(1) is randomly chosen by the mediator.

2. Each agent provides the mediator their preferences
for the contracts in the current mesh x+o, in terms
of a mapping Si : X → [0, 1] such that for exam-
ple Si(x

ej (k)) indicates agent i’s support for the al-
ternative xej (k). An agent does not know the other
agents’ support for the contracts. Though agents are
free to provide support values which are coincident or
not with the corresponding private valuation function
Vi(x

ej (k)), in this work we will assume a perfect cor-
respondence between both values.

3. The individual agent preferences for each contract are
aggregated by the mediator to obtain the correspond-
ing group preferences for each of the contracts in the
mesh. We shall refer to this as the aggregation of
preferences step.

4. Mediator decides which is the preferred contract in
the mesh according to the group preferences for the
different contracts.

5. Based on the the preferred contract, mediator de-
cides to expand or contract the mesh. Should a con-
traction make 4k small enough negotiation ends, oth-
erwise go to step 2.

We assume that the negotiation process is such that a so-
lution from X is always obtained. Negotiation may end
when 4k is below a predefined threshold value or when a
deadline expires. Essentially, the multi-agent negotiation
is a dynamic process where at each stage of the process an
agent provides a support measure determined by its underly-
ing payoff function and any information available about the
previous stages of the negotiation. The process of choosing
the specific support for the different alternatives in a mesh
at each round of the negotiations then constitutes a partic-
ipating agent’s strategy. An important consideration in an
agent’s determination of their strategy are the rules and pro-
cedures used in the negotiation process. In the following we
shall describe the implementation of the negotiation process
steps outlined above.

3. THE AGGREGATION OF PREFERENCES
Here we look at the process where the mediator aggregates
the individual support for the contracts in the mesh at round
k. Our point of departure here is a collection of n agents and
a set x+o(k) of contracts (mesh) given a current contract
x(k) at round k. We assume each agent has provided at
round k her preference Si(x

+o(k)) over the set x+o(k) such
that it indicates the degree to which each agent Ai supports
each contract. The mediator objective in this mediation step
is to obtain a group preference function G : x+o → [0, 1]
which associates with each alternative xej (k) ∈ x+o(k) a
value G(xej (k)) = M(S1(xej (k)), . . . , Sn(xej (k))).

The form of M is called the mediation rule, which describes
the process of combining the individual preferences. The
form of M can be used to reflect a desired mediation im-
perative or consensus policy for aggregating the preferences

of the individual agents to get the mesh group preferences.
M will guide the mediator in the expansion-contraction de-
cisions in order to meet the desired type of agreements for
the negotiation process.

The most widespread consensus policy found in the auto-
mated negotiation literature suggests using as an aggrega-
tion imperative a desire to satisfy all the agents. However,
the policy of requiring that all the agents be satisfied by
a solution may not be suitable for multi-agent preference
aggregation, or simply the system may need to implement
more sophisticated forms of aggregation.

We propose to use other mediation rules to improve the ne-
gotiation processes where either a quorum is not necessary
or simply such quorum is not possible. For example, a so-
lution may be acceptable if most of the agents support it.
To incorporate these notions into our negotiation framework
we will use a more general class of aggregation rules. The
idea is to use a quantifier guided aggregation, which allows
a natural language expression of the quantity of agents that
need to agree on an acceptable solution. As we shall see
the Ordered Weighted Averaging (OWA) operator [16] will
provide a tool to model this kind of softer mediation rule.

3.1 OWA Operators
An aggregation operator M : Sn → G, (S,G ∈ [0, 1]) is
called an OWA operator of dimension n if it has an asso-
ciated weighting vector W = [w1w2 . . . wn] such that wt ∈
[0, 1] and

∑n
t=1 wt = 1 and whereM(S1, . . . , Sn) =

∑n
t=1 wtbt

where bt is the tth largest element of the aggregates {S1, . . . , Sn}.

Note that in the definition of OWA we have used the no-
tation M to identify the aggregation operator with the me-
diation rule, Sn to make reference to the preferences of the
agents, and G to define the group preference. In the OWA
aggregation the weights are not directly associated with a
particular argument but with the ordered position of the
arguments. If ind is an index function such that ind(t)
is the index of the tth largest argument, then we can ex-
press M(S1, . . . , Sn) =

∑n
t=1 wtSind(t). It can be shown

that OWA aggregation has the following properties:

1. Commutativity: The indexing of the arguments is ir-
relevant

2. Monotonicity: If Si ≥ Ŝi for all i thenM(Si, . . . , Sn) ≥
M(Ŝi, . . . , Ŝn)

3. Idempotency: M(S, . . . , S) = S

4. Boundedness: Maxi[Si] ≥M(Si, . . . , Sn) ≥Mini[Si]

Under these conditions the OWA operator is a mean oper-
ator. The form of the aggregation is dependent upon the
associated weighting vector. We have a number of special
cases of weighting vector are worth noting. The vector W ∗

defined such that w1 = 1 and wt = 0 for all t 6= 1 gives us the
aggregation Maxi[Si]. Thus, it provides the largest possible
aggregation. The vector W∗ defined such that wn = 1 and
wt = 0 for all t 6= 1 gives the aggregation Mini[Si]. The
weighting vector Wave defined such that wt = 1/n gives
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us the average 1
n

∑n
i=1 Si. Finally, an interesting family of

OWA operators are the E-Z OWA operators. There are two
families. In the first family we have wt = 1/q for t = 1 to
q, and wt = 0 for t = q + 1 to n. Here we are taking the
average of the q largest arguments. The other family defines
wt = 0 for t = 1 to q, and wt = 1

n−q for t = q + 1 to n.
We can see that this operator can provide a softening of the
original min and max mediation rules by modifying q.

3.2 Quantifier Guided Aggregation
In the preceding, we have seen how the OWA operators can
be used to compute the group preference for different al-
ternatives, in our case, the different contracts in the current
mesh x+o(k). However, our aim is to define consesus policies
in the form of a linguistic agenda for our mediation mech-
anisms. For example, the mediator should make decisions
regarding the exploration of the negotiation space, i.e. ex-
pansion and contraction of the mesh, following mediation
rules like

Most agents must be satisfied by the contract, at least α
agents must be satisfied by the contract, many agents must
be satisfied, . . .

The above statements are examples of quantifier guided ag-
gregations. Zadeh [18] suggested a formal representation of
these linguistic quantifiers using fuzzy sets. He suggested
that any relative linguistic quantifier can be expressed as a
fuzzy subset Q of the unit interval I = [0, 1]. In this repre-
sentation for any proportion y ∈ I, Q(y) indicates the degree
to which y satisfies the concept expressed by the term Q. In
most applications of the quantifier guided aggregation we use
a special case class of these liguistic quantifiers, called Reg-
ular Increasing Monotone (RIM) quantifiers. These types
of quantifiers have the property that as more agents are
satisfied our overall satisfaction can’t decrease. Formally,
these quantifiers are characterized in the following way: 1)
Q(0) = 0, 2) Q(1) = 1 and 3) Q(x) ≥ Q(y) if x > y. Exam-
ples of this kind of quantifier are all, most, many, at least
α. Two examples of RIM quantifiers are all which is repre-
sented by Q∗ where Q∗(1) = 1 and Q∗(x) = 0 for all x 6= 1,
and any which is defined as Q∗(0) = 0 and Q∗(x) = 1 for
all x 6= 0.

The question now is how to obtain the OWA operator to sat-
isfy a quantifier guided aggregation. Again assume we have
a collection of n agents. These agents have their preferences
represented as fuzzy subsets over the set of alternatives in
the mesh {S1(x+o(k)), . . . , Sn(x+o(k))}. Under the quanti-
fier guided mediation approach a group mediation protocol
is expressed in terms of a linguistic quantifier Q indicating
the proportion of agents whose agreement if necessary for a
solution to be acceptable. The basic form of the mediation
rule in this approach is

Q agents must be satisfied by the contract,

where Q is a quantifier.

The formal procedure used to implement this mediation rule
is described in the following. The quantifier Q is used to
generate an OWA weighting vector W of dimension n. This
weighting vector is then used in an OWA aggregation to

0 1/5 2/5 3/5 4/5 1
0

1

i/5

Q(y)

w
5

w
4

w
3

w
2

w
1 y

Figure 2: Example of how to obtain the weights from
a quantifier for n = 5 agents.

determine the group support for the contract. For each con-
tract in the mesh the argument of this OWA aggregation
is the degree of support for that contract by each of the
agents, Si(x

ej (k)), i = 1, . . . , n. Thus, the process used in
the quantifier guided aggregation is as follows:

1. Use Q to generate a set of OWA weights, w1, . . . , wn.

2. For each contract xej (k) in x+o(k) calculate the overall
group supportG(xej (k)) = M(S1(xej (k)), . . . , Sn(xej (k))).

The procedure used for generating the weights from the
quantifier is to divide the unit interval into n equally spaced
intervals and then to compute the length of the mapped
intervals using Q

wt = Q(
t

n
)−Q(

t− 1

n
) for t = 1, . . . , n .

Because of the nondecreasing nature of Q it follows that
wt ≥ 0. Furthermore from the regularity of Q, Q(1) = 1
and Q(0) = 0, it follows that

∑
t wt = 1. Thus we can see

that the weights generated are an acceptable class of OWA
weights.

In Figure 2 we show an example of a RIM linguistic quan-
tifier and illustrate the process of determining the weights
from the quantifier. We see that the weights depend on the
number of agents as well as the form of Q. In Figure 3 we
show the functional form for the quantifiers all, any, Q∗, Q

∗,
at least α percent, linear quantifier, piecewise QZβ and piece-
wise QZα . The quantifiers all, any and at least α describe
the consensus policy using a natural language verbal descrip-
tion. However, more generally any functionQ : [0, 1]→ [0, 1]
such thatQ(x) ≥ Q(y) for x ≥ y, Q(1) = 1 andQ(0) = 0 can
be seen to be an appropriate form for generating mediation
rules or consensus policies. Thus there are two techniques
to generating these quantifier based mediation rules. One
possibility is to start with a linguistic expression and then
obtain Q. The second approach is to allow the mediation
rule to be directly expressed in terms of a function Q. One
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Figure 3: Functional form of typical quantifiers: all,
any, at least, linear, piecewise linear QZβ and piece-
wise linear QZα .

important characteristic of this second method is that we
can easily introduce into our mediation a number of formal
properties that are not very easily expressed using a verbal
description of the quantifier. The linear quantifier Q(y) = y
for instance generates wt = 1/n, and thus, all the agents get
the same weight. The QZβ quantifier it is required that at
least β agents are satisfied to initiate a Q linear improve-
ment. QZα initiates the Q linear improvement with the first
satisfied agent, and once there are α agents satisfied there
is no improvement in Q if more agents are satisfied.

One feature which distinguishes the different types of medi-
ation rules is the power of an individual agent to eliminate
an alternative. For example, in the case of all this power is
complete. In order to capture this idea the Value Of Indi-
vidual Disapproval (VOID)

V OID(Q) = 1−
ˆ 1

0

Q(y)dy

measures this power. For the all, any, at least α and linear
quantifiers the VOID measures are respectively 1, 0, α and
0.5. For the QZβ quantifier V OID(QZβ ) = 1

2
+ β

2
) and

therefore V OID(QZβ ) ∈ [0.5, 1]. The QZα quantifier gets
V OID(QZα) = α

2
and V OID(QZα) ∈ [0, 0.5].

Another family of quantifiers are those defined by Qp(y) =

yp for p > 0. In this case V OID(Qp) = 1−
´ 1

0
rpdr = p

p+1
.

For this quantifier we can easily obtain the OWA weights
with

wt =

(
t

n

)p
−
(
t− 1

n

)p
.

For Qp we see that as p increases we get closer to the min
and that as p gets closer to zero we get the max.

4. THE SEARCH PROCESS
The search process is based on a mechanism whereby the
mediator decides if to generate a new mesh in order to con-
tinue with a new negotiation round, or if to finish the negoti-
ation process. This process starts just after any aggregation
of preferences process, when the mediator has determined
the group preferred contract xe∗(k). The relevant informa-
tion available to the mediator at this point is at least the

group preference G(x+o(k)), the preferred contract xe∗(k),
the current step-length 4k, and the current round number
k. With this information, the mediator has to select among
three possible alternatives:

1. Move to the group preferred contract x(k+1) = xe∗(k)
in x+(k) and expand the mesh by a factor of two
4k+1 = 2 · 4k.

2. Keep the current contract x(k+ 1) = x(k) and reduce
by half the mesh step-length 4k+1 = 4k/2.

3. Finish the negotiation process.

For this paper we will assume what we call the Standard
Search Process which selects among the mentioned alterna-
tives as follows.

The mediator selects alternative 1 if the preferred contract
is in x+(k), i.e., xe∗(k) ∈ x+(k). If the preferred contract
is x(k) then the mediator selects alternative 2. Finally, we
define two stopping rules, one which bounds the maximum
number of rounds kmax, and a second one which stops ne-
gotiation when the step-length 4k is below a predefined
threshold γ. We assume that in both cases the agreement
reached is the preferred group contract in the last negotia-
tion round.

4.1 Preferred Contract Selection in the Search
Process

Here are described in detail the mechanisms used to select
the preferred contract. The point of departure is the set of
final group preferences for the contracts in x+o(k) at round
k. We propose a probabilistic selection process to select the
winner contract in the mesh at a round k. We associate with
each contract xej (k) ∈ x+o(k) a probability

P (xej (k)) =
G(xej (k))σ∑
j G(xej (k))σ

.

The process selects the winner contract using a biased ran-
dom experiment with these probabilities. The parameter
σ > 0 works as an indication of the significance we give to
the final group preferences. If σ →∞ we select the contract
with the maximum support, which means that the media-
tor is given the higher significance to the group preferences.
If σ = 1 then the probability of selecting xej (x) would be
proportional to its group support. The rationale behind us-
ing this probabilistic process is to introduce randomness and
avoid local optima in the following way.

With G the mediator is able to select a contract within the
mesh. However, this selection is based on a relative mea-
surement and it is not considering how good is the selection
made. The mediator must consider both the G value and the
relative values to make the decision of expansion and con-
traction. Thus, we make σ vary as a function of G and the
number of rounds k. If G is high, σ must be high, favouring
a deterministic mesh movement, i.e. with a high probability
the contract with a higher G is selected. Otherwise, if G is
low, σ must be low to induce randomness and avoid local
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Figure 4: Evolution of σ(k,G) for kmax = 50, α = 6,
σmax = 200 and σmin = 1.

optima. More specifically, for σ = 0 the selection of con-
tracts is equiprobable, making such selection independent
of G. For σ = 1 the selection probability is proportional to
G. Higher values for σ increases the probability of choosing
the contract with a higher G. To control σ we define

σ(k,G) = σmin + (σmax − σmin) ·G(1− k
kmax

)·α
,

where σ depends on the negotiation round k, the maximum
number of rounds kmax and G. The function is bounded by
σmax and σmin given G = 0 and G = 1 respectively. The
parameter α > 0 determines the curvature of σ(k,G). As
the number of rounds k increases, the function increases its
concaveness, which means that G induces higher values for
σ, favouring convergence. Figure ?? shows the evolution of
σ(k,G) for kmax =50, α = 6, σmax = 200 and σmin = 1.
The principle of this approach is analogous to the simulated
annealing technique without reannealing. We can also intro-
duce reannealing for kr < kmax such that k/kmax converts
into k−kr

kmax−kr .

5. EXPERIMENTAL EVALUATION
In this section, we test our negotiation framework and show
that the mechanisms proposed provide the mediator the
tools to efficiently conduct multiagent negotiations by con-
sidering different consensus policies.

In the experimental setup, without loosing generality, we
have considered 7 agents, 2 issues and 2 different types of
negotiation spaces: a negotiation space where agents’ util-
ity functions are strategically built to define a proof of con-
cept negotiation scenario, and a complex negotiation sce-
nario where utility functions exhibit a more complex struc-
ture. In both cases utility functions are built using an aggre-
gation of Bell functions. This type of utility functions cap-
ture the intuition that agents’ utilities for a contract usually
decline gradually with distance from their ideal contract.
Bell functions are ideally suited to model, for instance, spa-
tial and temporal preferences [14, 11]. In addition, they
provide with the capability of configurating different nego-
tiation scenarios in terms of different complexity degrees.
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Figure 5: Utility functions for the proof of concept
negotiation scenario.

Definition 5.1. A Bell is defined by a center c, height
h, and a radius r. Let ‖ s − c ‖ be the euclidean distance
from the center c to a contract s, then the Bell function is
defined as

fbell(s, c, h, r) =


h− 2h ‖s−c‖

2

r2
if ‖ s− c ‖< r/2,

2h
r2

(‖ s− c ‖ −r)2 if r >‖ s− c ‖≥ r/2 ,
0 ‖ s− c ‖≥ r

and the Bell utility function as

Ub,s(s) =

nb∑
i

fbell(s, ci, hi, ri) ,

where nb is the number of generated bells. The complexity
of the negotiation space can be modulated by varying ci, hi,
ri and nb.

In the proof of concept negotiation scenario each agent has
a utility function with a single optimum. Figure 5 shows
in the same graph the agents’ utility functions in the bidi-
mensional negotiation space [0, 100]2. In this scenario four
agents (Agent 1, 2, 3, 4) are in weak opposition (i.e. their
preferences are quite similar), Agents 6 and 7 are in weak
opposition and in very strong opposition with respect the
other agents, and Agent 5 is in very strong opposition with
respect the rest of the agents. In the complex negotiation
scenario each agent’s utility function is generated using two
randomly located bells. The radius and height of each bell
are randomly distributed within the ranges ri ∈ [20, 35] and
hi = [0.1, 1]. Figure 6 shows the utility functions generated
for each agent in this second case.

The configuration of parameters in the mediator is: kmax =
50 rounds, mesh tolerance 1e − 6, and α = 2, σmin = 1,
σmax = 200 for the preferred contract selection process.
Previous experiments have confirmed that these parameter
values perform well under most negotiation scenarios.

We tested the performance of the protocol under the proof
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tion scenario.

of concept and complex negotiation scenarios for 5 different
consensus policies defined by the corresponding VOIDNESS
degrees: 0, 0.25, 0.5, 0.75 and 0.95, using the quantifier
Qp(y) = yp. We also define a contrast experiment where
the consensus policy based mediation process is deactivated,
such that the mediator uses the pattern search based process
but there is no randomness and the group preference eval-
uation is limited to compute the sum of agents’ valuations
for a given contract (i.e. the winner contract is that with
the highest sum of valuations).This experiment uses also 50
rounds and a mesh tolerance 1e− 6.

Each experiment consist of 100 negotiations where we cap-
ture the utilities achieved by each agent. To analyze the
results we first build a 7 agents×100 negotiations utility ma-
trix where each row provides each agent’s utilities and each
column is a negotiation. The matrix is then reorganized
such that each column is individually sorted from higher to
lower utility values. Note that after this transformation the
association row/particular-agent disappears. Given the ma-
trix, we form 7 different utility groups: a first group named
group level 1 where we take the highest utility from each
negotiation (i.e. the first row), a second group named group
level 2 with the two first rows and so on. In order to show
the performance of the protocol we have used the Kaplan-
Meier estimate of the cumulative distribution function (cdf )
of agents’ utilities for each group. Thus, we compute the
cdf for the highest utilities, for the two highest utilities and
so on. The cdf estimates the probability of finding agent’s
utilities below a certain value. The rationale behind using
grouping in the analysis is to evaluate the ability of the pro-
tocol to find solutions which satisfy groups of agents.

In the proof of concept scenario (see Figure 5) it can be seen
that when a quorum is needed, the best alternative is to
get satisfied agents 1, 2, 3 and 4. If it is enough to have
one agent satisfied, any of the utility peaks would be a good
solution. In Figure 7 we show the results for the proof of
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Figure 7: Cumulative distributions of utilities for
the proof of concept scenario.

concept scenario. Each line shows the cdf for a group level
and the number above each line identifies the correspond-
ing level. For instance, for the reference experiment and
the group level 1 there is approximately a 98% probability
of having agents with a utility 0.7, and a 2% probability
of having agents with utility 0. In the group level 7 case,
there is a 50% probability of having agents with utility 0.7,
and a 50% probability of having agents with utility 0. For a
VOIDNESS=0 and group level 1, however, the probability
of having agents with a utility 1 is around 98%, which means
that the mediator is applying efficiently the consensus pol-
icy which states that it is good enough to have one agent
satisfied. As VOIDNESS increases (i.e. as it is necessary
to have more agents satisfied) the cdf for group level 1 per-
forms worse, though better than in the reference scenario,
and for higher group levels the performance increases.

In Figure 8 are shown the results for the complex negotiation
scenario. Here we can also see how as VOIDNESS increases,
the mediator biases the search for agreements where more
agents are satisfied at the expense of not having individ-
ual agents highly satisfied. Globally, the results show that
the proposed mechanisms are able to focus the negotiation
process in terms of consensus policies and to obtain bet-
ter results than when using a classical welfare maximization
approach.

6. CONCLUSION
The main hypothesis of our work is that the consensus type
by which an agreement meets in some specific manner the
concerns of all the negotiators should be considered in the
construction of multiparty negotiation protocols. We argue
that there exist situations where an unanimous agreement
is not possible or simply the rules imposed by the system
may not seek such unanimous agreement. Thus, we develop
a consensus policy based mediation framework to perform
multiparty negotiations. The mediation mechanisms pro-
posed to perform the exploration of negotiation space in the
multiparty negotiation setting are derived from the General-
ized Pattern Search non-linear optimization technique. The
exploration performed in the mediator is guided by the ag-
gregation of the agent preferences on the set of alternatives
the mediator proposes in each negotiation round. The medi-
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Figure 8: Cumulative distributions of utilities for
the complex negotiation scenario.

ation rules at the mediator may take the form of a linguistic
description of the type of agreements needed. We showed
empirically that CPMF efficiently manages negotiations fol-
lowing predefined consensus policies and solves situations
where unanimous agreements are not viable.

We believe that the negotiation framework presented opens
the door to a new set of negotiation algorithms where con-
sensus criteria will play an important role. However, the
strategical issue remains opened. We have assumed that
agents reveal their true valuations. It is expected that the
performance of the protocol deviates from the optimal if
agents act strategically. Thus, the strategy issue needs to
be evaluated, and mechanisms need to be implemented to
avoid or mitigate the incentive compatibility problem.
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ABSTRACT
There is a number of recent research lines addressing auto-
mated complex negotiations. Most of them focus on over-
coming the problems imposed by the complexity of nego-
tiation scenarios which are computationally intractable, be
it by approximating these complex scenarios with simpler
ones, or developing heuristic mechanisms to explore more
efficiently the solution space. The problem with these mech-
anisms is that their evaluation is usually restricted to very
specific negotiation scenarios, which makes very difficult to
compare different approaches, to re-use concepts from pre-
vious mechanisms to create new ones or to generalize mech-
anisms to other scenarios. This makes the different research
lines in automated negotiation to progress in an isolated
manner. A solution to this recurring problem might be to
create a collection of negotiation scenarios which may be
used to benchmark different negotiation approaches. This
paper aims to fill this gap by providing a framework for the
characterization and generation of negotiation scenarios in-
tended to address this problem, facilitating in this way that
researchers compare and share their advancements. Experi-
ments show how the proposed framework is able to generate
scenarios which can be effectively used to compare the per-
formance of different negotiation approaches.
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1. INTRODUCTION
Automated negotiation provides an important mechanism
to reach agreements among distributed decision makers [12,
13]. It has been extensively studied from the perspective
of e-commerce, though it can be seen from a more general
perspective as a paradigm to solve coordination and cooper-
ation problems in complex systems, providing a mechanism
for autonomous agents to reach agreements on, e.g., task
allocation, resource sharing, or surplus division.

A variety of negotiation models have been proposed, yielding
promising results in a wide range of negotiation problems [4].
However, most of these approaches are evaluated for negotia-
tion scenarios meeting very specific requirements. Given the
vast variety of negotiation problems, a recurrent challenge
automated negotiation researches have to face is how to jus-
tify the models and mechanisms they propose are suitable to
solve or model different problems, or how to compare their
approaches and methods with the ones of other researchers.
In the best cases, there are a few number of previous works
similar enough to the new proposal to make a comparison.
In most cases, however, this comparison is not possible due
to the diversity of scenarios the different research groups deal
with, so the different research lines progress in an isolated
manner. In addition, though there exist multiple surveys
about negotiation in the literature [10, 1], they are more in-
tended to classify the different approaches (mediated, non-
mediated, one-shot, iterative...) than to describe or classify
the different negotiation problems.

On the contrary, our research focuses on the properties of the
negotiation scenario regardless of the approach which may
later be used to address it. What we intend is to be able to
measure a set of properties of a given negotiation scenario,
and to be able to generate negotiation scenarios which have
desired values on those properties. The need to have negoti-
ation scenario testbeds to provide reproductivity and coher-
ence to works from different authors has been acknowledged
in multiple occasions [8], and there exist some generators
and testbeds which allow to standardize the scenarios to a
certain extent, though they usually focus on specific nego-
tiation protocols [15] or specific preference representations
[6]. In addition, they usually generate scenarios according
to low-level properties (e.g. weights for the different issues
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in a linear additive model, number and width of constraints
in a weighted constraints model...) rather than high-level,
meaningful scenario properties, such as the structure of the
agent utility functions (i.e. autocorrelation, epistasis) or the
relationships between the utility functions of the different
agents (e.g. shape of the Pareto front).

Our aim in this line is to provide a framework which allows
to characterize and generate negotiation scenarios accord-
ing to high-level properties. The benefit of using such a
framework would be twofold. On one hand, it would al-
low to make it easier to test negotiation mechanisms in a
much wider range of scenarios, as well as to compare differ-
ent approaches in the same scenarios. On the other hand,
it would facilitate the creation, by the research community,
of a database of negotiation approaches and scenarios ac-
cording to these high-level properties. In this way, it would
be easier to find out which negotiation mechanisms work
better for the different subsets of the negotiation problem
space. Finally, this would open the door to the rigorous
assessment of the applicability of negotiation approaches to
real-world problems. For a given real negotiation problem,
we could measure the high-level properties of the scenario
and use them to find in the database the negotiation ap-
proach which performs better for scenarios matching these
properties. In this paper we intend to contribute to this goal
in the following ways:

• We provide a set of tools which allow to measure high-
level properties of a negotiation scenario. This include
both structural properties of the agents’ utility func-
tions and properties derived from the relationship be-
tween the different utility functions (Section 2).

• We propose a negotiation scenario generator which
considers the properties outlined above (Section 3).
It is based on building utility functions as aggrega-
tions of hyper-volumes, and on sharing hyper-volumes
among agent utility functions to model zones of po-
tential agreement (or disagreement). This allows us to
model scenario complexity in two orthogonal dimen-
sions: the scarcity of mutually acceptable solutions
and the difficulty to locate these solutions in the con-
tract space.

A set of experiments have been performed to validate our
generator and to asses the possibilities it may bring to the re-
search community on automated negotiation. These exper-
iments are described in Section 4, along with the discussion
of the results obtained. Finally, the last section summarizes
our contributions and sheds light on some future research.

2. CHARACTERIZING NEGOTIATION SCE-
NARIOS

As we have stated before, our aim is to be able to character-
ize negotiation scenarios using high-level properties. To do
this, we should first define what we understand as negotia-
tion scenarios. Different authors agree that there are three
key components in a negotiation model [10]: an interaction
protocol which defines the rules of encounter among the ne-
gotiating agents, a set of decision mechanisms and strategies
which govern agents’ decision making, and the preference

sets of the different agents which allow them to assess the
different solutions in terms of gain or utility and to compare
them. From this three components, we can easily see that
both the interaction protocol and the decision mechanisms
and strategies are more related to the way the model solves
the negotiation problem than to the negotiation problem
itself. Therefore, in the following we characterize a nego-
tiation scenario according to the preferences of the agents
taking part in the negotiation.

2.1 Agent preferences in negotiation scenar-
ios

From the decision theory perspective, preferences express
the absolute or relative satisfaction for an individual about a
particular choice among different options. In [2], agent pref-
erence structures are classified in four broad families: binary,
ordinal, cardinal and fuzzy preference structures. Among
these families, cardinal preference structures are probably
the most widely used in automated negotiations, and are
the ones we will be focusing in in the following. In particu-
lar, it is usual to define agent preferences by means of utility
functions.

Formally, for a given multi-attribute domain 〈X,D,Ag,U〉,
the utility function for each agent j ∈ Ag is defined as

U j : D → R,

assigning to each possible combination of values in X or deal
s = {si|i = 1, ..., n; si ∈ di} a real number, which represents
the utility that deal s yields for agent j.

There are vastly different utility functions in the negotia-
tion literature. Monotonic negotiation scenarios are usually
modelled simulated with Constant Elasticity of Substitution
(CES) utility function [18], which are widely used in eco-
nomics as production functions, and in consumer theory as
utility functions. An example of a CES utility function for
a utility space of n issues could be

U(s) = (
n
∑

i=1

αi · xi)
1/β ,

where s = (x1, x2, . . . , xn) is a contract and xi the ith issue,
αi is the share parameter for issue i, and β is the elasticity
of substitution parameter. An interesting property of CES
utility functions is that they also model linear utility spaces
if we set the elasticity parameter to 1.

To represent non-monotonic utility spaces, we can use for in-
stance k-additive utility functions [7]. Another widely used
way to represent preferences and utility functions is the use
of constraints over the values of the attributes. A particu-
lar case of constraint-based utility representation which has
been used to model complex utility spaces for negotiation
are weighted constraints [9]. There is a utility value for each
constraint, and the total utility is defined as the sum of the
utilities of all satisfied constraints. More formally, the util-
ity space of the agents may be defined as a set of constraints
C = {ck|k = 1, ..., l}. Each constraint ck has an associated
utility value u(ck). If we note as s ∈ x(ck) the fact that a
given contract s = {si|i = 1, ..., n} is in the set of contracts
that satisfy constraint ck, an agent’s utility for contract s
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may be defined as

u(s) =
∑

ck∈C|s∈x(ck)

u(ck),

that is, the sum of the utility values of all constraints satis-
fied by s. This kind of utility functions produces nonlinear
utility spaces, with high points where many constraints are
satisfied, and lower regions where few or no constraints are
satisfied. Due to the hypercube shape of the constraints, the
utility functions defined in this way are discontinuous.

An example of a utility representation for continuous, non-
monotonic utility spaces can be found in [16]. Here the
authors model the utility space of an agent as a sum of bell-
shaped functions of the form

fbell(s, c, h, r) =











h− 2h ‖s−c‖2

r2
if ‖ s− c ‖< r/2,

2h
r2

(‖ s− c ‖ −r)2 if r >‖ s− c ‖≥ r/2 ,

0 ‖ s− c ‖≥ r

so that the utility function is

U(s) =

nb
∑

i

fbell(s, ci, hi, ri) ,

where, ci, hi and ri] are the parameters defining each bell,
and nb is the number of bells in the utility functions.

In [19] utility graphs are used to model issue interdepen-
dencies for binary-valued issues. Utility graphs are used to
decompose highly non-linear utility functions in sub-utilities
of clusters of inter-related items. In a different way, in [22]
the concept of hierarchical negotiation problems is intro-
duced. Hierarchical negotiation problems are those in which
the problem domain can be structured in layers, with dif-
ferent issues being relevant for the different layers. In this
way, a negotiation problem involving a high number of inter-
dependent issues may be addressed hierarchically, exploring
only a subset of the issues at each layer of the hierarchy. In
this way, the internal structure that domain elements have
for many real-world negotiation problems could be exploited
to allow for a more efficient search for solutions. Here we
do not have a single utility function, but a hierarchical tree
of utility, where at each layer a function on a subset of the
issues allows to decide which is the relevant branch to select
in the lower levels of the hierarchy.

The above is just a brief review of a selection of the different
kinds of preference representations used in the most relevant
works in the field. From the formulations and descriptions
we can see the inherent difficulty for the direct compari-
son of approaches which are intended to work in different
kinds of scenarios, and for determining which of the exist-
ing approaches would be most effective to address a new
scenario. We can wonder, for instance, whether the pro-
tocols proven successful for constraint-based utility spaces
could be applied, for instance, to hierarchical negotiation
scenarios, or whether protocols intended to work with bell
utility functions could be applied, with some modifications,
to CES-based utility spaces. However, direct comparison of
the approaches is often very difficult (if not unfeasible) due
to the important differences between the scenarios. Even if
a given negotiation mechanism could be applied to two dif-
ferent negotiation scenarios, it is very difficult to establish

equivalencies between them, due to the vast differences be-
tween the settings of the different scenarios. For instance,
[9] describes experiments for a negotiation scenario involving
constraint-based utility space, where there are constraints
with widths drawn uniformly from the interval [3, 7] (in a
domain [0, 9]). If we move onto a bell-based utility spaces,
now we need to define it in terms of bell radii and heights.
Which values would yield a utility function of similar com-
plexity? We believe that such comparison of approaches
could be made possible if there existed a framework for the
characterization of negotiation scenarios according to a set
of common properties. This is what we aim to provide in
the following section.

2.2 High-level properties of negotiation scenar-
ios

We have defined a negotiation scenario as a set of agent
utility functions. Therefore, to characterize a given scenario
we have to look at these utility functions and the relation-
ships between them. The most immediate approach is to
study its structural properties like the structural properties
of a fitness landscape which are interesting regarding search
complexity within the space, such as modality, ruggedness,
smoothness and neutrality [20]. Most of the approaches we
can find in the literature are based on the correlation be-
tween different samples of the fitness function f . A metric
which is easy to compute in most scenarios and allows to
make quantitative evaluations about the complexity of a fit-
ness or utility landscape is correlation length or correlation
distance. Correlation distance is defined as the minimum
distance ψ which makes correlation fall below a given thresh-
old (usually 0.5), which gives an idea of the distance we can
move throughout the solution space while keeping a certain
correlation between samples [17].

A property which is usually related to negotiation complex-
ity is issue interdependency. Negotiations with multiple, in-
terdependent issues are assumed to be harder than those
involving independent issues [11]. There are some recent
works suggesting to assess the degree of interdependency be-
tween issues in order to modify the negotiation strategy ac-
cordingly (e.g. by negotiating separately those issues which
are less interdependent). However, in most cases issue in-
terdependency is measured in an ad-hoc manner, usually
restricted to the kind of utility representation used [19, 5].
Here we propose a measure based on information theory,
analogous to the epistasis measure described in [21] for evo-
lutionary computation:

ǫij =

{

I(i;U)+I(j;U)
I(i,j;U)

− 1 if I(i, j;U) 6= 0

0 otherwise

where I(i;U) and I(j;U) are the amount of information that
each issue i and j reveals about the value of the utility func-
tion U , and I(i, j;U) is the amount of information both issues
reveal about the value of U .

Another aspect which may be studied is the point distri-
bution in utility space diagrams. These diagrams represent
the utilities achieved by the different agents participating in
the negotiation for each analyzed solution, allowing for in-
stance to assess the distance of a solution from the Pareto
front, which is used in many works as an evaluation metric
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for negotiation mechanisms. However, to our knowledge no
authors have tried to generate negotiation scenarios from ar-
bitrary distributions of points in the utility diagrams, while
this distribution may have a great impact on the complexity
of a negotiation scenario. Intuitively, a negotiation will be
easier as the ratio of mutable acceptable solutions against
total potential solution in high, and will be more difficult
in the opposite case. The same is true with negotiation
efficiently and the ratio of solutions near the Pareto front.
Finally, the very shape of the Pareto front may affect signifi-
cantly the properties of the negotiation scenario, or even the
way to analyze it. For the purpose of assessing the complex-
ity of a given scenario, however, it is not enough to know
if there exist solutions which yield a given set of utilities
to the different agents. With the same utility diagram, a
scenario where an 80% of the solutions are both mutually
acceptable and are in the Pareto front would probably be
much less challenging for a negotiation mechanisms than one
with only a 10% of Pareto-efficient, mutually acceptable so-
lutions. Therefore, we have to consider also the number (or
ratio) of solutions corresponding to each point in the utility
diagram. Taking this into account, we extend the concept
of utility diagrams to utility histograms H(ū), where ū is
a vector of utility values for the different agents, and the
histogram value at ū represents the number of potential so-
lutions which yield that combination of utility values for the
agents. From these utility histogram we can easily derive
properties like the ratio of mutually accepted solutions and
the ratio of Pareto-efficient solutions.

3. A SCENARIO GENERATOR FOR COM-
PLEX AUTOMATED NEGOTIATIONS

The scenario generation tool we propose in this paper in-
tends to take into account both the structural properties
of the agent utility functions and the relationships between
the utility functions of the different agents. In the follow-
ing, we first describe a parametric mechanism to generate
utility functions, and then an approach to control the rela-
tionship between the utility functions in a scenario through
the utility diagram of the scenario.

3.1 Generation of Utility Functions by means
of Hypervolumes

We aim to build a generator able to create utility functions
which allow to test most of the negotiation approaches we
can find so far. This is a rather ambitious goal, since, as we
have seen, there are many different types of utility functions
used in the negotiation literature. For the purposes of this
work, we will restrict ourselves to cardinal utility functions,
where contracts are mapped to real numbers which corre-
spond to the utility values they yield. Note that cardinal
utility functions may be used to represent ordinal prefer-
ences too, by restricting the range of the utility values to
natural numbers.

Under this assumption, we can get a fully expressive repre-
sentation of utility functions by aggregating hypervolumes.
We define a hypervolume as a constrained cardinal function,
where by constrained we mean that there may be constraints
regarding when this cardinal function contributes to the util-
ity value of the overall utility function. For instance, we can
have a cardinal function C1(x̄) = 5, which is constrained so
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Figure 1: Generation of utility spaces with weighted aggre-
gation of hypervolumes.

that it only applies for x̄ ∈ S1, where S1 is a given subset or
region of the solution space S. In this way, we can use hy-
pervolume C1 as a weighted constraint. In a similar way, if
we wanted to generate a linear utility function, we could use
a hypervolume defined as a hyperplane, constrained so that
it covers all the domain. Our scenario generator currently
supports constant, cone, bell and CES cardinal functions
as hypervolumes, though it has been designed so that new
categories of hypervolumes may be added if needed.

Apart from adding hypervolumes to the utility function, we
need to be able to define the aggregation operators we use
to compute the overall agent utility from the hypervolumes.
The generator covers a wide range of simple aggregation
operators, like weighted sum (and average), maximum or
minimum. Figure 1 shows three examples of utility func-
tions generated using different kinds of hypervolumes and a
weighted sum aggregation.

Finally, hypervolumes are defined to depend on a set of pa-
rameters (e.g. width, height, aspect ratio...), so that they
may be varied to control the properties of the resulting util-
ity functions. Though the generator API allows to have
complete control over all the parameters, sometimes it is
preferred to specify more wide-sense requirements for the
generated utility functions. In order to do this, we provide
sample templates which receive a set of higher-level param-
eters and generate utility functions from them.
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For instance, we provide a template which allows to generate
utility functions based on weighted hypercubes by specify-
ing probability distributions on the width, height and place-
ment of the hypercubes, along with the issue interdependen-
cies. The template works as shown in Algorithm 1. Vector
L =

{

lm
∣

∣m = 1, . . . , n;
∑

m lm = l
}

controls the dependen-
cies between issues, determining the number lm of m-ary
constraints generated (1). Each m-ary constraint is first
generated as a region R placed at the origin. The length
for each one of the m intervals IRi which comprise the con-
straint is generated by means of a probability distribution
dist length (2). Different probability distributions may be
used to generate these interval length values, like for in-
stance a uniform distribution in the interval [wmin, wmax].
In this way, we can control in a parametric way the correla-
tion length of the generated utility space. Once the different
intervals IRi have been generated, each interval is mapped
to one of the n issues in the negotiation domain using a
probabilistic correspondence map intervals (3). This cor-
respondence allows to control the degree of interdependency
between the different issues. Finally, the generated region
is moved throughout the utility space using a movement
vector δ generated by means of a multidimensional prob-
ability distribution dist move (4). Again, different prob-
ability functions may be used for the distribution of the
constraints throughout the agent utility space. The func-
tion restrict domain truncates the moved regions to bound
them to the domain D (5). Finally, the weights associated
to the constraints are also assigned with a probability distri-
bution dist weight (6), which can be a function of different
parameters, like constraint dimension or volume, thus al-
lowing to model different situations, like the fact that more
specific constraints have more utility, which is usually the
case in real scenarios.

Algorithm 1: Template for the generation of utility spaces
based on weighted hypercubes
Input:
n: number of issues in the utility space
D: utility space domain
L =

{

lm
∣

∣m = 1, . . . , n;
∑

m lm = l
}

: vector to control the distribution of1

hypercube dimensions
dist length(. . .): probability distribution function for the generation of the

intervals IRi
map intervals(. . .): probabilistic correspondence function to map intervals
to issues
dist move(. . .): probability distribution function for the distribution of
hypercubes throughout the utility space
dist weight(. . .): probability distribution function for the weights associated
to the hypercubes

Output:
C: constraint set
Ω: set of weights associated to the constraints

C = ∅;
Ω = ∅;
foreach lm ∈ L do

k = 0;
while k < lm do

R = ∅;
d = 0;
while d < m do

IR
d

= dist length(. . .);2

R = R ∪ IR
d

;
d = d + 1;

end

R′ = map intervals(R, . . .);3

δ = dist move(. . .);4

c = restrict domain(R′ + δ, D);5

C = C ∪ c;
ω = dist weight(. . .);6

Ω = Ω ∪ ω;
k = k + 1;

end

end

This template allows, for instance, to control the correla-
tion length of the utility spaces depending on the distribu-
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Figure 2: Generation of utility spaces with different corre-
lation lengths.

tions used by the generator and the distribution parameters
set. In particular, using a normal distribution of widths
with mean µw and using uniform probability distributions
for interval generation, issue mapping and constraint dis-
tribution through the utility space standard deviation σw

yields an approximate correlation distance ψ0.7 = µw + σw

for a threshold 0.7. Figure 2 shows constraint-based utility
spaces generated in this way.

The generation of utility functions by means of aggregation
of hypervolumes provides a flexible and expressive way to
model different kind of agent preferences, and allows to con-
trol to a great extent the complexity of finding high utility
regions within the utility space of an agents (by controlling,
for instance, correlation length). The complexity of the in-
dividual agent utility functions, however, does not fully ac-
count for the complexity of the scenario. We may have, for
instance, scenarios where agents may find very difficult to
determine their high utility regions, but where once these re-
gions have been found agreements are fairly straightforward,
because high utility regions for the different agents coincide.
On the other hand, we may have smooth utility functions
for the agent which make very easy to locate high utility
regions, but the negotiation may still be complex because
mutually acceptable regions are hard to find. A mechanism
to take into account the relationships between the utility
functions of the different agents is described in the following
section.
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3.2 Generating negotiation scenarios from util-
ity diagrams

As we stated above, utility diagrams are usually used to
characterize negotiation scenarios, since they provide a graph-
ical way to visualize the relationship between the potential
solutions to the negotiation problem and the utility values
these solutions would yield to the negotiation agents. Utility
diagrams are useful, for instance, to determine the existence
of mutually acceptable solutions (that is, solutions which
utilities are above the reservation values of all agents), or to
assess the relative efficiency of the solutions (that is, the dis-
tance from the solutions to the Pareto front). Finally, a wide
range of notions for optimal solutions (e.g. Nash solution,
Kalai-Smorodinsky, etc.) make use of the Pareto frontier.

What we propose here is to use these utility diagrams as
the input for scenario generation, so that we are able to
generate agent utility functions which match a given util-
ity histogram. In order to generate utility functions for a
given utility histogram, we propose to use shared hypervol-
umes. The idea behind shared hypervolumes is to include
similar hypervolumes in the utility functions of the differ-
ent agents, adjusting the parameters of the hypervolumes so
that they generate appropriate points within the utility his-
togram. For instance, if we want to generate utility functions
for a trivial utility histogram H(ū) for two agents, where the
histogram value is v for ū = {a, b} and 0 otherwise, we could
achieve this by generating two utility functions which share
a hypercube of volume v, with weight a for the first agent
and weight b for the second. Of course, as the number of
points in the utility diagram increase, the complexity of the
generation process also increases, since we have to take into
account the effect of the intersection between shared hyper-
volumes. What we do is to generate a first approximation
of the utility functions by dividing the utility space in non-
overlapping regions and assigning shared hypervolumes to
each region, and then feed this first approximation of the
utility diagram to a nonlinear optimizer which tries to min-
imize the approximation error.

An important property of this scenario generation strategy
is that the shape and parameters of the shared hypervolumes
may be varied so that additional properties of the generated
functions are satisfied. For instance, we can vary the volume
of the shared hypervolumes to adjust the correlation length
of the utility functions. Figure 3 shows an example for two
agents and weighted hypercubes, where we have generated
two scenarios with identical utility diagrams and different
correlation lengths. The type of hypervolumes or the aggre-
gation operators used may be adjusted as well.

4. USING THE SCENARIO GENERATOR TO
COMPARE OPTIMIZATION AND NEGO-
TIATION APPROACHES

We have seen that our generation tool is able to create ne-
gotiation scenarios according to high-level properties, such
as correlation length and the shape of the utility histogram.
However, the final purpose of the scenario generator is to
serve as a tool for the comparative analysis of negotiation
approaches. In this section we present a set of experiments
to validate its suitability for this purpose.

4.1 Experimental Settings
There are two main aspects which define a comparative anal-
ysis of negotiation approaches. The first is the set of different
circumstances in which the approaches are evaluated, that
is, the range of negotiation scenarios used to test them. In
our case, this range of negotiation scenarios is given by the
different dimensions the generator is able to control:

• Correlation distance, determined by the distribution
of hypervolume“widths” in the agent utility functions.
We have used correlation distances (relatives to the
width of the domain) ψ0.7 ∈ {0.01, 0.05, 0.1, 0.5}.

• Shape of the Pareto front. We have generated scenarios
corresponding to Pareto fronts of the form u2 = (1 −

u1)
1
β , with β ∈ {0.25, 0.5, 1, 2, 4}. This accounts for

highly competitive scenarios, zero sum scenarios, and
scenarios where high joint gains are achievable.

• Ratio of solutions in the Pareto front. Since we gen-
erate scenarios according to a given utility histogram,
we can control how many solutions we allow to be in
the Pareto front. In this case, we have varied the ra-
tio of Pareto-efficient solutions in the range ρPareto ∈
{0.01, 0.05, 0.1, 0.2, 0.5}.

• Epistasis. This first version of the generator is not able
to generate specific values of epistasis while controlling
the other parameters as well. We can, however, control
it roughly by modifying the distribution among the dif-
ferent issues of the hypervolume widths (asymmetric
hypervolumes yield lower epistasis for the same volume
values). So we have defined highly-epistatic scenarios,
which are generated using symmetric hypervolumes,
and lowly-epistatic scenarios, generated using asym-
metric ones.

In this range of scenarios, we have tested three negotiation
approaches:

• Similarity-based Negotiation Protocol (SBNP), based
on the protocol proposed in [14], with a time-based
concession strategy as described in [3]. This approach
relies in the assumption of a monotonic.

• Region-based Negotiation Protocol (RBNP), as described
in [16], which is designed for non-monotonic utility
spaces.

• Complete information (CI): The complete agent’s util-
ity functions were passed to a multiobjective nonlinear
optimizer based on genetic algorithms.

For each combination of scenario generation parameters, 10
different sets of utility functions were generated, and 10 ne-
gotiations were run for each generated function using the
approaches under evaluation. The negotiation mechanisms
were configured with the default values described in the ref-
erenced works. The nonlinear optimizer for the CI approach
was allowed to run for the same time that the slowest of the
other approaches took to complete the negotiation.
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Figure 3: Scenarios with the same utility diagram and different correlation lengths.

Experiments were coded in MATLAB and run on a 2x3.2Ghz
Qad-Core Intel Xeon processor with 4Gb memory using Mac
OS X 10.5.4.

4.2 Experimental Results
Tables 1 and 2 show the result of the experiments for the
highly-epistatic scenarios for different values of the ratio of
Pareto efficient solutions ρPareto. Each table show’s the
average social welfare optimality rates for the different ap-
proaches under evaluation, which are easy to compute since
the maximum social welfare is known a priori (via the utility
diagram). In general, the CI approach clearly outperforms
the other ones, which is reasonable taking into account that
it is using complete information. The results obtained by the
genetic algorithm are in most cases close to the optimum re-
gardless to the values of the different scenario parameters.
However, as the ratio of Pareto-efficient solutions decrease,
a significant difference can be observed when varying corre-
lation distance and β, with the difference in β being more
significant. This accounts for the fact that the crossover and
mutation operators we use are based on locality, and thus
for highly uncorrelated scenarios with few Pareto-efficient
solutions, it is harder for the algorithm to find them. Re-
garding RBNP and SBNP, we can see that, again, low ratios
of Pareto-efficient points make optimality values to decrease.
In this case, we can see that low β values make negotiations
fail, due to the fact that both approaches are driven by as-
piration values, and this parameter controls the amount of
potential solutions which fall above the aspiration value of
both agents. However, for high concentration of Pareto ef-
ficient solutions and high β values, the optimality of both
approaches tend to decrease for low values of the correla-
tion distance. This is because in this situation the ratio
of good solutions is high, but the low correlation distance
makes difficult for the mechanisms to search for the optimal
in an efficient manner, so solutions finally accepted are usu-
ally suboptimal. In contrast, in highly correlated scenarios,
this decrease of the optimality with beta is not observed. Fi-
nally, we can see that, while region-based negotiation works
better than similarity for lowly correlated scenarios, SBNP
outperforms RBNP in the highly correlated ones, due to
the fact that the aforementioned monotonicity assumption
holds. The results for lowly-epistatic scenarios are omitted,
since they did not change the general trends observed in the
highly-epistatic ones, besides rising optimality rates.

Table 1: Optimality rates in highly epistatic scenarios with
ρPareto = 0.05.

β

0.25 0.5 1 2 4

ψ0.7

0.01
0.0000 0.0000 0.2150 0.3350 0.9050 SBNP
0.0000 0.0000 0.5550 0.6900 0.7950 RBNP
0.7207 0.7483 1.0000 0.9900 1.0000 CI

0.05
0.0000 0.3150 0.3750 0.5700 0.8450 SBNP
0.0000 0.4550 0.5300 0.7550 0.8400 RBNP
0.2207 0.9650 1.0000 1.0000 1.0000 CI

0.1
0.0000 0.1150 0.6200 0.7300 0.7150 SBNP
0.0000 0.5650 0.5950 0.8200 0.8800 RBNP
0.5586 0.9700 0.9750 1.0000 1.0000 CI

0.5
0.0000 0.1700 0.5800 0.8300 0.9800 SBNP
0.0000 0.4400 0.6450 0.8800 0.9550 RBNP
0.6000 1.0000 0.9800 1.0000 1.0000 CI

Table 2: Optimality rates in highly epistatic scenarios with
ρPareto = 0.2.

β

0.25 0.5 1 2 4

ψ0.7

0.01
0.8280 0.9360 0.9310 0.0950 0.5250 SBNP
0.8200 0.9200 0.8862 0.5100 0.6850 RBNP
0.9880 0.9840 1.0000 1.0000 1.0000 CI

0.5
0.8400 0.7655 0.9862 0.1600 0.5700 SBNP
0.7120 0.8310 0.9241 0.5100 0.6550 RBNP
0.9600 0.9724 1.0000 1.0000 1.0000 CI

0.5
0.9040 0.8966 0.2000 0.3950 0.7350 SBNP
0.8000 0.8379 0.5000 0.5500 0.6850 RBNP
0.9840 0.9966 0.9550 1.0000 1.0000 CI

0.5
0.8800 0.9207 0.2250 0.6289 0.6750 SBNP
0.9120 0.7655 0.4100 0.6477 0.6150 RBNP
0.9960 1.0000 1.0000 1.0000 1.0000 CI

5. CONCLUSIONS AND FUTURE WORK
One of the main problems in complex automated negoti-
ation research is the difficulty to compare approximations
from different authors, due to the vast diversity of scenarios
considered by the different research groups working in this
field. In this paper we present a framework for the charac-
terization and generation of negotiation scenarios, with the
aim to fill this gap. First, we provide a set of metrics to
measure high-level scenario parameters, taking into account
both the structural properties of the agent utility functions,
and the complexity due to the relationships between the
utility functions of the different agents. Then, we present a
framework to generate scenarios in a parametric and repro-
ducible way. The generator is based on the aggregation of
hypervolumes to generate utility functions, and on the use
of shared hypervolumes and nonlinear regression to generate
negotiation scenarios from utility diagrams.

Though the experiments performed with the scenario gener-
ator yield satisfactory results, there is still plenty of research

15



to be done in this area. We are interested in exploring new
metrics, like smoothness or neutrality, and to refine the con-
trol of the generator over the current ones (e.g. fine-grined
control of epistasis). We are interested in creating templates
for the generation of the most usual scenarios in the liter-
ature, and in performing an exhaustive comparison of the
most relevant related works in all those scenarios. Finally,
we are working on a community website where generated sce-
narios may be stored and searched for according to their pa-
rameters, and where users of the framework can contribute
to its ongoing development both with scenarios to add to
the library and with extensions to the framework code.
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ABSTRACT
Most real-world negotiation involves multiple interdepen-
dent issues, which makes an agent’s utility functions com-
plex. Traditional negotiation mechanisms, which were de-
signed for linear utilities, do not fare well in nonlinear con-
texts. One of the main challenges in developing effective
nonlinear negotiation protocols is scalability; it can be ex-
tremely difficult to find high-quality solutions when there
are many issues, due to computational intractability. One
reasonable approach to reducing computational cost, while
maintaining good quality outcomes, is to decompose the con-
tract space into several largely independent sub-spaces. In
this paper, we propose a method for decomposing a contract
space into sub-spaces based on the agent’s utility functions.
A mediator finds sub-contracts in each sub-space based on
votes from the agents, and combines the sub-contracts to
produce the final agreement. We demonstrate, experimen-
tally, that our protocol allows high-optimality outcomes with
greater scalability than previous efforts.

Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the method of decomposing the contract space into
several largely independent sub-spaces. We investigate whether
and how this approach can be applied to the method of de-
composing a contract space.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Multi-agent System

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-Issue Negotiation, Interdependent Issues, Multi-agent
System

∗Visiting from Nagoya Institute of Technology, Japan.

1. INTRODUCTION
Negotiation is an important aspect of daily life and repre-
sents an important topic in the field of multi-agent system
research. There has been extensive work in the area of au-
tomated negotiation; that is, where automated agents nego-
tiate with other agents in such contexts as e-commerce[13],
large-scale deliberation[20], collaborative design, and so on.
Many real-world negotiations are complex and involve inter-
dependent issues. When designers work together to design
a car, for example, the utility of a given carburetor choice is
highly dependent on which engine is chosen. The key impact
of such issue dependencies is that they create qualitatively
more complex utility functions, with multiple optima. There
has been an increasing interest in negotiation with multiple
interdependent issues. [9, 17, 21, 22, 24]. To date, however,
achieving high scalability in negotiations with multiple in-
terdependent issues remains an open problem.

We propose a new protocol in which a mediator tries to
reorganize a highly complex utility space with issue inter-
dependencies into several tractable subspaces, in order to
reduce the computational cost. We call these utility sub-
spaces “Issue groups.” First, the agents generate interdepen-
dency graphs which capture the relationships between the
issues in their individual utility functions, and derive issue
clusters from that. While others have discussed issue in-
terdependency in utility theory[26, 2], these efforts weren’t
aimed at efficiently decomposing the contract space. Sec-
ond, the mediator combines these issue clusters to identify
aggregate issue groups. Finally, the mediator uses a non-
linear optimization protocol to find sub-agreements for each
issue group based on votes from the agents, and combines
them to produce the final agreement.

We also address a negotiation between Exaggerator Agents.
Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the issue-grouping method. We investigate whether
this approach can be applied to the method of decomposing
a contract space.
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The remainder of this paper is organized as follows. We de-
scribe a model of multiple interdependent issues negotiation
and the strength of interdependency between issues, and
the structure of interdependency graph. Next, we present a
clustering technique for finding issue sub-groups. We then
propose a protocol that uses this issue group information to
enable more scalable negotiations. We also describe the ef-
fect of Exaggerator Agents in multi-agent situations. We
present the experimental results, demonstrating that our
protocol produces more optimal outcomes than previous ef-
forts. Finally, we describe related work and present our
overall conclusions.

2. NEGOTIATION WITH NONLINEAR UTIL-
ITY FUNCTIONS

2.1 Multi-issue Negotiation Model
We consider the situation where N agents (a1, . . . , aN ) want
to reach an agreement with a mediator who manages the
negotiation from a man-in-the-middle position. There are M
issues (i1, . . . , iM ) to be negotiated. The number of issues
represents the number of dimensions in the utility space.
The issues are shared: all agents are potentially interested
in the values for all M issues. A contract is represented
by a vector of values ~s = (s1, ..., sM ). Each issue sj has a
value drawn from the domain of integers [0, X], i.e., sj ∈
{0, 1, , . . . , X}(1 ≤ j ≤ M). 1.

An agent’s utility function, in our formulation, is described
in terms of constraints. There are l constraints, ck ∈ C.
Each constraint represents a volume in the contract space
with one or more dimensions and an associated utility value.
ck has value wa(ck, ~s) if and only if it is satisfied by contract
~s. Function δa(ck, ij) is a region of ij in ck, and δa(ck, ij) is
∅ if ck doesn’t have any relationship to ij . Every agent has
its own, typically unique, set of constraints.

An agent’s utility for contract ~s is defined as the sum of the
utility for all the constraints the contract satisfies, i.e., as
ua(~s) =

P

ck∈C,~s∈x(ck) wa(ck, ~s), where x(ck) is a set of pos-

sible contracts (solutions) of ck. This formulation produces
complex utility functions with high points where many con-
straints are satisfied and lower regions where few or no con-
straints are satisfied. Many real-world utility functions are
quite complex in this way, involving many issues as well as
higher-order (e.g. trinary and quaternary) constraints. This
represents a crucial departure from most previous efforts on
multi-issue negotiation, where contract utility has been cal-
culated as the weighted sum of the utilities for individual
issues, producing utility functions shaped like hyper-planes,
with a single optimum.

Figure 1 shows an example of a utility space generated via a
collection of binary constraints involving Issues 1 and 2. In
addition, the number of terms is two. The example, which
has a value of 55, holds if the value for Issue 1 is in the range
[3, 7] and the value for Issue 2 is in the range [4, 6]. The util-
ity function is highly nonlinear with many hills and valleys.
This constraint-based utility function representation allows

1A discrete domain can come arbitrarily close to a ‘real’ do-
main by increasing its size. As a practical matter, many
real-world issues that are theoretically ’real’ numbers (de-
livery date, cost) are discretized during negotiations.

Figure 1: Example of a nonlinear utility space

us to capture the issue interdependencies common in real-
world negotiations. The constraint in Figure 1, for example,
captures the fact that a value of 4 is desirable for issue 1 if
issue 2 has the value 4, 5 or 6. Note, however, that this repre-
sentation is also capable of capturing linear utility functions
as a special case (they can be captured as a series of unary
constraints). A negotiation protocol for complex contracts
can, therefore, handle linear contract negotiations.

This formulation was described in [9]. In [17, 21, 22], a
similar formulation is presented that supports a wider range
of constraint types.

The objective function for our protocol can be described as
follows:

arg max
~s

X

a∈N

ua(~s). (1)

arg max
~s

ua(~s), (a = 1, . . . , N). (2)

Our protocol, in other words, tries to find contracts that
maximize social welfare, i.e., the summed utilities for all
agents. Such contracts, by definition, will also be Pareto-
optimal. At the same time, all the agent try to find contracts
that maximize their own welfare.

3. OUR NEGOTIATION PROTOCOL:
DECOMPOSING THE CONTRACT SPACE

It is of course theoretically possible to gather all of the indi-
vidual agents’ utility functions in one central place and then
find all optimal contracts using such well-known nonlinear
optimization techniques as simulated annealing or evolution-
ary algorithms. However, we do not employ such centralized
methods for negotiation purposes because we assume, as is
common in negotiation contexts, that agents prefer not to
share their utility functions with each other, in order to pre-
serve a competitive edge.

Our approach is described in the following sections.

3.1 Analyzing issue interdependency
The first step is for each agent to generate an interdepen-
dency graph by analyzing the issue interdependencies in its
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Figure 2: Interdependency Graph (50 issues)

own utility space. We define issue interdependency as fol-
lows. If there is a constraint between issue X (iX) and issue
Y (iY ), then we assume iX and iY are interdependent. If,
for example, an agent has a binary constraint between issue
1 and issue 3, those issues are interdependent for that agent.

The strength of an issue interdependency is captured by the
interdependency rate. We define the interdependency rate
between two issues as the number of constraints that inter-
relate them. The interdependency rate between issue ij and
issue ijj for agent a is thus Da(ij , ijj) = ]{ck|δa(ck, ij) 6=
∅ ∧ δa(ck, ijj) 6= ∅}.

Agents capture their issue interdependency information in
the form of interdependency graphs i.e. weighted non-directed
graphs where a node represents an issue, an edge represents
the interdependency between issues, and the weight of an
edge represents the interdependency rate between those is-
sues. An interdependency graph is thus formally defined as:
G(P, E, w) : P = {1, 2, . . . , |I|}(finite set),E ⊂ {{x, y}|x, y ∈
P}, w : E → R.

Figure 2 shows an example of an interdependency graph.

3.2 Grouping issues
In this step, the mediator employs breadth-first search to
combine the issue clusters submitted by each agent into a
consolidated set of issue groups. For example, if agent 1 sub-
mits the clusters {i1, i2}, {i3, i4, i5}, {i0, i6} and agent 2 sub-
mits the clusters {i1, i2, i6}, {i3, i4}, {i0}, {i5}, the mediator
combines them to produce the issue groups {i0, i1, i2, i6},
{i3, i4, i5}. In the worst case, if all the issue clusters sub-
mitted by the agents have overlapping issues, the mediator
generates the union of the clusters from all the agents. The
details of this algorithm are given in Algorithm1.

It is possible to gather all of the agents’ interdependency

Algorithm 1 Combine IssueGroups(G)

Ag: A set of agents, G: A set of issue-groups of each agent

(G = {G0, G1, ..., Gn}, a set of issue-groups from agent i is Gi =

{gi,0, gi,1, ..., gi,mi})
1: SG := G0, i := 1
2: while i < |Ag| do
3: SG′ := ∅
4: for s ∈ SG do
5: for gi,j ∈ Gi do
6: s′ := s ∩ gi,j

7: if s′ 6= φ then
8: SG′ := s ∪ gi,j

9: end if
10: SG := SG′, i := i + 1
11: end for
12: end for
13: end while

graphs in one central place and then find the issue groups
using standard clustering techniques. However, it is hard to
determine the optimal number of issue groups or the cluster-
ing parameters in central clustering algorithms, because the
basis of clustering for every agent can be different. Our ap-
proach avoids these weaknesses by requiring that each agent
generates its own issue clusters. In our experiments, agents
did so using the well-known Girvan-Newman algorithm[18],
which computes clusters in weighted non-direct graphs. The
algorithm’s output can be controlled by changing the “num-
ber of edges to remove” parameter. Increasing the value of
this parameter increases the number of issue dependencies
ignored when calculating the issue clusters, thereby result-
ing in a larger number of smaller clusters. The running time
of this algorithm is O(kmn), where k is the number of edges
to remove, m is the total number of edges, and n is the total
number of vertices.

3.3 Finding Agreements
We use a distributed variant of simulated annealing (SA)[11]
to find optimal contracts in each issue group. In each round,
the mediator proposes a contract that is a random single-
issue mutation of the most recently accepted contract (the
accepted contract is initially generated randomly). Each
agent then votes to accept(+2), weakly accept(+1), weakly
reject(-1) or reject(-2) the new contract, based on whether
it is better or worse than the last accepted contract for that
issue group. When the mediator receives these votes, it adds
them together. If the sum of the vote values from the agents
is positive or zero, the proposed contract becomes the cur-
rently accepted one for that issue group. If the vote sum is
negative, the mediator will accept the contract with proba-
bility P (accept) = e∆U/T , where T is the mediator’s virtual
temperature (which declines over time) and ∆U is the util-
ity change between the contracts. In other words, the higher
the virtual temperature, and the smaller the utility decre-
ment, the greater the probability that the inferior contract
will be accepted. If the proposed contract is not accepted, a
mutation of the most recently accepted contract is proposed
in the next round. This continues over many rounds. This
technique allows the mediator to skip past local optima in
the utility functions, especially earlier on in the search pro-
cess, in the pursuit of global optima.
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Algorithm 2 Simulated Annealing()

V alue(N): the sum of the numeric values mapped from votes to

N from all agents

1: S := initial solution (set randomly)
2: for t = 1 to ∞ do
3: T := schedule(t)
4: if T = 0 then
5: return current
6: end if
7: next := a randomly selected successor of current
8: if next.V alue ≥ 0 then
9: ∆E := next.V alue − current.V alue
10: if ∆E > 0 then
11: current := next
12: else
13: current :=next only with probability e∆E/T

14: end if
15: end if
16: end for

3.4 Exaggerator Agents
Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare [12]. What we need is an enhancement
of our negotiation protocol that preventing the exaggerator
votes and maximizing social welfare.

We guess that simply placing a limit on the number of
“strong” votes each agent can work well. If the limit is too
low, we effectively lose the benefit of vote weight informa-
tion and get the lower social welfare values that result. If
the strong vote limit is high enough to avoid this, then all an
exaggerator has to do is save all of its strong votes until the
end of the negotiation, at which point it can drag the media-
tor towards making a series of proposals that are inequitably
favorable to it. In the experiments, we demonstrate that the
limit of the number of “strong” voting is efficient of finding
high solutions.

4. EXPERIMENTAL RESULTS
4.1 Setting
We conducted several experiments to evaluate our approach.
In each experiment, we ran 100 negotiations. The follow-
ing parameters were used. The domain for the issue values
was [0, 9]. Each agent had 10 unary constraints, 5 binary
constraints, 5 trinary constraints, and so on. (a unary con-
straint relates to one issue, a binary constraint relates to two
issues, etc). The maximum weight for a constraint was 100
× (Number of Issues).

In our experiments, each agents’ issues were organized into
ten small clusters with strong dependencies between the is-
sues within each cluster. We ran two conditions: “1) Sparse
Connection” and “2) Dense Connection”. Figure 3 gives ex-
amples, for these two cases, of interdependency graphs and
the relationship between the number of issues and the sum
of the connection weights between issues. As these graphs

Figure 3: Issue Interdependencies

show, the“1) Sparse Connection”case is closer to a scale-free
distribution, with power-law statistics, while the “2) Dense
connection” is closer to a random graph.

We compared the following negotiation methods:

“(A) Issue-Grouping (True Voting)” applies the simulated
annealing protocol based on the agents’ votes, and performs
the negotiation separately for each one of the issue groups,
and combines the resulting sub-agreements to produce the
final agreement. All agents tell the truth votes. “(B) Issue-
Grouping (Exaggerator Agents)” applies the simulated an-
nealing protocol based on the agents’ votes with issue-grouping.
“All agent” tell the exaggerator votes. “(C) Issue-Grouping
(limitation)” is same situation with (B). However, the limi-
tation of ‘strong’ votes is applied. The number of limitation
of ‘strong’ votes is 250 which is the optimal number of lim-
itations in this experiments. “(D) Without Issue-Grouping”
is the method presented in Klein et.al[12], using a simulated
annealing protocol based on the agents’ votes without gen-
erating issue-groups.

In all these cases, the search began with a randomly gener-
ated contract, and the SA initial temperature for all these
cases was 50.0 and decreased linearly to 0 over the course
the negotiation. In case (D), the search process involved
500 iterations. In case (A)-(C), the search process involved
50 iterations for each issue group. Cases (A),(B),(C) and
(D) thus used the same amount of computation time, and
are thus directly comparable. The number of edges removed
from the issue interdependency graph, when the agents were
calculating their issue groups, was 6 in all cases.

We applied a centralized simulated annealing to the sum of
the individual agents’ utility functions to approximate the
optimal social welfare for each negotiation test run. Ex-
haustive search was not a viable option because it becomes
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Figure 4: Method of determining interdependency
graph

computationally intractable as the number of issues grows.
The SA initial temperature was 50.0 and decreases linearly
to 0 over the course of 2,500 iterations. The initial contract
for each SA run is randomly selected. We calculated a nor-
malized ”optimality rate” for each negotiation run, defined
as (social welfare achieved by each protocol) / (optimal social
welfare calculated by SA).

Our code was implemented in Java 2 (1.6) and was run on
a core 2-duo CPU with 2.0 GB memory under Mac OS X
(10.6).

4.2 Method of determining interdependency
graph

Figure 4 shows what the interdependency graph consists of
in an agent.

The method of determining the interdependency between
issues in the experiment is as follows.

(Step 1) Small issue-groups are generated by connecting a
part of the issues randomly.

(Step 2) The interface issues are decided randomly among
issues in each issue-group. The interface issues are for
connecting other small issue-groups. In small issue-
groups, only the interface issues can connect to other
issue-groups.

(Step 3) Each issue-group connects to other small issue-
groups. Specifically, all combinations of each issue-
group are searched for, and it is decided whether con-
nection or disconnection according to the possibility of
generating connections.

Figure 7: Number of edges to be progressively re-
moved (Clustering parameter) v.s. QF

4.3 Experimental Results
Figure 5 and 6 compare the optimality rate in the sparse
connection and dense connection cases. “(A) Issue-Grouping
(True Voting)” achieved a higher optimality rate than “(D)
Without Issue-Grouping”which means that the issue-grouping
method produces better results for the same amount of com-
putational effort. The optimality rate of the “(A) Issue-
Grouping (True Voting)” condition decreased as the num-
ber of issues (and therefore the size of the search space)
increased. “(B) Issue-Grouping (Exaggerator Agents)” is
worse than “(A) Issue-Grouping (True Voting)” because the
exaggerator agents generate reduced social welfares in multi-
agents situations. However, “(C) Issue-Grouping (limita-
tion)”outperforms“(B) Issue-Grouping (Exaggerator Agents)”,
therefore, the limitation of ‘strong’ votes is effective of im-
proving the social welfare reduced by the Exaggerator Agents.

The optimality rates for all methods are almost unaffected
by the number of agents, as Figure 6 shows. The optimality
rate for (A) is higher than (D) in the “1) Sparse Connec-
tions” case than the “2) Dense Connections” case. This is
because the issue grouping method proposed in this paper
can achieve high optimality if the number of ignored interde-
pendencies is low, which is more likely to be true in the “1)
Sparse Connections”case. Many real-world negotiations are,
we believe, characterized by sparse issue inter-dependencies.

We also assessed a quality factor measure QF = (Sum of
internal weights of edges in each issue-group) / (Sum of ex-
ternal weights of edges in each issue-group) to assess the
quality of the issue groups, i.e. the extent to which issue
dependencies occurred only between issues in the same clus-
ters, rather than between issues in different groups. Higher
quality factors should, we predict, increase the advantage of
the issue grouping protocols, because that means fewer de-
pendencies are ignored when negotiation is done separately
for each issue group. Figure 7 shows the quality factors
when the number of agents is 3 and 20, as a function of
the number of edges to be removed (which is the key pa-
rameter in the clustering algorithm we used).The number
of issues is 50 in the “1) sparse connection” case. “(a) Cen-
tral Method” is to gather all of the agents’ interdependency
graphs in one central place and then find the issue groups
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Figure 5: Comparison of optimality when the number of issues changes

Figure 6: Comparison of optimality when the number of agents changes

using the well-known Girvan-Newman algorithm[18]. “(b)
Our method” employs breadth-first search to combine the
issue clusters submitted by each agent into a consolidated
set of issue groups.

Comparing (a) with (b) in Figure 7, (b) proposed in this
paper outperforms (a). This is because that our method
is reflected by the idea of all agents to final issue-grouping
without fixing the clustering parameter as Figure8 showing.
QF becomes smaller when the number of edges to be pro-
gressively removed is larger. This is because the number of
issue-groups generated by each agent is higher as the num-
ber of edges to be progressively removed becomes larger.
The rapid decrease sometimes happens as the number of
edges to be progressively removed increases. These points
are good parameters for decomposing the issue-groups. In
real life, the utility of agents contains an adequate idea of
issue-groups, and agents can determine the optimal idea of
issue-groups by analyzing the utility spaces.

5. RELATED WORK

Even though negotiation seems to involve a straightforward
distributed constraint optimization problem [7, 19], we have
been unable to exploit existing work on high-efficiency con-
straint optimizers. Such solvers attempt to find the solu-
tions that maximize the weights of the satisfied constraints,
but do not account for the fact that the final solution must
satisfy at least one constraint from every agent.

Lin et al.[16] explored a range of protocols based on mu-
tation and selection on binary contracts. This paper does
not describe what kind of utility function is used, nor does
it present any experimental analyses, so it remains unclear
whether this strategy enables sufficient exploration of utility
space.

Klein et al.[12] presented a protocol applied with near opti-
mal results to medium-sized bilateral negotiations with bi-
nary dependencies, but was not applied to multilateral ne-
gotiations and higher order dependencies.

A bidding-based protocol was proposed by Ito et al.[9]. Agents
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Figure 8: Number of edges to be progressively re-
moved (Clustering parameter) v.s. The number of
issue-groups

generate bids by finding high regions in their own utility
functions, and the mediator finds the optimum combination
of submitted bids from the agents. However, the scalability
of this protocol is limited, and the failure rate of making
agreements is too high. By Fujita et al.[5], a representative-
based protocol for reducing the computational cost was pro-
posed based on the bidding-based protocol. In this method,
the scalability of agents was improved; however, the scala-
bility of issues was not sufficient. Fujita et.al[6] also focused
on the decomposing the contract space for highly scalable
negotiation, but the negotiation protocol and experimental
results are completely different.

Hindriks et al.[8] proposed an approach based on a weighted
approximation technique to simplify the utility space. The
resulting approximated utility function without dependen-
cies can be handled by negotiation algorithms that can ef-
ficiently deal with independent multiple issues, and has a
polynomial time complexity. Our protocol can find an op-
timal agreement point if agents don’t have in common the
expected negotiation outcome.

Fatima et al.[3, 4] proposed bilateral multi-issue negotiations
with time constraints. This method can find approximate
equilibrium in polynomial time where the utility function is
nonlinear. However, this paper focused on bilateral multi-
issue negotiations. Our protocol focuses on multilateral ne-
gotiations.

Zhang[27] presents an axiomatic analysis of negotiation prob-
lems within task-oriented domains (TOD). In this paper,
three classical bargaining solutions (Nash solution, Egali-
tarian solution, Kalai-Smorodinsky solution) coincide when
they are applied to a TOD with mixed deals but diverge if
their outcomes are restricted to pure deals.

Maestre et al.[21, 22, 23] proposed an auction-based pro-
tocol for nonlinear utility spaces generated using weighted
constraints, and proposed a set of decision mechanisms for
the bidding and deal identification steps of the protocol.
They proposed the use of a quality factor to balance utility
and deal probability in the negotiation process. This quality

factor is used to bias bid generation and deal identification,
taking into account the agents’ attitudes toward risk. The
scalability of the number of issues is still a problem in these
works.

Jonker et al.[10] proposed a negotiation model called ABMP
that can be characterized as cooperative one-to-one multi-
criteria negotiation in which the privacy of both parties is
protected as much as desired.

By Robu et al.[24], utility graphs were used to model issue
dependencies for binary-valued issues. Our utility model is
more general.

Bo et al.[1] proposed the design and implementation of a ne-
gotiation mechanism for dynamic resource allocation prob-
lem in cloud computing. Multiple buyers and sellers are
allowed to negotiate with each other concurrently and an
agent is allowed to decommitment from an agreement at the
cost of paying a penalty.

Lin et al. [14, 15] focus on the Expert Designed Negotia-
tors (EDN) which is the negotiations between humans and
automated agents in real-life. In addition, the tools for eval-
uating automatic agents that negotiate with people were
proposed. These studies include some efficient results from
extensive experiments involving many human subjects and
PDAs.

6. CONCLUSION
In this paper, we proposed a new negotiation protocol, based
on grouping issues, which can find high-quality agreements
in interdependent issue negotiation. In this protocol, agents
generate their private issue interdependency graphs and use
these to generate issue clusters. The mediator consolidates
these clusters to define aggregate issue groups, and inde-
pendent negotiations proceed for each group. We analyzed
the negotiation that one of agents may always vote truth-
fully, while the other exaggerates so that its votes are always
“strong.” We demonstrated that our proposed protocol re-
sults in a higher optimality rate than methods that don’t use
issue grouping, especially when the issue interdependencies
are relatively sparse. In addition, the limitation of “strong”
votes is effective of improving the reduced social welfare in
multi-agent negotiations between exaggerators.

In future work, we will conduct additional negotiation, af-
ter the concurrent sub-contract negotiations, to try to in-
crease the satisfaction of constraints that crossed issue group
boundaries and were thus ignored in our issue grouping ap-
proach. In the bilateral case, we found this can be done
using a kind of Clarke tax [25], wherein each agent has a
limited budget from which it has to pay other agents before
the mediator will accept a contract that favors that agent
but reduces utility for the others. We investigate whether
and how this approach can be applied to the multilateral
case.
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ABSTRACT
We propose correct and efficient algorithms for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model.
It is argued that the agents that use the model can be classi-
fied in to two extreme kinds: sensitive and insensitive. When
the negotiation is between a sensitive agent and many in-
sensitive agents, the optimal contract can be computed cor-
rectly and efficiently by avoiding Exhaustive Matching.

General Terms
Automated Negotiations

Keywords
Utility models, Multi-Issue Negotiations

1. INTRODUCTION
Automating negotiations over multiple and interdependent
issues is potentially an important line of research since most
negotiations in the real world have interdependent issues.
When a service provider negotiates on “When”to provide its
service, its utility for a certain time period (e.g. T1=8a.m-
10a.m) is dependent on the day of the week (Monday-Sunday).
It might have high utility for T1 on Mondays, but low utility
for T1 on Sundays. The issues, time of the meeting and day
of the meeting cannot be negotiated independently.

We propose correct and efficient algorithm for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model
proposed in [4]. The model is used to represent utility space
of agents negotiating over multiple and interdependent is-
sues. Some researchers [1, 2, 3, 5] have proposed algo-
rithms(protocols) for locating the optimal contract. The

proposed algorithms have their own merits, but they all fall
under the classification of heuristic algorithms when evalu-
ated solely from the view point of locating the optimal con-
tract correctly. The optimal contract is the contract that
has the maximum total utility. Total utility for a contract
is the sum of the utility of each agent for the contract.

Exhaustively Matching (EM) the entire utility space of the
agents is the only correct method of searching the optimal
contract. If the utility space of agents is assumed to be
generated randomly, then there is no method of making EM
efficient (faster) and still guarantee correctness. Therefore
we make intuitive assumptions about utility space of agents
that can be readily implemented by the basic building block
of the model - integer interval.

1.1 Constraints Based Utility Space Model
In the model, for agents negotiating on I number of issues,
an I dimensional coordinate system is created. An axis is
assigned to each issue. Each issue will have up to V number
of issue values. We represent these values by integers ranging
from 0 to V-1. Since the issues are interdependent, we will
have V I number of possible issue value combinations which
are called contracts. An example of a contract is [0,2,4]. 0
is the issue value for I1(Issue 1) , 2 is the issue value for I2
etc.

The utility of a contract is the sum of the weights of all
constraints satisfied at it. The constraint in Figure 1 has
a weight of 55. Contracts that have the values 4 and 5 for
issue 1, and the values 3, 4, 5 and 6 for issue 2 satisfy this
constraint. An agent creates its utility space by defining
multiple such constraints. Figure 2 shows a utility space
created by using more than 100 constraints.

2. BIDDING BASED ALGORITHM
Most previous works that used the constraints based util-
ity space model use the bidding based deal identification
method. Bids are high utility regions of the utility space of
an agent. In a nutshell, bidding is the process of identifying
and then submitting these high utility regions to a mediator
agent. The mediator agent matches the bids to find those
that have intersections and maximize the total utility. It
was first proposed in [4]. Since then, some researchers have
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Figure 1: A 2 issue Constraint

Figure 2: 2 issue utility space

improved the method to address various concerns.

The threshold adjusting algorithm [1] makes agents bid in
multiple rounds rather than once. In each round the thresh-
old value is lowered. The threshold value is the minimum
allowable utility value of a bid. The bidding is stopped at
the round a deal is found. This has the advantage of limiting
the amount private information revealed to a third party.

The representative based algorithm [2] improves scalability
of the bidding based algorithm by making only few agents
called representatives participate in the bidding process. Scal-
ability refers to the number agents that can be supported
by the negotiation system. When the number of issues in-
creases, the number of bids each agent has to make in order
to effectively sample its utility space also increases. This in
turn increases the time taken by the mediator to search an
intersection of the bids that maximizes the total utility. If
only the representatives are allowed to participate in the bid-
ding process, then negotiations with large number of agents
can be supported.

When the contract space is large, the failure rate (when
no bids from agents intersect) of a negotiation increases.
The iterative narrowing protocol [3] reduces failure rates by
narrowing down the region of the contract space that the
agents generate their bids from. It is especially effective
when the constraints of each agent are found being clustered
in some of regions of the contract space, rather than being
scattered all over the contract space.

Measures that reduce high failure rates that arise when agents
use narrow constraints was discussed in [5]. The product of
a bid’s utility and its volume was used as a criteria to se-
lect it to be submitted to the mediator or not. Usually high
utility valued bids tend to be small in volume and therefore
the chance that they will intersect with other agents’bids
is minimal. Adding the volume criteria for selecting a bid
for submission makes the deal identification process more
effective.

The problem is that the bid that contains the optimal con-
tract may not be submitted by at least one of the agents.
This might be because either that bid has low utility for that
agent, or the bid generation mechanism “missed”it. Hence,
there is always the chance that the optimal contract is not
found.

3. EXHAUSTIVE MATCHING
The only way we can guarantee that the optimal contract
is computed correctly is by making the agents submit their
entire utility space to the mediator. Then the mediator Ex-
haustively Matches(EM) the utility spaces. The problem is
that the computational time cost of this algorithm grows ex-
ponentially. If the number of issues of a negotiation grows
from I to I + 1, then the contract space grows from V I to

V I+1.

To reduce the time required to search for the optimal con-
tract, we have to look for patterns in the utility space of
agents that could be exploited to avoid EM. But observing
Figure 1 and Figure 2 reveals that based on the number
of constraints, their positioning and weight, utility spaces
can be of various types and very unpredictable. The only
predictable nature of them is that they are all based on con-
straints. Not just any constraint but integer interval based
constraints.

3.1 Single Issue Version of The Model
The constraint in Figure 1 is a two dimensional integer in-
terval of [4..5]x[3..6]. An example of a constraint in a nego-
tiation over three issues would be [2..5]x[1..3]x[6..9]. If we
were to define a single issue version of the model , then an
example of a constraint would be [1..3].

Since the single issue version is easy to understand we will
use it for analysis and experiments from here on wards. Since
integer intervals are the basic building unit of the model we
expect lessons learned from studying the single issue version
of the model will be applicable for the multi issue version of
it.

Figure 3 shows an agent that has 3 constraints :( C1, C2,
C3). Its utility for the issue value 5 is: Weight (C2) +
Weight (C3) = 10+20 = 30. Figure 4 is Figure 3 redrawn
by summing the weights of each constraint. S0, S1...,S6
are called Steps of the utility function. Notice that Steps
are also integer intervals. Also notice that, in a one issue
utility space the issue values themselves are contracts of the
negotiation. For example, in Figure 4, Step 4(S4) contains
the contracts 4 and 5.

To avoid EM, we have to make assumptions about utility
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space of agents. To do that we still focus on integer intervals.
This time the Steps are considered.

Figure 3: Many single issue constraints

Figure 4: Single issue utility space

3.2 Sensitive and Insensitive Agents
By focusing on the width of the Steps in the utility space
of an agent, we can ask some interesting questions. If an
agent’s utility space is dominated by Steps that are wide,
what does that say about the agent? What about when an
agent’s utility space is dominated by Steps that are narrow?

A Step contains consecutive contracts that the agent has
equal utility for. Let’s assume that consecutive contracts
are more similar to one other than contracts that are far
apart. Then, the fact that the agent has equal utility for
some consecutive contracts indicates that, the agent neglects
the small difference between the contracts. Based on this,
we can classify agents to two extreme kinds: sensitive and
insensitive. Here, the word, sensitive is used as it would be
used for a sensor. A sensitive sensor is capable of registering
small differences of the sensed signal.

Let’s define a branch to be a portion of the contract space
. For example, part of the contract space in Figure 4 con-
taining the contracts 0 to 3 ( [0..3]). In a branch, a sensi-
tive agent will have four Steps. One for each contract. An
insensitive agent will have one Step that contains all the
contracts.(Currently we assume that the end points of the
branches of all agents are the same and known).

Consider negotiation for scheduling a meeting of 30 minutes
duration. A busy person is sensitive about every 30 minute
interval. While he is relatively free at 10:30 a.m., he might
have very important meeting at 11:00 a.m.. Therefore, he
would not like to have the meeting at 11:00 a.m. (Figure 5).
Hence, a busy person’s utility space will be made of narrow
width Steps. A free (not busy) person groups his time with
large intervals (Figure 6). Hence, his utility space will be
made up of wide Steps.

Figure 5: A busy person

Figure 6: A free(not busy) person

4. COPE ALGORITHM
The COPE algorithm can locate the optimal contract more
efficiently than EM when the COPE condition is satisfied.
In Figure 7, a branch of a utility space is shown for four
agents (Ag. h, i ,j and k). The optimal contract could be
found by taking Step C of Ag. h (the Step with the highest
utility) and matching it with the steps of Agents i,j and
k. We call this method of computing the optimal contract
COPE. Since the agents i,j and k have just one Step in the
branch, just using the maximum Step of Ag. h is sufficient
to correctly compute the optimal contract. For a branch the
COPE condition is satisfied if,

1. Only The first agent in the matching lineup is sensitive;
that is, it has many narrow width Steps.

2. The rest agents in the matching lineup have one wide
Step which contains all the contracts in the branch.

Figure 7: COPE Algorithm
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5. FASTCOPE ALGORITHM
The COPE condition imposes stringent requirements on util-
ity spaces of agents. One that could be relaxed is the require-
ment that the sensitive agent has to be the first in the match-
ing line up. FASTCOPE algorithm is designed to compute
the optimal contract efficiently even when the position of
the sensitive agent is not known before hand. FASTCOPE
algorithm extends COPE by rearranging the agents so that
COPE condition is created before matching. The steps in
the algorithm are:

• Step 1: Identify the sensitive agent.

• Step 2: Rearrange the agents. That is, place the sensi-
tive agent in the first position of the matching lineup.

• Step 3: Execute COPE on the rearranged agents.

To identify the sensitive agent, FASTCOPE samples the first
Step of each agent for the branch and reads its width. The
Step from the sensitive agent will have narrower width than
the insensitive agents.

6. EM VS COPE VS FASTCOPE
We compared the efficiency of EM, COPE and FASTCOPE
experimentally. The result is shown in Figure 8. As ex-
pected COPE and FASTCOPE have higher efficiency than
EM. COPE (20%) means, 20% percent of the branches sat-
isfy the COPE condition. The rest violate it by not having
the first agent as the sensitive one. When COPE is applied
on branches that do not satisfy the condition, it makes no
efficiency improvement. FASTCOPE rearranges the agents
and applies COPE to compute the optimal contract for the
branch.

The experiments were done at sensitivity ratios of 1:1000,
1:100, 1:10 and 1:5. For example sensitivity ratio of 1:5
means, the entire contract space is divided into branches
that contain 5 contracts each. In a branch only one agent
is sensitive and it will have 5 narrow width Steps. Each of
the remaining agents will have one wide Step. When the
total number of the contracts in the negotiation is 10000,
there will be 10000/5 , 2000 branches. In figure Figure 8,
for each algorithm, the average of the running time costs of
the algorithm at the four sensitivity ratios is shown. The
number of agents in the negotiation was 4.

Figure 8: EMvsCOPEvsFASTCOPE

7. CONCLUSION AND FUTURE WORKS
This paper reports a preliminary work for designing efficient
algorithm that compute the optimal contract correctly for
agents that use the constraints based utility space model.
The integer interval was identified to be the basic building
unit of the model, and it was used to define the single is-
sue version of it. It was argued that , the agents that use
this model can be classified to two extreme kinds:sensitive
and insensitive. COPE; an algorithm that computes the op-
timal contract for a branch correctly and efficiently when
the first agent is sensitive and the others are insensitive is
proposed. FASTCOPE extends COPE by relaxing the re-
quirement that the sensitive agent has to be the first agent
in the matching lineup.

Although FASTCOPE is efficient it imposes stringent re-
quirements on the utility of space of agents. We aim to re-
lax these requirements and increase the applicability of the
algorithm. These include:In a branch, allowing more than
one agent to be sensitive. Allowing some insensitive agents
to have exceptional narrow width Steps. Allowing agents to
independently branch their utility space. That is handling
the case where the end points of the branches from each
agent are not exactly the same (overlap).

Another future work is to extend the algorithm developed
for the single issue version of the model to work for multiple
issue version of it.
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ABSTRACT
Automated Trust Negotiation (ATN) is a mechanism to es-
tablish mutual trust between service providers and users in
an open network environment like the Internet. In this pa-
per, we propose Bidirectional Private Policy Matching based
on Additively Homomorphic Encryption Systems
(BPPM/AHES) as an ATN negotiation protocol where uni-
directional private policy matching based on additively ho-
momorphic encryption systems is repeated. In this protocol,
the problems of existing ATN protocols such as unnecessary
disclosure of credentials or that of policies before the nego-
tiation succeeds are solved.

Keywords
trust, Automated Trust Negotiation (ATN), additively ho-
momorphic encryption, private policy matching

1. INTRODUCTION
In an open network environment like the Internet, service
users and providers are unknown to each other. Before us-
ing or providing services, the users will determine whether
the providers are trustworthy, and the providers also wish
to restrict their services only to trustworthy users. In this
case, it is not easy for the users and the providers to negoti-
ate for establishing mutual trust, because both of them want
to disclose their own information only to the trust parties.
Thus, the negotiations may fail unless they communicate
successfully. Also, since the number of services has become
enormous, it is very costly to establish mutual trust every
time they encounter. To tackle this issue, Automated Trust
Negotiation (ATN) [4] has been proposed to establish mu-
tual trust between strangers. ATN is a process to automat-
ically obtain the sequence to exchange credentials without
violating disclosure policies that each party has. In existing
ATN protocols [4], there is some problem such as unneces-

sary disclosure of credentials or that of policies before the
negotiation succeeds.

2. ATN BASED ON ENCRYPTION SYSTEMS
2.1 Automated Trust Negotiation
We consider a situation where a user is trying to use a ser-
vice, where we have two parties, a service user and a service
provider. We refer them as a client and a server respec-
tively in this paper. Both of them have their own digital
credentials and policies. Credentials are digital data that
contain such information as identifiers, names, contacts, af-
filiations, etc., and that are certified by trusted third par-
ties. Policies are rules that define the condition on which the
client and the server disclose their credentials to the counter-
part. The server also has service-governing policies (SGP’s)
which gives on what condition the client is allowed to use
the service. We use the same notation presented in [5] to
describe these policies. We denote the service by R, creden-
tials of the client by C1, . . . , Cnc , credentials of the server
by S1, . . . , Sns , where nc and ns are the numbers of creden-
tials possessed by the client and the server respectively. The
policy for disclosing the client’s credential C is denoted by
C ← FC(S1, . . . , Sns), where FC(S1, . . . , Sns) is a Boolean
expression with the server’s credentials S1, . . . , Sns . Simi-
larly, SGP is denoted by R ← FS(C1, . . . , Cnc). The policy
for disclosing the server’s credential S is denoted by S ←
FS(C1, . . . , Cnc), where FS(C1, . . . , Cnc) is a Boolean ex-
pression with the client’s credentials C1, . . . , Cnc . The pol-
icy of credential C will be satisfied, if the logical expression
FC(S1, . . . , Sns) evaluates to true, after substituting propo-
sitional symbols of already disclosed credentials by the other
party with true in the logical expression FC(S1, . . . , Sns). If
the policy of credential C is satisfied, it can be disclosed to
the other party. Table 1 is an example of policies. If cre-
dential C can be disclosed without any credentials from the
other party, such a policy is denoted by C ← true, and C
is called an unprotected credential. On the other hand, if
credential C cannot be disclosed under any circumstances,
such a policy is denoted by C ← false. If SGP is satisfied
as the result of negotiation, the service becomes available to
the client.

The aim to perform ATN is to automatically obtain the se-
quence to exchange credentials without violating the policies
in order to establish mutual trust between the client and the
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Table 1: Example of Policies

client’s policies server’s policies
C1 ← true R ← (C3 ∧ C4) ∨ C6

C2 ← true S1 ← true
C3 ← S1 ∧ S2 S2 ← (C1 ∧ C2) ∨ C3

C4 ← S3 ∨ S4 S3 ← C3 ∨ C4

C5 ← S2 ∨ S3 S4 ← C4

C6 ← false S5 ← C1 ∧ C5

server. Various protocols and strategies have been proposed
to achieve this [3, 4, 5]. Below, we briefly describe two basic
strategies presented in [4], i.e., Eager Strategy and Parsimo-
nious Strategy.

2.1.1 Eager Strategy
In Eager Strategy [4], the client and the server in turns ex-
change all the currently unlocked credentials. As credentials
are exchanged in the negotiation, more credentials become
unlocked. The negotiation succeeds when SGP is satisfied
by the credentials disclosed by the client, and fails when the
client terminates the negotiation because either of the ne-
gotiating parties has no credential to newly disclose. The
negotiation process of Eager Strategy is very simple, and
none of the server’s and the client’s policies is directly dis-
closed. The weakness of Eager Strategy is in that credentials
are disclosed regardless of their contribution to the success
of the negotiation, i.e., some of them may be unnecessarily
disclosed. They are disclosed even if the negotiation fails.

2.1.2 Parsimonious Strategy
Eager Strategy is an approach to disclose all the creden-
tials that can be disclosed, and no party sends requests for
credentials to the other. In contrast, in Parsimonious Strat-
egy [4], each party first repeats sending requests for cre-
dentials to the counterpart, and discloses their credentials
only after finding the sequence to exchange them for satisfy-
ing SGP. There is no disclosure of unnecessary credentials,
but the existence of some policies that are not related to
the sequence to exchange credential may be known to the
counterpart. Most of protocols in the studies of ATN are
extensions of Parsimonious Strategy, and suffers from the
same weakness.

2.2 Private Policy Matching
Our goal is to create a new protocol that discloses neither
credentials nor policies that do not contribute to the suc-
cessful trust negotiation. In this section, we explain pri-
vate policy matching [2] which is used in the process of
BPPM/AHES. Kursawe et al. [2] proposed private policy
matching based on the ElGamal cryptosystem [1]. It is a
process to find out whether a match exists between the cre-
dentials that a client can disclose (client’s preference) and
those requested by a server (server’s preference). A set of
matching credentials is called a matching policy. In pri-
vate policy matching, both of parties encrypts their prefer-
ences, and from it they calculate a matching policy using
the additively homomorphic property of the ElGamal cryp-
tosystem. Because of this, they cannot acquire additional
knowledge about the preference of the counterpart. Private

Table 2: Example of Negotiation Table

client’s policy DF MP

C1 ← true 0 true
C2 ← true 0 true
C3 ← S1 ∧ S2 0
C4 ← S3 ∨ S4 0
C5 ← S2 ∨ S3 0
C6 ← false 0

policy matching enables us to derive a minimal set of cre-
dentials for the client to disclose, when only the server has
policies and the client’s credentials are unprotected. In the
following section, we extend this to be applied in such bidi-
rectional scenarious as in ATN, where both of the server and
the client have policies.

3. BIDIRECTIONAL PRIVATE POLICY
MATCHING

Our new protocol is derived by repeating private policy
matching described in the previous section. Below, we call
the original private policy matching as the server-side policy
matching, where the server’s policies are tested against the
client’s credentials. On the other hand, we call the oppo-
site where the client’s policies are examined as the client-
side policy matching. By repeating the server-side and the
client-side policy matchings alternately, the information ex-
change needed in ATN is achieved. We call our new proto-
col as Bidirectional Private Policy Matching based on Addi-
tively Homomorphic Encryption Systems (BPPM/AHES).

3.1 Negotiation Tables
This protocol takes the policies of the client and the server
as its input, and outputs the sequence to exchange creden-
tials. The process fails when no sequence is feasible. Both
the client and the server maintain negotiation tables as ex-
emplified in Tables 2. These tables are updated through the
negotiation process. A negotiation table has three columns,
Policy, DF and MP. DF and MP stand for disclosing flag
(DF) and matching policy (MP) respectively. A value in
DF means whether the credential is disclosed (DF= 1) or
not (DF= 0) in the negotiation process. The values in DF
are initialized to 0, which means that all credentials are not
disclosed before the negotiation. MP is for storing encrypted
matching policies found in the negotiation. For a policy the
right-hand side of which is true, its MP column is initialized
to “unprotected.”

3.2 Protocol
The BPPM/AHES protocol consists of two stages, policy
negotiation and credential exchange. Below, we explain each
of them.

3.2.1 Policy Negotiation
In policy negotiation, the client and the server repeat the
server-side and the client-side policy matchings alternately
until they know that whether there is a sequence to exchange
credentials which satisfies SGP. If there is such a sequence,
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Figure 1: Policy Negotiation

they move to credential exchange. If there is not, the nego-
tiation process is terminated. The flowchart of policy nego-
tiation is depicted in Figure 1.

(1) First, the client requests a service to the server. The
server sends a message that indicates the start of the
server-side policy matching as reply.

(2) The client sets the value in DF of the credential that
can be disclosed at that time to 1. The client and
the server perform the server-side policy matchings in
parallel for each of the server’s policies. If a matching
policy exists, the server sets the policy of the credential
to true, and writes the matching policy in the column
of MP of the credential.

(3) The server determines if SGP is satisfied. If it is
satisfied, which means that the negotiation succeeds,
the negotiating party move to credential exchange de-
scribed in the next section. If it is not satisfied, move
to (4).

(4) The server determines if there is any credential which
can be disclosed and whose DF is 0. If there is such a
credential, move to (5). If there is no such a credential,
the negotiation fails and is terminated.

(5) The server sets the value in DF of the credential that
can be disclosed at that time to 1. The client and
the server perform the client-side policy matchings in
parallel for each of the client’s policies. If a matching
policy exists, the client sets the policy of the credential
to true, and writes the matching policy in the column
of MP of the credential.

(6) The client determines if there is any credential which
can be disclosed and whose DF is 0. If there is such a
credential, move to (2). If there is no such a credential,
the negotiation fails and is terminated.

Figure 2: Credential Exchange

3.2.2 Credential Exchange
After policy negotiation, the client and the server first find
the sequence to exchange credentials and then exchange cre-
dentials according to it. The flowchart of credential ex-
change is given in Figure 2.

(1) The server generates a request for credentials which
must be disclosed by the client, for the server to sat-
isfy the client’s request for the server’s credentials or
service, and sends it to the client. A request for cre-
dentials is generated by matching policies stored in the
columns of MP in the negotiation table. The matching
policies are decrypted by the client and the server if
needed to generate a request for credentials.

(2) The client determines if the request from the server
is satisfied by the client’s unprotected credentials. If
it is satisfied, move to (5). If it is not satisfied, move
to (3).

(3) The client generates a request for credentials which
must be disclosed by the server, for the client to sat-
isfy the server’s request for the client’s credentials, and
sends it to the server.

(4) The server determines if the request from the client
is satisfied by the server’s unprotected credentials. If
it is satisfied, move to (5). If it is not satisfied, move
to (1).

(5) The client and the server find the sequence to ex-
change credentials by reversing previous requests for
credentials and exchange credentials according to it.

(6) When SGP is satisfied by the credentials which is dis-
closed last, the negotiation finishes in success.

3.3 Example of the Negotiation
In this section, we explain an example of negotiation in
BPPM/AHES by showing the changes of the negotiation
tables using the policies given in Table 1. The negotiation
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Table 3: The Negotiation Table of the Client after
the First Server-side and Client-side Policy Match-
ings

client’s policy DF MP

C1 ← true 1 true
C2 ← true 1 true
C3 ← S1 ∧ S2 true 0 EC3

C4 ← S3 ∨ S4 0
C5 ← S2 ∨ S3 true 0 EC5

C6 ← false 0

Table 4: The Negotiation Table of the Server after
the First Sever-side and Client-side Policy Match-
ings

server’s policy DF MP

R ← (C3 ∧ C4) ∨ C6

S1 ← true 1 true
S2 ← (C1 ∧ C2) ∨ C3 true 1 ES2

S3 ← C3 ∨ C4 0
S4 ← C4 0
S5 ← C1 ∧ C5 0

tables of the client and the server after the first server-side
and client-side policy matchings are shown in Table 3 and 4.

At the first server-side policy matchings, since the client
can disclose the credentials C1 and C2, the values in DF of
credentials C1 and C2 in Table 3 are set to 1. When the
first server-side policy matchings are performed, the server
knows that there is a matching policy that satisfied the pol-
icy of server’s credential S2. The server sets the policy of
the credential S2 to true, and writes a matching policy ES2

in the column of MP of the credential S2. After that, the
server starts the first client-side policy matchings with the
client, because SGP is not satisfied and there are creden-
tials S1 and S2 which can be disclosed newly. At the first
client-side policy matchings, since the server can disclose
the credentials S1 and S2, the values in DF of credentials
S1 and S2 in Table 4 are set to 1. When the first client-side
policy matchings are performed, the client know that there
are matching policies that satisfied the policy of client’s cre-
dentials C3 and C5 respectively. The client sets the policies
of the credentials C3 and C5 to true, and writes matching
policies EC3 and EC5 in the columns of MP of the creden-
tials C3 and C5 respectively. After that, the client starts
the second server-side policy matchings with the server, be-
cause there are credentials C3 and C5 which can be disclosed
newly. Similarly, the second server-side and client-side pol-
icy matchings are performed. The negotiation tables of the
server after the third server-side policy matchings are given
in Table 5. Since SGP is satisfied at the third server-side
policy matchings, they move to credential exchange.

In credential exchange, the server first decrypts ER coop-
erating with the client, and obtains ER = {C3, C4}. After
that, the server generates a request for credentials C3 ∧ C4,
and sends it to the client. Since the request is not satis-

Table 5: The Negotiation Table of the Server after
Third Server-side Policy Matchings

server’s policy DF MP

R ← (C3 ∧ C4) ∨ C6 true ER

S1 ← true 1 true
S2 ← (C1 ∧ C2) ∨ C3 true 1 ES2

S3 ← C3 ∨ C4 true 1 ES3

S4 ← C4 true 0 ES4

S5 ← C1 ∧ C5 true 1 ES5

fied by the client’s unprotected credentials, the client de-
crypts EC3 and EC4 cooperating with the server, and ob-
tains EC3 = {S1, S2} and EC4 = {S3} respectively. Then,
the client generates a request for credentials S1 ∧ S2 ∧ S3,
and sends it to the server. Similarly, the server and the
client repeat requests for credentials each other. When the
client received a request for credentials C1 ∧ C2, the client
terminates a request because the server’s request is satis-
fied by the client’s unprotected credentials. The client and
the server find the sequence to exchange credentials C1,
C2 → S1, S2 → C3 → S3 → C4 → R by reversing previous
requests for credentials and exchange credentials according
to it. When SGP is satisfied by the exchanged credentials,
the negotiation finishes in success.

4. CONCLUSION
In this paper, we proposed BPPM/AHES as an ATN nego-
tiation protocol. We extended private policy matching pro-
posed in a preceding work, and defined the server-side policy
matching and the client-side policy matching. In each policy
matching, calculations are performed using additively homo-
morphic properties of the ElGamal cryptosystem. The nego-
tiation process proceeds by repeating the server-side and the
client-side policy matchings alternately, until the sequence
to exchange credentials without violating policies is found.
In this protocol, the problems of existing ATN protocols are
solved, and there is no disclosure of credentials and policies
before the negotiation succeeds.
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ABSTRACT
There has been an increased interest in automated negotiation sys-
tems for their capabilities in reaching an agreement through negoti-
ation among autonomous software agents. In real life problems, the
negotiated contracts consist of multiple and interdependent issues
which tend to make the negotiation more complex. In this paper, we
propose to define a set of similarity measures used to compare the
agents’ constraints, their utilities as well as their certainties over
their possible outcomes. Precisely, we define a decision value-
structure which gives a reasonable condition under which agents
having similar decision structures can form a group. We think
that a collaborative approach is an efficient way to reason about
agents having complex decisional settings, but show similarities in
their constraints, preferences or beliefs. Agents will tend to col-
laborate with agents having the same decisional settings instead of
acting selfishly in a highly complex and competitive environment.
Therefore, formed groups will benefit from the cooperation of its
members by satisfying their constraints as well as maximizing their
payoffs. Under such criterion, the agents can reach an agreement
point more optimally and in a collaborative way. Experiments have
been performed to test the existence of the decision value-structure
as well as its capability to describe an agent’s decision structure.
Moreover, the decision value-structure was used for group forma-
tion based on measuring the agents similarities.

Keywords
Multi-attribute Utility, Decision Theory, Multi Objective Optimiza-
tion, Uncertainty, Group Formation, Collaboration.

1. INTRODUCTION
Automated negotiation is a process by which a group of autonomous
agents interact to achieve their design objectives. The agents will
attempt to reach an agreement and satisfy their contradictory de-
mands through a bargaining process. In an agent-mediated sys-
tem, an important aspect of the solution is the way in which the
agents negotiate to propose contracts to each other, under specific
requirements and constraints. In real life situations, agents have
to take into consideration multiple attributes simultaneously dur-

ing the bargaining process, such as the quality, quantity, delivery
time, etc. ([7]). In this paper, we propose to define a new approach
to tackle the complexity of utilities with interdependent attributes
by providing a new model for multi-attribute utility representation,
which takes into consideration the possible interdependencies be-
tween attributes. In the real world, we believe that people who
have similar decisional structures could reach an agreement more
smoothly. In this paper, we propose also a new criterion for po-
tential consensus under a number of assumptions, related to the
decisional structure of the agent, defined as a Constraint-Utility-
Belief space. In fact, adopting a cooperative behavior during the
negotiation process may improve the performance of the individ-
ual agents, as well as the overall behavior of the system they form,
by achieving their own goals as a joint decision [6]. To put this
straightforward, we assume that our model is based on the follow-
ing assumptions. In real life, we believe that people who have simi-
lar beliefs (certainties) relative to a specific situation, as well as the
same preferences (utilities) over the same common outcomes (at-
tributes), could reach a reasonable agreement more optimally and
smoothly, than if they had different certainties or preferences over
different outcomes. To support this claim, we first describe the dif-
ferent aspects of the decisional structure of an agent as a Constraint-
Utility-Belief space. Most importantly, we define a unique decision
value-structure for each agent, which gives a reasonable criterion,
under which agents’ decisional structures can be compared. We
point out that in the case of similar decision value-structures, the
agents can form groups, as an initial step before making coalitions
which satisfy their constraints and maximizes their payoffs. There-
fore, the agents can reach an agreement point more efficiently and
in a collaborative way. We argue that the advantage of such ap-
proach is that the agents having strongly different decisional struc-
tures i.e. different decisional value-structures, do not need to co-
operate. Instead, they can find agents having similar settings, and
form groups.
At this end, in the case of multi-attribute negotiation we must de-
fine the main components needed by an agent to make decisions.
There have been several works in the context of multi-attribute ne-
gotiation for its importance in commerce as well as in social inter-
actions. Different approaches and methods were proposed to an-
alyze multi-attribute utilities for contracts construction. [12] pre-
sented the notion of convex dependence between the attributes as
a way to decompose utility functions. [9] proposed an approach
based on utility graphs for negotiation with multiple binary issues.
[2] proposed also a model inspired from Bayesian and Markov
models, through a probabilistic analogy while representing multi-
attribute utilities. The same idea was firstly introduced by [11]
through the notion of utility distribution, in which utilities have
the structure of probabilities. Most importantly, a symmetric struc-
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ture that includes both probability distributions and utility distribu-
tions was developed. In another work by [8], a similar concept was
introduced by the notion of Expected Utility Networks which in-
cludes both utilities and probabilities. [3] proposed a model which
takes into consideration the uncertainties over the utility functions
by considering a person’s utility function as a random variable, with
a density function over the possible outcomes.
The remainder of the paper is structured as follows. Section 2 pro-
vides a formal definition of our model based on the notion of De-
cisional Structure of an agent with all its components. Section 3
describes a method used by the agent to construct his proposals
or contracts, based on his decisional structure. In section 4, we
elaborate a possible usage of the decisional structure as a group
formation criterion through a set of similarity metrics. In section
5, we generalize the use of those metrics by the Decisional Value-
Structure function as a method to compare agents’ decisional struc-
tures. The experiment and the analysis of the model are described
in section 6. In section 7 we present the conclusions and outline the
future work.

2. DECISIONAL STRUCTURE
In the following section we will provide an overview of our theo-
retical model used for the representation of an agent’s decisional
structure. In fact, by decisional structure, we refer to the overall
settings or information used by the decision maker i.e. the agent, to
elaborate his strategies and make his decisions. In other words, the
decisional structure of an agent can be considered as the decision
space of the agent representing all his possibilities. Therefore, we
will initially focus on a microscopic representation of an agent i
regardless from his environment or the other agents. The macro-
scopic view will be developed in the next sections in the case of
group formation. An agent i will define a unique tuple (1) repre-
senting his decisional structure.

Agent i 7−→ (Gi, Ui, Bi) (1)

This tuple will be characterized by the attributes and constraints of
the agent i, represented by a Directed Acyclic Graph Gi [2] . The
preferences of the agents will be represented by the utilities Ui of
the agent. The agent’s beliefs or certainties will be represented by
the probability distributions Bi. The tuple can be described in the
equations (2).

Gi = (Vi, Ei) (2a)

Vi = {vij ∼ aij}nj=1, a
i
j = (x1, ...xmj ) (2b)

Ei = Vi × Vi = {dj}md
j=1 (2c)

Ui = {ui
j}nj=1 (2d)

Bi = `i = {`ij}nj=1 (2e)

= { `ij [pi,j,1 : xi,j,1, . . . pi,j,m : xi,j,mj ] }
n
j=1 (2f)

The static structure of the agent in (2a), defines the attributes (2b)
and the dependencies (2c) between them, represented as a Directed
Acyclic Graph Gi. In (2b), each vertexvij of the graph corresponds
to an attribute aij i.e. an outcome or a prospect. An attribute aij
is defined as a vector of the possible values that can be taken by
aij . In the discrete case aij (2b) and in the continuous case aij ∈
[x1, xmj ]. In (2c), constraints are represented by the arcs {dj}md

j=1 ⊂
Gi, and connect the vertices representing dependent attributes. But,
it can be used to compute the utilities by mirroring the same de-
pendence structure as a conditional dependence between the util-
ities [11]. This dependence structure could be updated dynami-

cally during a negotiation process when the agents are collabora-
tive. In (2d), utility functions Ui of the agent i represented as a
function-vector {ui

j}nj=1. In our model, we assume that the deci-
sion maker i.e. the agent follows the axioms of normative utility
functions (

∑
j u

i
j = 1) [13]. Furthermore, we assume that the used

utility functions have the properties of non-satiation (u′ij(x) > 0)
and risk aversion (u′′ij(x) < 0) [5]. Each utility function ui

j is de-
fined over a domain Dj related to the possible values taken by the
attribute aj as in (3).

ui
j : Dj → [0, 1] (3)

Another important aspect of our utility functions is that they are de-
fined in term of dependencies as conditional utilities, and therefore
embody the notions of conditional probabilities and probability in-
dependence [11]. In our model, we use this representation for the
computation of the utilities in respect to the functional dependen-
cies. We refer the reader to the work proposed in [2] and related to
conditional utilities and the conditional independence. In (2e), the
belief or the certainty structure Bi of an agent i characterized by
all the lotteries {`ij}nj=1 (2f) where each lottery `ij is associated to
the attribute aij , according to the probability distribution pi,j over
the outcomes xi,j,k ∈ aij with

∑nj

k=1 pi,j,k = 1. The lotteries of
an agent i over the set of attributes aij can be represented by the
lottery (4).

`ij [pi,j,1 : xi,j,1, . . . , pi,j,n : xi,j,n] (4)

The probabilities pi,j are the subjective probabilities [1] of the
agent i and represent his certainties about the possible outcomes.
Each probability associated to an attribute, can be seen as a random
variable over the possible values of an attribute [3].

3. UTILITY MAXIMIZATION
3.1 Contract Representation
An agent i will represent a contract ~Ci as a vector of attributes
~Ci = ( ai1, . . . , a

i
j , . . . , a

i
n ) , where each attribute corresponds to

a vertex vij ∈ Vi as we mentioned in (2b). Therefore, finding the
optimal contract ~C∗ having the highest utility among the contracts
~Ci∈N , corresponds to solving the objective function (5) [4].

~C∗ = argmax
~C

∑
i∈N

ui( ~Ci) (5)

However, we assume the existence of a number of constraints, de-
scribing the relations or interdependencies (2c) between the at-
tributes [2] . In other words, to compute the utility of a single at-
tribute, we must take into consideration the other attributes. Mean-
while, we will associate a specific utility function ui to each at-
tribute ai, with i as an attribute index. The overall utility of a con-
tract ~C can be represented in the equation (6).

u( ~C) =
∑
ai∈~C

ui(ai/{aj 6=i}) (6)

It is obvious that none of the overall attributes are needed to com-
pute the utility of a single attribute. It means that based on a graph-
ical representation of the interdependencies (2c), we will only use
the connected attributes. The edges di representing the constraints
or dependencies between attributes. Since the dependencies will
exist only between the connected vertices, each vertex ai will de-
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Table 1: Conditional Utility functions
Utility ui Conditional Utility ui/{uj}7j=1

u1 u1

u2 u2

u3 u3/{u1, u2}
u4 u4

u5 u5/{u3, u4}
u6 u6

u7 u7/{u4}

pend on its parent vertices giving the equation (7).

u( ~C) =
∑
ai∈~C

ui(ai/π(ai)) (7)

Where π(ai) is the set of all the parents of the vertex ai. This repre-
sentation means that in order to compute the utility of the attribute
ai we need to use the attributes π(ai) and their corresponding util-
ity functions. Therefore, the objective function (5) can be written
as ~C∗ = argmax~C u(

~C). The final equation is described as in
(8)

~C∗ = argmax
~C

∑
ai∈~C

ui(ai/π(ai)) (8)

3.2 Example of Contract Construction
Suppose we are dealing with contracts with a number of attributes
equal to 7. The goal is to find the optimal contract ~C∗ satisfying
the interdependencies between the attributes. Each agents will or-
ganize his attributes and constraints in a specific way defined by the
Directed Acyclic Graph in Figure 1.
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uu
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Figure 1: Constrained attributes

As we can see in Figure 1, the DAG will represent the contract
from a statical viewpoint i.e. the structure and the interdependen-
cies between the attributes. Moreover, a utility function ui has to
be associated to each vertex vi, in order to compute the utility of the
corresponding attribute ai. Based on the graph in Figure 1, the
interdependency relations between attributes will yield the same
dependencies among the utility functions as shown in Table 1.
In the concrete case, an attribute aj can have different values and
therefore will be represented by a vector ai = {xj ∈ Di}

mj

j=1

Maximizing an utility function ui is finding the value x∗ ∈ Di

representing the maximal extrema of ui such as in (9).

ui(x
∗) ≥ ui(xk) ∀k ∈ [1,mj ] (9)

Thus, we are interested in maximizing the sum of the increasing
functions Ui. Therefore, the optimal contract can be written as
a vector ~C∗ = ( a∗1, . . . , a

∗
i , . . . , a

∗
n ), where a∗i is the maxima

of ui. The optimal contract’s utility is computed according to the
equation (10).

u( ~C∗) =
∑
i∈N

ui(a
∗
i /π(a

∗
i )) (10)

3.3 Agent’s Optimal Contract
The algorithm Optimal_Contract is used to find the optimal
contract based on the attributes (2b), the utilities (2d), and the in-
terdependencies among the attributes (2c).

Algorithm: Optimal_Contract
Input: DAG Gi of the Agent i
Output: Optimal Contract C∗

1 begin
2 Topologic ordering of ai according to π(ai) ;
3 for k ← |π(ai)|min to |π(ai)|max do
4 foreach ai satisfying |π(ai)| = k do
5 Find a∗i satisfying

ui(a
∗
i ) ≥ ui(xj), j ∈ [1,mi], xj ∈ Di ;

6 end
7 end
8 C∗ ← ( a∗1, a

∗
2, a
∗
3, . . . , a

∗
i , . . . , a

∗
n ) ;

9 return C∗

10 end
Algorithm 1: Optimal contracts finding

Based on our example in Figure 1, the vertices ai will be sorted
according to the number of parents i.e. the in-degree deg−(ai),
which will describe the number of constraints of the related at-
tribute.
An attribute ai with deg−(ai) = 0 is called a free attribute, as the
corresponding utility is computed only by using the attribute ai’s
utility function ui without any reference to other utility functions
or other attributes. Similarly, an attribute with deg+(ai) > 0 is
a non-free attribute or dependent and is subject to deg+(ai) con-
straints. The topological sort of the attributes ai within Gi is based
on the deg−(ai).

4. GROUP FORMATION
4.1 Group formation metrics
The nonlinearity and the complexity of the agents preferences is ba-
sically due to the different constraints they are trying to satisfy, as
well as their utilities and the way probabilities are affected. Gen-
erally, our approach tends to capture and analyze the similarities
between the agents constraints, utilities and beliefs. Being part of
the same group means that all its members have close constraints,
utilities and certainties. Therefore, it is important to define the sim-
ilarity functions, to be able to compare between two agents’ de-
cisional spaces and decide whether they can be part of the same
group or not.

4.2 Metric related to the Graph
We define the measure sim as the degree of similarity between two
graphs G1 and G2. In other words, how much the agents whose
graphs G1 and G2 share constraints and how close they are in term
of vertices and edges. The similarity measure is calculated by mul-
tiplying the Jaccard indexes relative to the vertices and the edges
sets.
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This similarity measure can be definied by (11).

sim : G×G→ [0, 1] (11a)
sim(G1, G2) = JV (V1, V2)× JE(E1, E2) (11b)

=
|V1 ∩ V2|
|V1 ∪ V2|

× |E1 ∩ E2|
|E1 ∪ E2|

(11c)

The extreme value sim(G1, G2) = 0 means that the agent 1 and
the agent 2 do not have the same attributes nor share common
constraints, whereas sim(G1, G2) = 1 means that they have ex-
actly the same attributes and the same constraints. Therefore, it
might be interesting to consider these similarities’ measures be-
tween agents’ DAGs as a way to form groups and maybe think of
potential coalitions. Under these hypothesis, each agent i has a vec-
tor SGi = {sim(Gi, Gk)}k 6=i containing all the similarity values
between his graph Gi and the other agents’ graphs Gk. Using this
vector, the agent can selected the set of agents having similar struc-
tures (attributes, constraints). This can be a first step for a future
collaboration between the agents being part of the same group.

4.3 Metric related to the Utilities
As mentioned in 2., the utility functions have the properties of non-
satiation and are risk aversion . Under these hypothesis, we assume
that the behavior of these functions can be used to compare the
utilities of two agents. Let’s consider two utility functions ui :
Di → [0, 1], uj : Dj → [0, 1] and the domain D = Di ∩Dj . If
we suppose that ui and uj are similar (ui ∼ uj), then (12) holds.

ui ∼ uj =⇒ ∀x ∈ D,∃ε, |ui(x)− uj(x)| ≤ ε (12)

The main purpose of comparing utility functions is finding a simi-
larity measure enabling us to say whether two agents have the same
preferences over the same outcome (attribute) or not. We can pro-
pose a way to compare two agents’ utilities by comparing their ac-
cumulated wealth for the same outcome x. In this case, we have
to consider the utility value as if it was a cumulative distribution
function. Comparing two agents’ utilities ui and uj is comparing
their integrations from the last preferred outcome xmin up to the
outcome x. Therefore (13) holds.

ui ∼ uj =⇒
∫ x

xmin

(ui(x)− uj(x)) dx ' 0 (13)

The comparison measure of two utility functions ui and uj up to
an outcome x will be defined as in (14).

sim(ui, uj) =

∫ x

xmin

(ui(x)− uj(x)) dx (14)

We notice that both utilities have the same type i.e. correspond to
the same outcome (domain). Therefore comparing the overall n
utilities Ui and Uj of two agents i and j can be determined as in
(15).

sim(Ui, Uj) =

n∏
k=1

sim(ui
k, u

j
k) (15)

4.4 Metric related to Beliefs
The agents have different certainties when it comes to decide about
the outcomes and their related preferences. Therefore, we think
about a way to compare these certainties defined as lotteries. Two
agent i and j will share the same certainties (beliefs) for an outcome
ak, if their respective probability distributions pik and pjk over ak
are close or similar. A possible way to consider this similarity is to

use the cross entropy. Assuming that for a certain attribute ak =
(x1, ...xmk ) and for two lotteries `ik and `jk relative to two agents
i and j, each lottery will correspond respectively to a probability
distributions pik and pjk over ak. Therefore, we can define the cross
entropy of pik and pjk as in (16).

sim(pik, p
j
k) =

mk∑
l=1

pik(xl) log[p
j
k(xl)] (16)

Generally, each agents i has a vector of lotteries `i over the n at-
tributes and defined as his certainty structure Bi as in (2e) and (2f).
We can define a similarity measure comparing two agent’s certainty
structures Bi and Bj as in (17).

sim(Bi, Bj) =

n∑
k=1

sim(pik, p
j
k) (17)

5. DECISIONAL STRUCTURE VALUE FUNC-
TION

After defining the agent’s metrics we will focus on how to ex-
ploit them in order to satisfy the common constraints as well as
the possible similarities between the agents’s belief and utilities.
For example, the agents sharing the same constraints (same graphs
structure) and having the same beliefs (same probability distribu-
tions over the outcomes) could form groups by opening and shar-
ing their utility functions according to a specific strategy. As in
(1), the tuple (Gi, Ui, Bi) of an agent i describes his constraints,
preferences and beliefs in a way that identifies the agent from the
other agents’ configurations. However, if the values Gi, Ui and
Bi represent in a unique way their corresponding agent, it is pos-
sible to construct a bijective function f which maps each agents
tuple (Gi, Ui, Bi) to a unique real value dsvi ∈ [0, 1] identifying
the agent in a unique way. This function can be assimilated to an
Hilbert Space Filling Curve [10] or can be constructed by a bi-
nary expansion of real numbers. This function can be described by
the definition (18).

f : DJ ×DU ×DP → [0, 1] (18a)
f(gi, ui, pi) = dsvi (18b)

The domains DJ , DU and DP of f are equal to [0,1]. We will
develop in the next section the proper use of this function f in the
context of group formation and agents clustering. The function
f must be injective i .e. for two agents i and j having different
settings (gi, ui, bi) and (gj , uj , bj) we will have (19).

(gi, ui, bi) 6= (gj , uj , bj) =⇒ f(gi, ui, bi) 6= f(gj , uj , bj) (19)

It is possible to prove not only the existence of an injection from
[0, 1]3 to [0, 1] but also a bijection. In fact, that bijection exists and
it can be proven using the Cantor-Bernstein-Schroeder theorem as
following :

i. There is an injection g satisfying (20).

g : [0, 1]→ [0, 1]3 (20a)
g(x) = (x, 0, 0) (20b)

ii. It is possible to define an injection h : [0, 1]3 → [0, 1] given
by representing the tuple (x, y, z) in binary and then inter-
lacing the digits before interpreting the result in base 10,
yielding the image of (x, y, z). Using binary for the rep-
resentation of the strings is a way to avoid the 9’s with the
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dual representation in base 10 and therefore, preserving the
injection.

iii. Based on i . and ii . , we can apply the Cantor-Bernstein-
Schroeder theorem, which states that if there are two injec-
tions g and h as in (21a) and (21b),

g : A→ B (21a)
h : B → A (21b)

Then there is a bijection f between A and B. Hence, it is
possible to find f satisfying the condition (19).

An interesting usage of the function f is in a mediated negotiation
where a mediator is gathering bids from the agents and trying to
find the optimal contract. In fact, f provides to the mediator a way
to group the agents based on their similarities without the need for
the agents to open their utility spaces or their constraints. In this
situation, the mediator can establish a feedback mechanism to up-
date his constraints according to the settings of the agents. The
convergence to the optimal solutions, ensuring social welfare, will
be based upon the agents’ feedback as well as the initially estab-
lished mediator’s constraints. Each agent i has only to provide the
decisional structure value (dsv) which can be seen as a fuzzy in-
dicator about the agent’s Constraint-Utility-Belief Space ([0, 1]3).
Once these values are collected, the mediator can analyze and pre-
dict the possibilities of consensus reaching and the convergence to
final contract. This is done before starting any utility space sam-
pling or any computationally consuming task, used for example in
[4].
The main advantage of using the dsv is to avoid bidding when the
bids are likely to yield a complex and nonlinear utility space. Fur-
thermore, having nonlinear space tends to make the consensus find-
ing process complex, especially when there is a mediator. In fact,
the mediator has to collect the bids and explore a highly nonlin-
ear utility space in order to find the Pareto optimal contracts [4].
Instead, we can find an appropriate grouping of the bids based on
certain criteria (including similarity measures) defined by the deci-
sional structure values of the agents.
As we mentioned above, f is bijective, as the agents do not need
to open their utilities nor their belief nor their constrains. Instead,
they can know exactly how close and how similar their decision
structures are and hence to decide whether to go for a collaborative
strategy or act regardless from the others. The closeness degree be-
tween two agents stands upon the monotonicity of f when mapping
to [0,1]. The function f can capture enough information that allows
a meaningful clustering of agents based on their common interests
: Constraints, Attributes, Utilities, Belief, Certainty, etc.

6. EXPERIMENTAL ANALYSIS
In the following experiments, we provide a method for group for-
mation based on the similarity between the decisional values of the
agents. We also provide an application of the decisional structure
in the design of vectors called vectorial design.
Given the set C = {di}Ni=1 of all the decisional structure values
(dsv) of the agents, we propose to partition C into k disjoint clus-
ters using the K-Means algorithm. Finding the optimal partitioning
of C corresponds to finding the k clusters as in (22).

C∗ = argmin
C

k∑
i=1

∑
dj∈Ci

‖dj − δi‖2 (22)

Each cluster or group Ci is centered around a specific structure
value δi which refers to the agent having the decisional structure
that is more likely to describe the common features of the group
Ci.

Agents

D
ec

is
io

na
l S

tr
uc

tu
re

 V
al

ue
s

0.03126

0.29522

0.49606

0.68774
0.75856
0.82614

C
oa

lit
io

ns
' c

en
tr

oi
ds

1 4 7 10 14 18 22 26 30 34 38 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Agents’ dsv values

Figure 2 illustrates a process of grouping of 45 agents, based on
their decisional structure values i.e. dj . We propose to partition
these agents into 6 groups each of which is characterized by a group
centroid δi. The resulting groups can be described by their corre-
sponding centroids which are represented in Figure 2 in blue, on
the right axis.

The decisional structure values δi were generated based on the
function f defined in 5., which was applied on the Gi, Ui and
Bi variables of the 45 agents. The corresponding DSVs must be
unique for each agent. Under such hypothesis, the injectivity of
the function f will stand and there will be no risk for collisions i.e.
two different agents, having different decisional structures but hav-
ing the same DSV. Based on the original tuples Gi, Ui and Bi, we
found that the agents being part of a group (Cj , δj) had close con-
straints, utilities and probabilities. This result was evaluated firstly
by comparing the similarities between two agents decisional struc-
ture values dsvi and dsvj based on the distance d = |dsvi−dsvj |.
Secondly, we measured the distances dg = sim(Gi, Gj), du =
sim(Ui, Uj) and db = sim(Bi, Bj), defined in 4. We found that
the distance d is related to the distances dg, du and db. The result
confirms the characteristics of the bijective function f defined in
5., and its ability to describe uniquely an agent’s decisional struc-
ture.
In Figure 3, we can see that there is a number of agents grouped
around the same dsv value. In this case, the agents 2, 3, 4, 5 and 9
can be grouped into a cluster G based on the assumption that they
have common decisional structures. According to this information,
and whenever its shared to the overall agents (1 to 10), the agents
not being part of G can choose to join this group or not. In case
they accept to join, it is probable that they should start adapting
and updating their constraints, preferences and beliefs similarity to
the initial agents of G.

Generally, The decisional value structures are constructed based on
the graphical constraints, utilities and beliefs. As we can see in
Figure 4, the red curve represents the graphical constraints val-
ues, the utilities are represented by the green curve, and the blue
values represent the beliefs. The overall similarity is represented
by the black curve. For example, we can see that the agent 1 and
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Table 2: Agents’ vectors values
Agents x1 x2 V alues
A1 0.12 0.96 0.05683
A2 1.87 1.83 0.68083
A3 1.34 1.45 0.38637
A4 1.41 1.57 0.44097
A5 2.32 2.92 1.36735
A6 2.39 3.01 1.4523

the agent 6 have close DSVs, and this can be seen based on the
closeness in the red, green and blue curves i.e. the graphical con-
straints points, utilities and belief points.

A concrete application of such method of comparison is the case
of vectorial design, where a user designs graphically a vector. A
vector can represent an object, a product, or more generally a multi-
attribute contract. As an example, 6 agents are designing 6 different
vectors. For the sake of simplicity, we can think about the vector
as a 2-points vector with components x1 and x2. In Table 2 we
can see that for each two values x1 and x2 we can represent the
design vector by a unique value, locating the agents design in the
overall designed vectors. This will give an idea about the degree of
closeness between the designed vectors. The degree of closeness of
the agents’s vectors can be provided as a shared information to the
overall agents while they are designing their vector. In fact, sharing
such information dynamically and in real time can give the agents
an idea on how their vectors are located in the group, and how
to change their vector accordingly. This information can be rep-
resented as in Figure 5, and is available to each agent. On the x
axis, we have the agents’s indexes from 1 to 6 represented by 6 bars,
and on the y axis we represent their corresponding values. When-

Function Evaluation

Agents

D
S
V

0.0000001

0.2174933

0.4825384

0.8421851

1.83361371.8668049
2.0000005
2.1631562

1 2 3 4 5 6

Figure 4: DSVs comparison

ever an agent changes his vector, the representation in Figure 5
will change accordingly. Such method of collaborative design will
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Figure 5: Proximity of the designed vectors

give the agents the possibility to orient their design based on the
overall group’s preferences, ensuring social welfare. It is possi-
ble to extend the simple vector represented by x1 and x2 to a more
complex vector. Another example of vectorial design is represented
in Figure 6 where 7 agents are designing 7 vectors. At differ-
ent times, each agent Ai will provide a vector VAi = (Xi1, Xi2),
where Xij are real values. During the design process, each agent
Aj can visualize the similarities between his design and the other
agents Ak 6=j as in Figure 7. Therefore Aj can update his vector
according to the evolution of the other agents’ designs.

The represented values in Figure 7 correspond to the designed
vectors represented in Figure 6. We can can see that the vectors
VA6 and VA5 are graphically close in Figure 6, therefore their
corresponding values in Figure 7 will be also close (1.30555 and
1.4523). The same comparisons can be done to the other vectors,
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Figure 6: Vectors representation

Figure 7: Decisional Values representation

allowing the agents to see the likelihood and the convergences of
the global design.

7. CONCLUSION
The contributions of this paper are two-fold. On the one hand, we
proposed a theoretical model to reason about multi-attribute con-
tracts representation taking into consideration the attributes’ inter-
dependencies. On the other hand, we provided the notion of de-
cisional structure value as a main criterion for agents’ decisional
settings comparison. The defined structure-value captures the main
similarities between the agents’ decisional settings. We have shown
that it is possible to represent such decisional setting as a Constraints-
Utilities-Belief space. Furthermore, we provided an example of
usage of such value in the case of group formation based on the
degree of similarity between the agent’s decisional spaces.

As a future work, we would like to consider the performances of
the method used to generate the decisional structure value. More-
over, we would like to elaborate a complete negotiation process, by
defining a concrete protocol based on the formed groups. For ex-
ample, we can develop the case where the agents being part of the
same group can open and share their utility functions.
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ABSTRACT
Endowing the negotiation agent with a learning ability such
that a more beneficial agreement might be obtained is in-
creasingly gaining emphasis in agent negotiation. In this pa-
per, we present a novel bilateral negotiation model based on
Bayesian learning to enable self-interested agents to adapt
negotiation strategies dynamically during the negotiation
process. Specifically, we assume that two agents negotiate
over a single issue based on time-dependent tactic. The ne-
gotiation agent has a belief about the probability distribu-
tion of its opponent’s negotiation parameters (i.e., the dead-
line and reservation offer). By observing the historical offers
of the opponent and comparing them with the fitted offers
derived from a regression analysis, the agent can revise its
belief using the Bayesian updating rule and can correspond-
ingly adapt its concession strategy to benefit itself. By being
evaluated empirically, this model shows its effectiveness for
the agent to learn the possible range of its opponent’s private
information and alter its concession strategy adaptively.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
systems

General Terms
Learning, Algorithm

Keywords
Agent negotiation, Bayesian learning, Concession strategy

1. INTRODUCTION
In recent years, researchers in multiagent systems have

paid their increasing attentions to the integration of learn-
ing techniques into agent negotiation [2] [1] [8] [5] [11]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

this type of learning circumstances, agents need adapt them-
selves to the changes of opponents and/or the environment
through learning in order to achieve a satisfactory result.
However, due to the essence of competition, privacy and un-
certainty in real life negotiation [3], negotiators are always
unwilling to reveal their private information (e.g., param-
eters such as the deadline, reserve price, or strategy pro-
files) to their opponents in case of being forced to a worse
outcome, thus making learning in negotiation a challenging
problem.

In current literature, a number of approaches have been
developed by employing agents learning methods into ne-
gotiation process. Zeng and Sycara proposed an approach
based on Bayesian learning to learn the opponent’s reserve
price [12]. Their approach assumed that agents have priori
knowledge about the opponent’s bidding strategy. This as-
sumption may not always be true in real-world negotiation.
Hindriks and Tykhonov also proposed an approach to dis-
cover opponent’s information [5] by using Bayesian learning
based on the assumptions that 1) agents know about the
opponent’s weights ranking on negotiation issues and 2) all
agents’ preferences can be modelled by three proposed func-
tions, which may impact the use of this approach in a wide
range when these assumptions conflict with the real world
situations. Ren and Zhang introduced a regression analysis
approach to predict the opponent’s concession strategy by
using the historical offers only [9]. However, their approach
did not give further advice on how to adapt agent self’s con-
cession strategy based on the learning results. Brzostowski
and Kowalczyk also presented a way to estimate partners’
behaviors in different types of agents, based only on the his-
torical offers in the current negotiation [3]. However, the
accuracy of classification on partners’ types may impact the
accuracy of prediction results. The current challenging is-
sues in agent learning during negotiation include (1) how to
design a learning method without priori knowledge of the
opponent’s private information, (2) how to develop an effec-
tive learning strategy only based on the historical offers of
current negotiation, and (3) how to produce a constructive
guidance from learning to adapt agent’s negotiation behav-
iors so as to achieve a better negotiation outcome.

This research attempts to solve the above three changing
issues. In this paper, we propose a novel model by combin-
ing Bayesian learning and a regression analysis approach
to dynamically learn the opponent’s negotiation deadline
and reservation offer. Firstly, a negotiation agent defines
some regions and evenly initialize the probability of each
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region. The probability here indicates how likely that the
opponent’s deadline and reservation offer are located in the
corresponding region. By using the predefined regions, the
agent can have some estimations on the opponent’s negoti-
ation behaviors. Secondly, by using the regression analysis,
the differences between the opponent’s real negotiation be-
havior and the agent’s estimation results are calculated. The
more similar between the opponent’s real behavior and an
estimated behavior, the more likely that the opponent’s real
deadline and reservation offer will be located in the corre-
sponding region. Thirdly, based on the similarities between
the opponent’s real behavior and the estimated behaviors,
the probabilities assigned to each region will be updated dy-
namically through Bayesian learning. Lastly, the agent will
propose a countermeasure for each estimated behavior of the
opponent, and all countermeasures will be combined based
on the likelihood of each estimated behavior. The combined
result will be employed by the agent to perform a reasonable
reaction. During the negotiation, each region’s probability
will be dynamically updated and gradually close to the real
situation. Thus, the agent will also gradually adapt its nego-
tiation strategy to reach a better negotiation outcome. Our
model only use historical offers in the current negotiation,
without requesting prior knowledge about the environment
and the opponent.

The remainder of this paper is organized as follows. In
Section 2, we recap the general negotiation model, espe-
cially the basic principles of the time dependent tactic. The
proposed learning model is introduced in detail in Section 3,
and in Section 4 empirical evaluation and analysis are pre-
sented. The discussion and related work are given in Section
5. Finally the paper is concluded and future work is outlined
in Section 6.

2. A GENERAL NEGOTIATION MODEL
Before laying out our learning model, we give a brief de-

scription of a time dependent, bilateral single-issue negotia-
tion model, which is widely used in many applications. Let
i (i ∈ {b, s}) represent a negotiator, i.e., b for a buyer agent
and s for a seller agent. Both agents have an initial price IPi
and reserve price RPi for the negotiating issue. The interval
[IPi, RPi] indicates the range of all the possible agreements,
and can be normalized in-between [0, 1] using a utility func-
tion. In this paper, we choose the widely accepted linear
utility function [4] shown in Equation 1:

ui(pi) =
pi −RPi
IPi −RPi

i ∈ {b, s} (1)

where pi is the value of an offer in the range of [IPi, RPi].
In time dependent tactic, agent i concedes its utility ui(t)

under the time constraint. At the beginning of negotiation,
agent i has its highest utility of 1 for the initial price. As the
negotiation proceeds on, the utility ui(t) decreases according
to a family of polynomial functions [4] given by Equation 2.

ui(t) = 1− (
t

Ti
)� i ∈ {b, s} (2)

where Ti is the deadline of agent i and � is the conces-
sion parameter. � > 1, 0 < � < 1 and � = 1 represent
three concession strategies called Conceder, Boulware, Lin-
ear, respectively, signifying different concession rates in a
negotiation process.

When � is settled, the utility ui(t) can be computed dur-
ing the negotiation. As a result, the agent can give a counter
offer at time t according to the following offer generating
equation [4].

Offeri(t) = RPi + ui(t)(IPi −RPi) i ∈ {b, s} (3)

Combining Equation 2 and 3, the offer generating Equation
3 is rewritten as Equation 4.

Offeri(t) = IPi + (RPi − IPi)(
t

Ti
)� (4)

In a non-learning negotiation setting, once an agent sets
the value of �, the agent will keep this value unchange
through the negotiation process, without any adaptation to
the dynamic environment or the revelation of opponent’s
private information. However, if the agent can learn some
useful information from the opponent during the negotia-
tion, it will be able to adapt its original concession strategies
and gain more benefits to produce good outcomes for nego-
tiation. In the following section, we will present an adaptive
negotiation model using regression analysis and Bayesian
learning to enable agents to alter their concession strategies,
thereby a better outcome will be obtained.

3. AN ADAPTIVE NEGOTIATION MODEL
In this section, an adaptive negotiation model is proposed.

This model includes two parts which are a learning mech-
anism and an adaptive concession strategy. Each part will
be introduced in detail by Subsections 3.2 and 3.3, respec-
tively. In this paper hereinafter, the discussion is taken from
the perspective of the buyer agent unless otherwise specified.
However, such a discussion will not lose the generality of our
model, i.e. a seller agent can also use our model to learn its
opponent’s behaviors.

3.1 Model Description
As we can see from Equations 4, the parameters of dead-

line and reserve price are two main factors dominating the
negotiation process and outcomes. If agents can obtain the
information about these two parameters from the opponent,
a better strategy can be employed to increase agents’ bene-
fits and/or the negotiation efficiency.

Definition 1. Let x-axis represent negotiation time and
y-axis represent the negotiation price. A detecting region
DetReg is a rectangle in this two-dimensional area to present
an estimation of the opponent’s deadline and reserve price.
This area is defined by a 4-tuple DetReg = (T l, Tℎ, P l, Pℎ),
where T l, Tℎ are the estimated lower and upper boundary
of the opponent’s deadline, and P l, Pℎ are the estimated
lower and upper boundary of the opponent’s reserve price.

As shown in Figure 1, the shadowy area indicates the
detecting region for a buyer agent during a learning pro-
cess based on Definition 1. Tb is buyer’s deadline and tb is
the current time in negotiation. IPb and RPb represent the
buyer’s initial price and reserve price, respectively, and IPs
is the seller’s initial price. Points appeared in the detection
region of the figure will be explained in Definition 3. The
lines shown in the figure will be explained in Subsection 3.2
during introducing the learning mechanism.

A buyer agent can initialize the value of each component
of DetReg according to its estimation about seller’s private
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Figure 1: An example of demonstrating our learning
process

information. The more precise the estimation is, the smaller
the detecting region will be and the buyer can strive for
a better result because more errors can be avoided when
the buyer agent adapts its concession strategy based on this
estimation.

After confirming the detecting region by the buyer agent,
this region will be further divided into smaller areas accord-
ing to N = (N t, Np) in which N t denotes that the detecting
region is evenly divided into N t columns on the x-axis (i.e.
time values), and Np stands for the row number on the y-
axis (i.e. price values) in the detecting region. In this way,
the detecting region can be divided into a number of smaller
blocks, called detecting cells. The total number of detecting
cells in a detecting region is represented by Nall and can be
calculated by the formula Nall=N

t×Np. Fig. 1 exemplifies
a scenario with N = (3, 4) and there are totally 12 detecting
cells in the whole region.

Definition 2. A detecting cell Ci (i ∈ 1, 2, ..., Nall) is a
divided block in the detecting region, which can be denoted
by a 4-tuple Ci = (tli, t

ℎ
i , p

l
i, p

ℎ
i ) where tli, t

ℎ
i are the lower

and higher boundaries of time in the cell and pli, p
ℎ
i are the

lower and higher boundaries of price in the cell, respectively.

Definition 3. A random reservation point Xi(t
x
i , p

x
i ) is a

randomly selected point in each cell Ci, where tli < txi < tℎi
and pli < pxi < pℎi .

In Figure 1, points X1, X2, X3, X4 are several random
reservation points in the detecting region and point X is
the real reservation point of the opponent. The detecting
cell is a region where seller’s real reservation point X might
be located. That means the real reservation point X might
be out of the detecting region in real case. The buyer agent
has some belief about the probability distribution of all the
detecting cells. The probability of each cell signifies the like-
lihood that the opponent’s real reservation point X might

be located in this cell. This belief can be revised more pre-
cisely through learning from opponent’s historical offers (see
Subsection 3.2). Based on this learning result, the agent can
adjust its concession strategy adaptively (see Subsection 3.3)
to gain more profit over its opponent.

3.2 The Learning Mechanism
The purpose of this leaning mechanism is to let the agent

revise its belief about the probability distribution of the cells
in the detecting region. Because the agent has no knowl-
edge about the opponent, it is hard to determine the precise
location of the real reservation point. However the agent
can observe its opponent’s historical offers to renew the be-
lief about the approximate range of the reservation point.
This mechanism consists of two parts, a regress analysis and
a Bayesian learning. In regression analysis, (1) an agent
chooses a random reservation point in every detecting cell
first, based on the belief that this point is the reservation
point of the opponent; (2) the agent conducts the regression
analysis for all random reservation points corresponding to
all detecting cells, respectively; (3) the agent compares the
fitted offers on each regression line with opponent’s histor-
ical offers by the non-linear correlation. By this way, re-
semblance between the selected random reservation point
and the opponent’s real reservation point can be calculated.
The bigger the non-linear correlation between two lines is,
the more alike they will be. That also means that the ran-
domly chosen reservation point has a bigger possibility to
be the real reservation point. Then by using Bayesian learn-
ing, the agent’s belief on the probability distribution will be
dynamically updated at every step of the negotiation. The
regression analysis and our Bayesian learning method are
introduced in the following two subsections, respectively.

3.2.1 Regression Analysis
Before the leaning process, the buyer should initializeDetReg,

N as well as the probability distribution in each detecting
cell, which presents the likelihood that the seller’s reserva-
tion point is in this cell. When the learning begins, the buyer
can do the following steps sequentially.

Step 1: At round tb, the buyer selects a random reservation
point Xi(t

x
i , p

x
i ) in each cell Ci of the detecting region;

Step 2: Using each point Xi(t
x
i , p

x
i ) chosen in Step 1, the

buyer calculates the regression line li based on the
seller’s historical offersOtb = {p0, p1, ..., ptb} until round
tb. Based on Equation 4, the following power regres-
sion function is generated to calculate the regression
curve.

Offeri(t) = p0 + (pxi − p0)(
t

txi
)b (5)

where p0 is the initial price of seller. The regression
coefficients b is the concession parameter � in the util-
ity function in Equation 4. Then we can calculate
coefficient b based on seller’s historical offers Otb by
Equation 6 as proposed in [9].

b =

∑tb
i=1 t

∗
i p

∗
i∑tb

i=1 t
∗2
i

(6)

where p∗i = ln p0−pi
p0−pxi

, t∗ = ln t
txi

. In Figure 1, the solid

line is the curve of the seller’s historical offers while
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the dashed line is the regression curve based on each
random reservation point.

Step 3: Based on the calculated regression line li given by
Equation 5 and 6, the buyer can calculate the fitted
offers Ôtb = {p̂0, p̂1, ..., p̂tb} at each round.

Step 4: The buyer calculates the non-linear correlation be-
tween seller’s historical offers Otb and the fitted offers

Ôtb . The coefficient of nonlinear correlation 
 can be
calculated by Equation 7.


 =

∑tb
i=1(pi − p̄)(p̂i − ¯̂p)√∑tb

i=1(pi − p̄)2
∑n
i=1(p̂i − ¯̂p)2

(7)

where ¯̂p is the average value of all the fitted offers till
time tb and p̄ represents the average value of all the
historical offers of the seller. The non-linear correla-
tion 
, where (0 ≤ 
 ≤ 1), is a parameter reflecting
the non-linear similarity between the fitted offers and
the historical offers, which can be used as a criterion
to evaluate the resemblance between the random reser-
vation point Xi and seller’s real reservation point X.
This is an important parameter to be used in Bayesian
learning for the belief updating as described in the fol-
lowing section.

3.2.2 Bayesian Learning
In general, Bayesian learning can be used when an agent

has a set of hypotheses about its opponent’s information.
The belief about the probability distribution of these hy-
potheses can be revised through a posterior probability by
observing the outcome of its opponent. In our model, we de-
fine the hypothesis space as Hi, (i ∈ 1, 2, 3, ..., Nall), where
Nall is the total cell number in the detecting region. Each
hypothesis Hi stands for the assumption that seller’s reser-
vation point X is in cell Ci. The prior probability distri-
bution, denoted by P (Hi), (i ∈ 1, 2, 3...Nall), signifies the
agent’s belief about the hypothesis, that is, how likely the
hypothesis fits the real situation. At first, the agent can ini-
tialize the probability distribution of the hypotheses based
on some public information if available, otherwise a uniform
distribution P (Hi) = 1/Nall is assigned.

During each round of negotiation tb, the probability of
each hypothesis can be altered by the Bayesian updating
rule given in Equation 8.

P (Hi∣O) =
P (Hi)P (O∣Hi)∑Nall
k=1 P (O∣Hk)P (Hk)

(8)

where the conditional probability P (O∣Hi) represents the
likelihood that outcome O might happen based on hypothe-
sis Hi. In our learning model, the agent has no information
about its opponent, thus the observed outcome O is op-
ponent’s historical offers Otb = {p0, p1, ..., ptb}. The condi-
tional probability P (O∣Hi) thereby means how likely seller’s
historical offer Otb can happen based on the hypothesis Hi
that seller’s real reservation point X is in cell Ci. The poste-
rior probability P (Hi∣O) is a renewed belief based on the ob-
served outcome O and at next round, the agent will update
the prior probability P (Hi) using the posterior probability
P (Hi∣O), thus a more precise estimation is achieved.

To let the Bayesian learning rule work, the most crit-
ical problem is how to obtain the conditional probability
P (O∣Hi). Most approaches using Bayesian learning method
usually require a priori knowledge as the conditional prob-
ability, such as [12]. However, our learning model does not
require any priori knowledge about the opponent and works
based only on the historical offers received until tb from the
opponent. By comparing the fitted points Ôtb on the regres-
sion line based on each random reservation point Xi with the
historical offers Otb , the conditional probability P (O∣Hi) is
obtained. The more consistent the fitted offers are with op-
ponent’s historical offers, the higher the conditional proba-
bility P (O∣Hi) it will be. As showed at Step 3 in Subsection
3.2.1, the difference between the regression curve and oppo-
nent’s bidding sequence can be indicated by the non-linear
correlation coefficient 
. Thus, we can use the value of 
 as
the conditional probability.

The learning approach will increase the probability of a
hypothesis when the random reservation point selected in
the detecting cell is most consistent with the real reservation
point of the opponent. However, in some cases, it is possi-
ble that the learning may have errors. As seen in Figure 1,
compared with point X5, point X4 has a higher non-linear
correlation with the real reservation point X, but point X4

and X are not in the same detecting cell. As a result, the
hypothesis that the real reservation point X belongs to the
cell, where point X4 is located, has a higher probability.
Nevertheless, we claim that this situation does not affect
the learning effectiveness based on the following two consid-
erations. Firstly, although in certain circumstances, using
the non-linear correlation to calculate the difference between
the regression line and the real bidding sequence does not
necessarily reveal the real situation, the error will be eased
through Bayesian learning from a probabilistic point of view.
Secondly, even the error exists, the learning approach still
works because we only need to find an approximate range
of the reservation point, not the precise value of opponent’s
reservation point. In some cases, the real reservation point
X might not be located in the whole detecting region, but
those cells which are closer to point X will still have a higher
probability compared with other cells.

Another issue that should be taken into account is the
learning rate and efficiency. At the early stage of lean-
ing, the hypotheses space can be quite large depending on
the value of DetReg and N (recall Subsection 3.1). It is
time consuming to keep all the hypotheses in the search-
ing space. Some hypotheses can be precluded from the hy-
potheses space when the current time and opponent’s bid-
ding value have surpassed the detecting cell boundary. For
example, for a cell Ci = [tli, t

ℎ
i , p

l
i, p

ℎ
i ], if current negotiation

time tb > tℎi , the hypothesis based on this cell is meaningless
because the negotiation process has already proved it false.

3.3 The Adaptive Concession Strategy
Through regression analysis and Bayesian learning stated

above, a more precise estimation of the opponent’s reserva-
tion point is derived, represented by the renewed belief of
the probability distribution of the hypothesis Hi. Now, the
agent needs to take an action to give a counter offer based
on this new belief, i.e. which concession strategy to take and
how strong it should be in terms of a value of the concession
parameter �.
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Figure 2: Four Scenarios of Concession Strategy

3.3.1 The Optimal Concession strategy
There are four scenarios according to different location of

the random reservation point. As we believe that the agent
is rational, it always strives for a highest utility of its own
regardless of its opponent fully. Therefore, in each scenario,
the buyer needs to adopt different concession strategies to
maximize its expected utility as depicted in Figure 2. In
Figure 2, point b0(t0, p0) is buyer’s current offer at time t0,
point bT (Tb, RPb) is the buyer’s reservation offer at deadline
Tb, and point Xi(t

x
i , p

x
i ) is the random reservation point of

seller. Then the buyer needs to find another point P (tp, pp),
which is called a concession point, in its negotiation region
to set the concession strategy and the value of �.

∙ Scenario 1: (txi < Tb) and (pxi > p0).

In this scenario, the random reservation point Xi is
in the buyer’s negotiation region. Because the buyer
agent is rational, it will always try to gain the maxi-
mal utility itself. If the buyer knows that the seller will
quit the negotiation at point Xi (i.e., the deadline of
the seller txi is shorter than its deadline Tb), the optimal
concession strategy for the buyer is to set his bidding
price to pxi at time txi . Otherwise, if the buyer gives
more concession, it cannot achieve the maximal util-
ity after finishing negotiation. On the contrary, a less
concession may result in a failure of the negotiation.
As illustrated in Figure 2(a), the random reservation
point Xi is set to be the concession point P in this case
and the dashed line crossing point Xi is the concession
line of the buyer.

∙ Scenario 2: (txi >= Tb) and (pxi >= p0).

In this scenario, random reservation point Xi is out
of the buyer’s negotiation region. There are two cases

in this scenario according to the different regression
lines of the seller. As can be seen in Figure 2(b), in
the first case, regression line l1 traverses the buyer’s
negotiation region while l2 does not. In the same way
of analyzing in Scenario 1, buyer’s optimal concession
line for l1 is to pass through the intersection point of
the line l1 and the right boundary of the buyer’s ne-
gotiation region. Considering that the buyer should
give out its reserve price at deadline Tb, for simplicity,
we let the buyer’s concession line cross the concession
point P1 on the regression line one step ahead of the
deadline Tb (i.e., Tb − 1) such that a concrete value of
the concession parameter � can be computed. As for
the second case, the regression curve l2 has no intersec-
tion with the buyer’s negotiation region, which means
even the buyer concedes, the negotiation based on this
random reservation point is doomed to fail. Never-
theless, the buyer will spare no efforts to reverse this
unfavorable situation. So, it will give the reserve price
at next round (t0 + 1). To compute a value of �, we
choose a variable �max(0 < �max < 1) which is quite
close to 1. The concession point P2 in this case is set
to be P2(b0 + 1, �max ⋅RPb) so as to make the price at
next round close to the reserve price of RPb and finally
to give out the reserve price RPb at the deadline.

∙ Scenario 3: (txi < Tb) and (pxi < p0).

There are also two cases in this scenario, which can
be signified by l1 and l2 shown in Figure 2(c). As for
case 1, the optimal strategy of the buyer is to cross the
intersection of l1 and bottom line of the buyer’s nego-
tiation region. To compute a value of �, we set the
concession point P1 be the point one step earlier than
the intersection point on the regression line l1. As for
case 2, the line l2 does not go through the buyer’s ne-
gotiation region. In this case, the optimal strategy for
the buyer is to keep its price unchanged until Tb − 1
and then gives its reserve price at the deadline. To
compute the value of �, we can set the price at conces-
sion point P2 very close to current price p0. Similarly,
a variable �min(0 < �min < 1), which is quite close
to 0, can be chosen to set the price at next round to
(1+�min) ⋅p0 such that this price will keep almost the
same as the current price p0.

∙ Scenario 4: (txi >= Tb) and (pxi >= p0).

This scenario, a combination of the former Scenarios 2
and 3, is the most complicated case of all. Each line of
l1, l2, l3 and l4 can be analyzed in the same way stated
before. In Figure 2(d), we depict the concession line
based on l1 as an example.

3.3.2 The Combined Mechanism
We have given out all possible situations of the random

reservation points and the corresponding optimal concession
strategies that the buyer can adopt to increase its utility as
well as to avoid the failure of negotiation to its best. Be-
cause the buyer still uses the family of polynomial functions
to concede, the counteroffer from point b0(t0, p0) can be gen-
erated by Equation 9 based on Equation 4.

Offerb(t) = p0 + (RPb − p0)

(
t− t0
Tb − t0

)�
(t > t0) (9)
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Figure 3: Combination of the parameter �

Using this equation, we can guarantee that at its deadline
Tb, the buyer will give the reserve price RPb. At current time
t0, the buyer’s offer is p0 and the buyer concedes in the form
of polynomial function. Then given the concession point
P (tp, pp) in its negotiation region, a new value of parameter

�̂ can be calculated as follows.

�̂ = log tp−t0
Tb−t0

p0 − pp
p0 −RPb

(t0 < tp < Tb) (10)

We have calculated all the concession values �̂ for each
valid random reservation point in the detecting region, with
a probability distribution P (Hi) = {p(H1), p(H2), ...p(Hn)}
over these values deprived from the regression analysis and
Bayesian learning. Now comes to the problem of how to
combine all the estimated value of �̂ to an overall value.
Let �̂i (i ∈ {1, 2, ...n}) be the estimated concession value
calculated from the concession point based on the random
reservation point in cell Ci. P (Hi) is the probability of the

�̂i, presenting the weighting proportion of the corresponding
�̂i in all the concession values. The value of �̂i signifies the
concession degree of the agent, which can be represented
by the area between the concession line and the time axis,
which is called concession area. As can be seen from Figure
3, the concession area of �̂1 is S1, which can be denoted by
Sb0�̂1bT b. Let Si be the concession area of �̂i and let the

concession area of the overall concession parameter �̄ be S̄.
Based on Equation 9, we can have the following equation.

S̄ =

∫ Tb

t0

[p0 + (RPb − P0)(
t− t0
Tb − t0

)�̄ ]dt (11)

n∑
i=1

P (Hi)Si =

n∑
i=1

P (Hi)

∫ Tb

t0

[p0 + (RPb−P0)(
t− t0
Tb − t0

)�̂ ]dt

(12)
because,

S̄ =

n∑
i=1

P (Hi)Si (13)

we can get the overall concession parameter �̄ as follows:

�̄ =
1∑n

i=1
P (Hi)

1+�̂i

− 1 (14)

Then the buyer can set its concession parameter as �̄ to
give counter offer based on Equation 9 at every step of the
negotiation. Each �̂i is changing at each step according to
the randomly selected reservation point and the correspond-
ing P (Hi) is revised by Bayesian learning throughout the
negotiation process. So the concession parameter �̄ adopted
by the buyer at each step is totally different, making the ne-
gotiation an adaptive process in the point view of the buyer.

4. EXPERIMENT
In this section, the empirical experimental results are dis-

played to demonstrated the good performance of our model.

4.1 Experimental Setting
In the experiment, a buyer and a seller negotiate over the

price ranged in-between $0 ∼ $100. In order to simplify the
comparison process, we set the buyer agent’s initial price to
$0 and the seller agent’s initial price to $100. The buyer’s
reserve price is randomly selected in-between $50 ∼ $100
and seller’s reserve price is randomly selected in-between
$0 ∼ $50. Such a setting will ensure the agreement zone
between the two agents always exists. Our agents’ deadlines
are randomly selected in-between [20, 40], and the concession
strategies are randomly selected in-between [0.5, 2]. The ne-
gotiation parameter initialization is showed in Table 1.

Table 1: Parameter initialization

Agent IPi RPi Ti �i

Buyer (i=b) $0 [$50,$100] [20,40] [0.5,2]
Seller (i=s) $100 [$0,$50] [20,40] [0.5,2]

To provide a benchmark we compare our negotiation model
with the NDF model. In the NDF model, both agents ran-
domly initialize their negotiation parameters according to
Table 1, and keep these parameters unchanged during the
negotiation process. On the contrary, in our model, the
buyer agent will learn how to adjust its concession strat-
egy adaptively to reach a better negotiation outcome. To
use the learning mechanism, the buyer initializes the de-
tecting region as DetReg = (0, 1.5Tb, 0, RPb), �min = 0.01,
�max = 0.99. We outline four cases according to the differ-
ent numbers of detecting cells (see Table 2).

Table 2: Four scenarios of different detecting cell
numbers

Case N t Np Nall
1 4 4 16
2 8 8 48
3 16 16 256
4 20 20 400

4.2 Results And Analysis
As our model depends on the regression analysis which

may yield errors as stated before, we do not expect the learn-
ing result to be completely precise. Further more, many
variables affect the learning process such as the number of
detecting cells. The objective of this experiment is there-
fore carried out to analyze the overall performance of this
learning approach considering this uncertainty and error.

We run 100 episodes for each case to show the generality
and robustness of our model. The results of this experiment
are presented in Figure 4. The x-axis indicates the four cases
and the y-axis indicates the average utility of the buyer in
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Figure 4: The average utility in different cases

each case. We use solid bars to represent the buyer’s average
utility gained by using our model while the empty bars to
represent the buyer’s average utility gained by NDF model.
We can see from Figure 4, the solid bars are higher than
the empty bars in all cases, and gradually increase as the
number of the detecting cells increase. Such experimental
results indicate that: (1)using our learning mechanism and
the adaptive concession strategy will result in a higher util-
ity than the static concession strategy; and (2) as the total
number of detecting cells increases, the agent has a more
precise estimation of the opponent’s reservation point, thus
can result in a higher utility.

In order to illustrate the dynamic adaptation of the con-
cession parameter �, we give out the whole negotiation pro-
cess to show how the buyer agent changes its concession
strategy adaptively. We select three scenarios with the ne-
gotiation parameters as follows:

∙ Scenario 1 (1 < � < 2): RPb = $69.58, RPs =
$11.38,Tb = 32, Ts = 36, �b = �s = 2.0

∙ Scenario 2 (� = 1): RPb = $81.04, RPs = $17.82,Tb =
35, Ts = 36, �b = �s = 1.0

∙ Scenario 3 (0 < � < 1):RPb = $50.34, RPs = $11.38,Tb =
30, Ts = 22, �b = �s = 0.5

Figures in 5(a) give the negotiation process between both
agents before & after learning. Figures in 5(b) show the
adaption of the the buyer’s concession parameter �. In Sce-
nario 1, the seller adopts the Boulware concession strategy.
Before learning, the negotiation ends at $49.53 and both
agents’ concession strategies keep unchanged through the
negotiation process. After learning, the buyer agent adjusts
its concession strategy adaptively in terms of parameter �
and the agreement price is reduced to $38.46, which is a bet-
ter result than that of before learning for the buyer agent.
In Scenario 2, the seller uses the Linear concession strat-
egy. Before learning, the negotiation ends at $48.57 and
after learning, the buyer can have a better agreement at
$22.34. In Scenario 3, the seller uses the Conceder conces-
sion strategy. Before learning, the final agreement is $33.38
and after learning this value decreases to $20.58. According
to these experimental results from the three scenarios, we
can conclude that, through learning of the opponent’s his-
torical offers, the agent employing our negotiation model can
effectively adapt its concession strategy so as to increase its
negotiation outcome. Our negotiation model is robust when
the opponent employs different concession strategies.

In this section, we illustrate the experimental results of
our negotiation model and compare the results with the
NDF’s. The experimental results indicate that our nego-
tiation model can dynamically adapt a negotiation agent’s
concession strategy and significantly increase a negotiation
agent’s utility through the learning of the opponent’s histor-
ical offers.

5. RELATED WORK
Although incorporating learning in agent negotiation is a

relatively new research topic, many approaches, models and
mechanisms have been developed in recent years to solve
different issues in this topic [6] [10] [5] [11]. In this section,
we discuss several related works and compare them with our
model proposed in this paper.

Zeng and Sycara proposed a Bayesian approach to learn
the reserve price of an opponent under negotiation setting
[12]. In their approach, a sequential decision making model
called Bazaar was proposed to model beliefs of the oppo-
nent’s reservation point. Our model differs from their ap-
proach in two ways. (1) Bazaar can only learn the reserve
price of the opponent while our model can learn both op-
ponent’s price and deadline, and (2) Bazzar requests priori
knowledge about the potential distribution of of the oppo-
nent’s reserve price while our model has no this request.

Bzostowski and Kowalczyk [3] presented an approach for
modeling behaviors of negotiators and predictive decision-
making. Both their approach and our work used the similar
method in term of adaptive concession strategy based only
on the historical offers in the current negotiation. However,
their approach focuses more on the analysis of the differences
between adjacent offers from the opponents, and will become
ineffective when these differences are not significant. Our
approach employs the regression analysis and will not be
affected by the variance of adjacent offers.

Narayanan and Jennings proposed a novel adaptive ne-
gotiation model considering the dynamism in E-commerce
settings [7]. Their model manages negotiation process as
a Markov Decision Process(MDP) and uses a value itera-
tion algorithm to acquire optimal policies to adopt different
concession strategies. However, their method can only deter-
mine the adaptive action to choose a concession strategy and
cannot produce a precise concession value while our model
can provide constructive guidance to the agent to dynam-
ically adaptive its behaviors including both strategies and
concession values.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed an adaptive bilateral negotia-

tion model based on Bayesian learning. This model includes
a learning mechanism and an adaptive concession strategy.
Through Bayesian learning, an agent’s belief about the op-
ponent’s reserve price can be revised dynamically during ne-
gotiation by comparing the fitted offers based on regression
analysis. The proposed model can enable an agent to adapt
its concession strategies according to the updated probabil-
ity distribution in a predicting region. The experimental
results demonstrate the good performance of our model by
comparison with NDF model.

The future works are to test our model in more complex
scenarios and extend it to a multi-issue negotiation environ-
ment by considering more factor which can affect negotiation
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Figure 5: The adaptive concession process

process so as to produce win-win outcomes for both negoti-
ation parties.
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ABSTRACT
In every negotiation with a deadline, one of the negotiat-
ing parties has to accept an offer to avoid a break off. A
break off is usually an undesirable outcome for both par-
ties, therefore it is important that a negotiator employs a
proficient mechanism to decide under which conditions to
accept. When designing such conditions one is faced with
the acceptance dilemma: accepting the current offer may be
suboptimal, as better offers may still be presented. On the
other hand, accepting too late may prevent an agreement
from being reached, resulting in a break off with no gain for
either party.

Motivated by the challenges of bilateral negotiations be-
tween automated agents and by the results and insights of
the automated negotiating agents competition (ANAC), we
classify and compare state-of-the-art generic acceptance con-
ditions. We focus on decoupled acceptance conditions, i.e.
conditions that do not depend on the bidding strategy that
is used. We performed extensive experiments to compare the
performance of acceptance conditions in combination with a
broad range of bidding strategies and negotiation domains.
Furthermore we propose new acceptance conditions and we
demonstrate that they outperform the other conditions that
we study. In particular, it is shown that they outperform
the standard acceptance condition of comparing the current
offer with the offer the agent is ready to send out. We also
provide insight in to why some conditions work better than
others and investigate correlations between the properties of
the negotiation environment and the efficacy of acceptance
conditions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multi-agent systems

General Terms
Algorithms, Bargaining, Experimentation, Negotiation

Keywords
Automated bilateral negotiation, acceptance criteria, accep-
tance conditions

1. INTRODUCTION
Negotiation is an important process to reach trade agree-

ments, and to form alliances or resolve conflicts. The field
of negotiation originates from various disciplines including

artificial intelligence, economics, social science, and game
theory (e.g., [2, 16, 20]). The strategic–negotiation model
has a wide range of applications, such as resource and task
allocation mechanisms, conflict resolution mechanisms, and
decentralized information services [16].

A number of successful negotiation strategies have already
been established both in literature and in implementations
[6, 7, 12, 13, 19]. And more recently, in 2010 seven new
negotiation strategies were created to participate in the first
automated negotiating agents competition (ANAC 2010) [3]
in conjunction with the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-10).
During post tournament analysis of the results, it became
apparent that different agent implementations use various
conditions to decide when to accept an offer. In every ne-
gotiation with a deadline, one of the negotiating parties has
to accept an offer to avoid a break off. Therefore, it is im-
portant for every negotiator to employ a mechanism to de-
cide under which conditions to accept. However, designing
a proper acceptance condition is a difficult task: accepting
too late may result in the break off of a negotiation, while
accepting too early may result in suboptimal agreements.

The importance of choosing an appropriate acceptance
condition is confirmed by the results of ANAC 2010 (see Ta-
ble 1). Agents with simple acceptance criteria were ranked
at the bottom, while the more sophisticated time- and utility-
based criteria obtained a higher score. For instance, the low
ranking of Agent Smith was due to a mistake in the imple-
mentation of the acceptance condition [27].

Despite its importance, the theory and practice of accep-
tance conditions has not yet received much attention. The
goal of this paper is to classify current approaches and to
compare acceptance conditions in an experimental setting.
Thus in this paper we will concentrate on the final part of
the negotiation process: the acceptation of an offer. We
focus on decoupled acceptance conditions: i.e., generic ac-
ceptance conditions that can be used in conjunction with an
arbitrary bidding strategy.

Our contribution is fourfold:

1. We give an overview and provide a categorization of
current decoupled acceptance conditions.

2. We introduce a formal negotiation model that supports
the use of arbitrary acceptance conditions.

3. We compare a selection of current generic acceptance
conditions and evaluate them in an experimental set-
ting.
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Rank Agent Acceptance condition

1 Agent K Time and utility based
2 Yushu Time and utility based
3 Nozomi Time and utility based
4 IAMhaggler Utility based only
5 FSEGA Utility based only
6 IAMcrazyHaggler Utility based only
7 Agent Smith Time and utility based

Table 1: An overview of the rank and acceptance
conditions of every agent in ANAC 2010.

4. We propose new acceptance conditions and test them
against established acceptance conditions, using vary-
ing types of bidding techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the model of negotiation that we employ and
provides an overview of current acceptance conditions. In
Section 3, we also consider combinations of acceptance con-
ditions. Section 4 discusses our experimental setup and re-
sults, which demonstrate that some combinations outper-
form traditional acceptance conditions. Finally, Section 5
outlines our conclusions and our plans for further research
on acceptance strategies.

2. ACCEPTANCE CONDITIONS IN NEGO-
TIATION

This paper focuses on acceptance conditions (also called
acceptance criteria) that are decoupled: i.e. generic accep-
tance conditions that are not tied to a specific agent im-
plementation and hence can be used in conjunction with
an arbitrary bidding strategy. We first describe a general
negotiation model which fits current decoupled acceptance
conditions. We have surveyed existing negotiation agents to
examine the acceptance criteria that they employ. We then
categorize them according to the input that they use in their
decision making process.

2.1 Negotiation Model
We consider bilateral negotiations, i.e. a negotiation be-

tween two parties or agents A and B. The agents negotiate
over issues that are part of a negotiation domain, and every
issue has an associated range of alternatives or values. A
negotiation outcome consists of a mapping of every issue to
a value, and the set Ω of all possible outcomes is called the
outcome space. The outcome space is common knowledge
to the negotiating parties and stays fixed during a single
negotiation session.

We further assume that both parties have certain pref-
erences prescribed by a preference profile over Ω. These
preferences can be modeled by means of a utility function
U , which maps a possible outcome ω ∈ Ω to a real-valued
number in the range [0, 1]. In contrast to the outcome space,
the preference profile of the agents is private information.

Finally, the interaction between negotiating parties is reg-
ulated by a negotiation protocol that defines the rules of
how and when proposals can be exchanged. We use the
alternating-offers protocol [23] for bilateral negotiation, in
which the negotiating parties exchange offers in turns.

As in [26], we assume a common global time, represented
here by T = [0, 1]. We supplement the alternating-offers

protocol with a deadline t = 1, at which moment both agent
receive utility 0. This is the same setup as [8], with the ex-
ception that issues are not necessarily real-valued and both
agents have the same deadline equal to t = 1. We represent
by xt

A→B the negotiation outcome proposed by agent A to
agent B at time t. A negotiation thread (cf. [6, 26]) between
two agents A and B at time t ∈ T is defined as a finite
sequence

Ht
A↔B :=

(

xt1
p1→p2

, xt2
p2→p3

, xt3
p3→p4

, . . . , xtn
pn→pn+1

)

,

where

1. tk ≤ tl for k ≤ l, the offers are ordered over time T ,

2. pk = pk+2 ∈ {A,B} for all k, the offers are alternating
between the agents,

3. All ti represent instances of time T , with tn ≤ t,

4. xtk
pk→pk+1

∈ Ω for k ∈ {1, . . . , n}, the agents exchange
complete offers.

Additionally, the last element of Ht
A↔B may be equal to

one of the particles {Accept,End}. We will say a negotiation
thread is active if this is not the case.

When agent A receives an offer xt
B→A from agent B sent

at time t, it has to decide at a later time t′ > t whether to

accept the offer, or to send a counter-offer xt′

A→B . Given a
negotiation thread Ht

A↔B between agents A and B, we can
formally express the action performed by A with an action
function XA:

XA(t
′, xt

B→A) =







End if t′ ≥ 1

Accept if ACA(t
′, xt′

A→B,H
t
A↔B)

xt′

A→B otherwise

Note that we extend the setting of [8, 26] by introducing the
acceptance condition ACA of an agent A. This model en-
ables us to study arbitrary decoupled acceptance conditions.
ACA that takes as input

I = (t′, xt′

A→B,H
t
A↔B),

the tuple containing the current time t′, the offer xt′

A→B that
the agent considers as a bid (in line with the bidding strategy
the agent uses), and the ongoing negotiation thread Ht

B↔A.
The resulting action given by the function XA(t

′, xt
B→A)

is used to extend the current negotiation thread between
the two agents. If the agent does not accept the current
offer, and the deadline has not been reached, it will prepare

a counter-offer xt′

A→B by using a bidding strategy or tactic
to generate new values for the negotiable issues. Tactics can
take many forms, e.g. time-dependent, resource dependent,
imitative, and so on [26]. In our setup we will consider
the tactics as given and try to optimize the accompanying
acceptance conditions.

2.2 Acceptance Criteria
Let an active negotiation thread

Ht
A↔B =

(

xt1
p1→p2

, xt2
p2→p3

, . . . , x
tn−1

A→B, x
tn
B→A

)

,

be given at time t′ > t = tn, so that it is agent A’s turn to
perform an action.

As outlined in our negotiation model, the action function
XA of an agent A uses an acceptance condition ACA(I) to
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decide whether to accept. In practice, most agents do not
use the full negotiation thread to decide whether it is time
to accept. For instance many agent implementations, such
as [9, 8, 26], use the following implementation of ACA(I):

ACA(t
′, xt′

A→B ,Ht
A↔B) ⇐⇒ UA(x

t
B→A) ≥ UA(x

t′

A→B).

That is, A will accept when the utility UA for the opponent’s
last offer at time t is greater than the value of the offer agent
A is ready to send out at time t′. The acceptance condition

above depends on the agent’s upcoming offer xt′

A→B. For
α, β ∈ R this may be generalized as follows:

AC
I
next(α, β)

def
⇐⇒ α · UA(x

t
B→A) + β ≥ UA(x

t′

A→B).

We can view α as the scale factor by which we multiply the
opponent’s bid, while β specifies the minimal ‘utility gap’
[13] that is sufficient to accept.

Analogously, we have acceptance conditions that rely on

the agent’s previous offer x
tn−1

A→B:

AC
I
prev(α, β)

def
⇐⇒ α · UA(x

t
B→A) + β ≥ UA(x

tn−1

A→B).

Note that this acceptance condition does not take into ac-
count the time that is left in the negotiation, nor any offers
made previous to time t. Other acceptance conditions may
rely on other measures, such as the remaining negotiation
time or the utility of our previous offer. For example, there
is a very simple acceptance criterion that only compares the
opponent’s offer with a constant α:

ACI
const(α)

def
⇐⇒ UA(x

t
B→A) ≥ α.

Last but not least, instead of considering utility agents may
employ a time-based condition to accept after a certain amount
of time T ∈ T has passed:

AC
I
time(T )

def
⇐⇒ t′ ≥ T.

We will omit the superscript I when it is clear from the
context. We will use these general acceptance conditions to
classify existing acceptance mechanisms in the next section.

2.3 Existing Acceptance Conditions
We give a short overview of decoupled acceptance con-

ditions used in literature and current agent implementa-
tions. We are primarily interested in acceptance conditions
that are not specifically designed for a single agent. We do
not claim the list below is complete; however it serves as a
good starting point to categorize current decoupled accep-
tance conditions. We surveyed the entire pool of agents of
ANAC 2010, including Agent K and Nozomi [25], Yushu [1],
IAM(crazy)Haggler [5], FSEGA [24] and Agent Smith [27].
We also examined well-known agents from literature, such
as the Trade-off agent [7], the Bayesian learning agent [11],
ABMP [13], equilibrium strategies of [9], and time depen-
dent negotiation strategies as defined in [22], i.e. the Boul-
ware and Conceder tactics.

Listed in Table 2 is a selection of generic acceptance con-
ditions found.

Some agents also use logical combinations of different ac-
ceptance conditions at the same time. This explains why
some agents are listed multiple times. For example, both
IAMHaggler and IAMcrazyHaggler [4] accept precisely when

ACconst(0.88) ∨ACnext(1.02, 0) ∨ACprev(1.02, 0).

Table 2: A selection of existing decoupled accep-
tance conditions.

AC α β Agent

ACprev(α, β) 1.03 0 FSEGA,
Bayesian Agent

1 0 Agent Smith
1.02 0 IAM(crazy)Haggler
1 0.02 ABMP

ACnext(α, β) 1 0 FSEGA, Boulware,
Conceder, Trade-off,
Equilibrium strategies

1.02 0 IAM(crazy)Haggler
1.03 0 Bayesian Agent

ACconst(α) 1 - FSEGA
0.9 - Agent Smith
0.88 - IAM(crazy)Haggler

T

ACtime(T ) 0.92 - Agent Smith

We will not focus on the many possible combinations of all
acceptance conditions that may thus be obtained; we will
study the basic acceptance conditions in isolation with vary-
ing parameters. However in addition to this we study a small
selection of combinations in Section 3. We leave further com-
binations for future research.

As can be seen from Table 2, in our sample the most com-
monly used acceptance condition is ACnext = ACnext(1, 0),
which is the familiar condition of accepting when the op-
ponent’s last offer is better than the planned offer of the
agent. The function β 7→ ACprev(1, β) can be viewed as
an acceptance condition that accepts when the utility gap
[13] between the parties is smaller than β. We denote this
condition by ACgap(β).

3. COMBINED ACCEPTANCE CONDITIONS
We define three acceptance conditions that are designed to

perform well in conjunction with an arbitrary bidding strat-
egy. This will incorporate all ideas behind the traditional
acceptance conditions we have described so far. We will
show in Section 4 that they work better than the majority
of simple generic conditions listed in Table 2.

From a negotiation point of view, it makes sense to al-
ter the behavior of the acceptance condition when time is
running short. Many ANAC agents such as Yushu, Nozomi
and FSEGA [1, 24, 25] split the negotiation into different
intervals of time and apply different sub-strategies to each
interval.

The basic idea behind combined acceptance conditions
ACcombi is as follows. In case the bidding strategy plans
to propose a deal that is worse than the opponent’s offer,
we have reached a consensus with our opponent and we ac-
cept the offer. But if there still exists a gap between our offer
and time is short, the acceptance condition should wait for
an offer that is not expected to improve in the remaining
time. Thus ACcombi is designed to be a proper extension
of ACnext, with adaptive behavior based on recent bidding
behavior near the deadline.
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To define ACcombi, suppose an active negotiation thread

Ht
A↔B =

(

xt1
p1→p2

, xt2
p2→p3

, . . . , x
tn−1

A→B, x
tn
B→A

)

,

is given at time t′ > t = tn > 1
2
near the deadline, when

it is agent A’s turn. Note that there is r = 1 − t′ time
remaining in the negotiation, which we will call the remain-
ing time window. A good sample of what might be ex-
pected in the remaining time window consists of the bids
that were exchanged during the previous time window W =
[t′ − r, t′] ⊆ T of the same size.

Let

HW
B→A =

{

xs
B→A ∈ Ht

A↔B | s ∈ W
}

denote all bids offered by B to A in time window W . We can
now formulate the average and maximum utility that was
offered during the previous time window in the negotiation
thread H = HW

B→A:

MAXW = max
x∈H

UA(x).

and

AVGW =
1

|H |

∑

x∈H

UA(x).

We let ACcombi(T, α) accept at time t′ exactly when the
following holds: ACnext indicates that we have to accept, or
we have almost reached the deadline (t′ ≥ T ) and the current
offer suffices (i.e. better than α) given the remaining time:

ACcombi(T, α)
def
⇐⇒

ACnext ∨ACtime(T ) ∧
(

UA(x
t
B→A) ≥ α

)

.

Note that we have defined ACcombi(T, α) in such a way
that it splits the negotiation time into two phases: [0, T )
and [T, 1], with different behavior in both cases.

We will consider three different combined acceptance con-
ditions:

1. ACcombi(T,MAXW ), the current offer is good enough
when it is better than all offers seen in the previous
time window W ,

2. ACcombi(T,AVG
W ), the offer is better than the aver-

age utility of offers during the previous time window
W ,

3. ACcombi(T,MAXT ), the offer should be better than
any bid seen before.

4. EXPERIMENTS
In order to experimentally test the efficacy of an accep-

tance condition, we considered a negotiation setup with the
following characteristics. We equipped a set of agents (as
defined later) with an acceptance condition, and measured
its result against other agents in the following way. Sup-
pose agent A is equipped with acceptance condition ACA

and negotiates with agent B. The two parties may reach a
certain outcome ω ∈ Ω, for which A receives the associated
utility UA(ω). The score for A is averaged over all trials on
various domains (see Section 4.1.2), alternating between the
two preference profiles defined on that domain. E.g., on the
negotiation scenario between England and Zimbabwe, A will
play both as England and as Zimbabwe against all others.

For our experimental setup we employ Genius (General
Environment for Negotiation with Intelligent multi-purpose
Usage Simulation) [17]. This environment, which is also used
in ANAC, helps to facilitate the design and evaluation of au-
tomated negotiators’ strategies. It can be used to simulate
tournaments between negotiating agents in various negoti-
ation scenarios, such as the setup described in this section.
It supports the alternating offer protocol with a real-time
deadline as outlined in our negotiation model. The default
negotiation time in Genius and in the setup of ANAC is 3
minutes per negotiation session; therefore we use the same
value in our experiments.

4.1 Detailed Experimental Setup

4.1.1 Agents
We use the negotiation tactics that were submitted to

The Automated Negotiating Agents Competition (ANAC
2010) [3]. ANAC is a negotiation competition aiming to
facilitate and coordinate the research into proficient negoti-
ation strategies for bilateral multi-issue negotiation, similar
to what the Trading Agent Competition (TAC) has achieved
for the trading agent problem [28].

The seven agents that participated in ANAC 2010 have
been implemented by various international research groups
of negotiation experts. We use these strategies in our ex-
periments as they are representative of the current state-
of-the-art in automated negotiation. Firstly, we removed
the built-in acceptance mechanism from this representative
group of agents; this leaves us with its pure bidding tactics.
As outlined in our negotiation model, this procedure allows
us to test arbitrary acceptance conditions in tandem with
any ANAC tactic.

We aimed to tune our acceptance conditions to the top
performing ANAC 2010 agents. Therefore we have selected
the top 3 of ANAC agents that were submitted by differ-
ent research groups, namely Agent K, Yushu and IAMhag-
gler (we omitted Nozomi as the designing group also imple-
mented Agent K, cf. Table 1). For the set of opponents, we
selected all agents from ANAC 2010, for the acceptance con-
ditions should be tested against a wide array of strategies.
The opponents also had their built-in acceptance conditions
removed (and hence were not able to accept), so that dif-
ferences in results would depend entirely on the acceptance
condition under consideration. To test the efficacy of an ac-
ceptance condition, we equipped the top 3 tactics with this
condition and compared the average utility obtained by the
three agents when negotiating against their opponents.

4.1.2 Domains
The specifics of a negotiation domain can be of great influ-

ence on the negotiation outcome [10]. Acceptance conditions
have to be assessed on negotiation domains of different size
and complexity. Negotiation results also depend on the op-
position of the negotiating parties’ preferences. The notion
of weak and strong opposition can be formally defined [14].
Strong opposition is typical of competitive domains, when
a gain for one party can be achieved only at a loss for the
other party. Conversely, weak opposition means that both
parties achieve either losses or gains simultaneously.

With this in mind, we aimed for two domains (with two
preference profiles each) with a good spread of negotiation
characteristics. We picked two domains from the three that
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Itex–Cyp Zim–Eng

Size 180 576
Opposition Strong Medium

Table 3: The four preference profiles used in exper-
iments.

were used in ANAC 2010 (cf. [3]). Some agents participating
in ANAC 2010 did not scale well and could not deal with a
large bid space. We omitted the Travel domain as the agents
had too many difficulties with it to make it a reliable testing
domain.

Our first scenario is taken from [15], which describes a
buyer–seller business negotiation. It involves representatives
of two companies: Itex Manufacturing, a producer of bicy-
cle components and Cypress Cycles, a builder of bicycles.
There are four issues that both sides have to discuss: the
price of the components, delivery times, payment arrange-
ments and terms for the return of possibly defective parts.
The opposition between the parties is strong in this domain,
as the manufacturer and consumer have naturally opposing
requirements. Altogether, there are 180 potential offers that
contain all combinations of values for the four issues.

The second domain taken from [17, 18] involves a case
where England and Zimbabwe negotiate an agreement on
tobacco control. The leaders of both countries must reach
an agreement on five issues. England and Zimbabwe have
contradictory preferences for the first two issues, but the
other issues have options that are jointly preferred by both
sides. The domain has a total of 576 possible agreements.

To compensate for any utility differences in the preference
profiles, the agents play both sides of every scenario.

4.1.3 Acceptance Conditions
For each acceptance condition we tested all 3×7 = 21 pair-

ings of agents, playing with each of the 4 different preference
profiles. We ran every experiment twice, so that altogether
each acceptance condition was tested 168 times. We selected
the following acceptance conditions for experimental testing.
The different values of parameters will be discussed in the
section below.

• ACnext(α, 0) and ACprev(α, 0) for α ∈ {1, 1.02},

• ACgap(α) for α ∈ {0.02, 0.05, 0.1, 0.2},

• ACconst(α) for α ∈ {0.8, 0.9},

• ACtime(T ), ACcombi(T,MAXW ), ACcombi(T,AVG
W )

andACcombi(T,MAXT ), whereW is the previous time
window with respect to the current time t′, and T =
0.99 (this particular value of T is discussed below).

Additionally, we ran the experiments with agents having
their built-in acceptance mechanism in place. That is, we
also tested the original agents’ coupled acceptance mecha-
nism. As we cannot for example, equip Agent K with the
coupled acceptance condition of Yushu, we tested the built-
in mechanism by having each agent employ its own mecha-
nism.

4.2 Hypotheses and Experimental Results

The experiments considered here are designed to discuss
the main properties and drawbacks of the acceptance con-
ditions listed above. We formulate several hypotheses with
respect to the acceptance conditions we have discussed.

Our hypothesis about ACconst(α) is the following:

Hypothesis 1. For α close to one, ACconst(α) performs
worse than all other conditions.

To evaluate this hypothesis and others below, we have car-
ried out a large number of experiments. The results are
summarized in Table 4. The table shows the average utility
obtained by the agents when equipped with several accep-
tance conditions. The “average utility of agreements” col-
umn represents the average utility obtained by the agent
given the fact that they have reached an agreement. When
they do not reach an agreement (due to the deadline), they
get zero utility. Thus the following holds:

(The acceptance dilemma)

Total average utility = Agreement percentage
×

Average utility of agreements.

This formula captures the essence of the acceptance dilemma:
accepting bad to mediocre offers yields more agreements of
relatively low utility. While accepting only the best offers
produces less agreements, but of higher utility.

Now consider ACconst(0.9) and ACconst(0.8). When it
reaches an agreement, it receives a very high utility (at least
0.9 or 0.8 respectively), but this happens so infrequently
(resp. 26% and 38% of all negotiations), that it is ranked at
the bottom when we consider total average utility.

We can conclude that our hypothesis is confirmed: in iso-
lation, ACconst(α) is not very advantageous to use. The
main reason is that the choice of the constant α is highly
domain-dependent. A very cooperative domain may have
multiple win–win outcomes with utilities above α. ACconst(α)
would then accept an offer which is relatively bad, i.e. it
could have done much better. On the other hand, in highly
competitive domains, it may simply ‘ask for too much’ and
may rarely obtain an agreement. Its value lies mostly in us-
ing it in combination with other acceptance conditions such
as ACnext. It can then benefit the agent by accepting an
unexpectedly good offer or a mistake by the opponent.

As we discussed earlier in Section 2.3, the acceptance con-
ditions ACprev(α, 0) and ACnext(α, 0) are standard in lit-
erature for α ∈ {1, 1.02}. Many agents tend to use these
acceptance conditions, as they are well-known and easy to
implement. We have formed the following hypothesis:

Hypothesis 2. ACnext(α, 0) will outperformACprev(α, 0)
for α ∈ {1, 1.02}. However, both conditions will perform
worse than conditions that take the remaining time into ac-
count.

To test this hypothesis, we consult Table 4 where we have
considered the two values for α. The first observation is that
ACprev(α, 0) and ACnext(α, 0) already perform much better
than ACconst. The higher value for α yields a better result
and ACnext(α, 0) does indeed outperform ACprev(α, 0). It
makes sense that comparing the opponent’s offer to our up-
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Table 4: Utility scores of agents equipped with an acceptance condition

Acceptance Agent K IAMhaggler Yushu Agreement % Average utility Total
Condition of agreements avg

ACcombi(MAXW ) 0.691 0.639 0.695 99% 0.679 0.675

ACcombi(AVG
W ) 0.684 0.634 0.691 99% 0.678 0.670

ACgap(0.1) 0.636 0.562 0.693 83% 0.761 0.630

Built-in mechanism 0.641 0.547 0.692 82% 0.768 0.627

ACcombi(MAXT ) 0.691 0.577 0.596 89% 0.696 0.621

ACtime(0.99) 0.612 0.580 0.663 99% 0.622 0.618

ACgap(0.2) 0.626 0.579 0.650 86% 0.721 0.618

ACgap(0.05) 0.629 0.550 0.672 78% 0.791 0.617

ACnext(1.02, 0) 0.616 0.517 0.696 77% 0.788 0.610

ACgap(0.02) 0.618 0.491 0.638 73% 0.802 0.582

ACprev(1.02, 0) 0.618 0.491 0.629 72% 0.805 0.579

ACnext(1, 0) 0.586 0.517 0.597 72% 0.787 0.567

ACprev(1, 0) 0.588 0.491 0.589 69% 0.805 0.556

ACconst(0.8) 0.286 0.374 0.313 38% 0.851 0.324

ACconst(0.9) 0.215 0.272 0.231 26% 0.935 0.239

coming offer is more beneficial than comparing it to our pre-
vious offer, as ACnext is always ‘one step ahead’ of ACprev.
However, all time-dependent acceptance conditions outper-
form both of them, even for α = 1.02. This also settles the
second part of the hypothesis. The reason for this bad per-
formance is that many bidding strategies focus on the ‘nego-
tiation dance’ [21]. That is, modeling the opponent, trying
to make equal concessions and so on. When a strategy does
not explicitly take time considerations into account when
making an offer, this poses a problem for the two standard
acceptance conditions: they rely completely on the bidding
strategy to concede to the opponent before the deadline oc-
curs. When the agent or the opponent does not concede
enough near the deadline, the standard conditions lead to
poor performance.

Our third hypothesis with respect to the time-dependent
condition is as follows:

Hypothesis 3. ACtime(T ) always reaches an agreement,
but of relatively low utility.

To evaluate this hypothesis we needed to provide a concrete
value for the experimental variable T . We have set T = 0.99
for every acceptance condition depending on T . As we have
found during preliminary experiments, this value is suffi-
ciently close to the deadline, while it still allows enough time
to reach a win-win outcome. From observing the acceptance
probability of ACtime(0.99) in the experimental results, we
see that in 1 out of 168 negotiations (≈ 1%) this criterion
did not reach an agreement due to agent crashes and pro-
tocol errors, in which case both agents received utility zero.
But except for these particular events, ACtime(T ) will al-
ways reach an agreement, therefore we consider this part of
the hypothesis confirmed.

ACtime(T ), with T close to 1 is a sensible criterion to

avoid a break off at all cost. It is rational to prefer any
outcome over a break off of zero utility. However, the re-
sulting deal can be anything. As we can see from the table,
this is the reverse situation of ACgap: ACtime(T ) yields the
lowest agreement score (0.622) of all conditions. This can
be explained by the acceptance dilemma: by accepting any
offer near the deadline, it reaches more agreements but of
relatively low utility. Still the overall score is almost the
same (0.618) and thus reasonable. It is interesting to note
that ACtime(T ) outperforms both ACprev and ACnext in
average overall score.

This insight led us to believe that more consideration has
to be given to the remaining time when deciding to accept
an offer. The combined acceptance conditions evaluated in
the next chapter expand upon this idea to get better deals
near the deadline.

4.2.1 Evaluating ACcombi(T, α)

When evaluating ACcombi(T, α), we expect the following
characteristics. ACcombi(T, α) is an extension of ACnext in
the sense that it will accept under broader circumstances.
It alleviates some of the mentioned drawbacks of ACnext

by also accepting when the utility gap between the parties
is positive. Also note, that in addition to the parameters
that current acceptance conditions use, such as my previous

bid x
tn−1

A→B, my next bid xt′

A→B, the remaining time, and the
opponent’s bid xt

B→A, this condition employs the entire bid-
ding history Ht

A↔B to compute the acceptability of an offer.
Therefore we expect better results than with ACnext, with
more agreements, and when it agrees, we expect a better
deal than by using ACtime(T ).

We capture this last statement in our final hypothesis:

Hypothesis 4. The combination ACcombi(T, α) outper-
form other acceptance conditions, such as ACtime(T ) and
ACnext primarily by getting deals of higher utility.
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As is evident from the experimental results, ACcombi(MAXW )
and ACcombi(AVG

W ) dominate the other acceptance condi-
tions. They even perform 7% better than the built-in mech-
anisms of the agent, and 18% better than ACnext. Similar
to ACtime, both conditions still get a deal almost every time,
but with a higher utility. However, the average utility of an
agreement is not the highest: the ACgap conditions and the
built-in mechanisms get better agreements. But again, we
can observe that their agreement rate is also lower, resulting
in a higher overall score for the combined criteria.

Aiming for the highest utility that has been offered so far
(i.e. ACcombi(MAXT )) is a less successful criterion, mostly
due to a big decrease in agreements. The higher utility that
is obtained with this condition does not compensate for the
loss of utility that is caused by a break off.

4.3 Related Work
All existing negotiation agent implementations deal with

the problem of when to accept. In many cases, the agent
accepts a proposal when the value of the offered contract
is higher than the offer it is ready to send out at that mo-
ment in time. Examples include the time dependent ne-
gotiation strategies defined in [22] (e.g. the Boulware and
Conceder tactics). The same principle is used in the equi-
librium strategies of [9] and for the Trade-off agent [7]. In
the setting of [7] however, the deadline can be different for
both agents. In this paper, we consider strategies that do
not always reach an agreement, and hence we have concen-
trated on acceptance conditions that yield better results in
such cases.

Of all ANAC 2010 participants, we shortly discuss Agent
K [25] as it employs the most sophisticated method to decide
when to accept. Its acceptance mechanism is based on the
mean and variance of all received offers. It then tries to de-
termine the best offer it might receive in the future and sets
its proposal target accordingly. In contrast to our approach,
this mechanism is not fully decoupled from the bidding strat-
egy as it directly influences its bid target. Furthermore, it
does not restrict its scope to the remaining or previous time
window. Finally, we note that Agent K performs better in
our experimental setup (cf. Table 4) when equipped with
our combined acceptance conditions than with its built-in
mechanism.

Although we do not focus on negotiation tactics and con-
vergence results, our negotiation model builds upon the model
of [26]. However, in this model, the action function of an
agent only takes into account the offer it is ready to send out
at that moment in time. Moreover, the focus of the paper
is not on comparing acceptance conditions as only one spe-
cific instance is studied. We take a more general approach
in which the agent utilizes a generic acceptance mechanism,
in which the current time and the entire bidding history is
considered.

5. CONCLUSION AND FUTURE WORK
In this paper, we aimed to classify current approaches to

generic acceptance conditions and to compare a selection
of acceptance conditions in an experimental setting. We
presented the challenges and proposed new solutions for ac-
cepting offers in current state-of-the-art automated negoti-
ations. The focus of this paper is on decoupled acceptance
conditions, i.e. general conditions that do not depend on a

particular bidding strategy.
Designing an effective acceptance condition is challenging

because of the acceptance dilemma: better offers may arrive
in the future, but waiting for too long can result in a break
off of the negotiation, which is undesirable for both parties.

We have seen that the standard acceptance criterion ACnext

is often used by negotiating agents. From our results, it is
apparent that ACnext does not always yield optimal agree-
ments. We established that it performs worse than more
sophisticated acceptance conditions.

In addition to classifying and comparing existing accep-
tance conditions, we have devised three new acceptance con-
ditions by combining existing ones. This included two accep-
tance conditions that estimate whether a better offer might
occur in the future based on recent bidding behavior. These
conditions obtained the highest utility in our experiments
and hence performed better than the other conditions we
have investigated.

A suggestion for future research would be to explore the
many possible combinations of acceptance conditions that
may be obtained using conjunction and disjunction (and
possibly negation). Some agents already use a logical com-
bination of different acceptance conditions at the same time.
For example, the IAM(crazy)Haggler agents accept when

ACconst(0.88) ∨ACnext(1.02, 0) ∨ACprev(1.02, 0).

A suitable combination of acceptance conditions could pro-
vide a considerable improvement over current acceptance
conditions.

Secondly, we plan to test acceptance conditions with more
agents and on larger domains, using the resources that will
be available after the upcoming ANAC 2011 event.

Finally, we did not consider negotiation domains with dis-
count factors, which devaluate utility with the passing of
time. Adding discount factors will require new acceptance
conditions that give more consideration to the negotiation
timeline. We plan to examine such extensions in future
work.
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ABSTRACT
CP-Nets have proven to be an effective representation for captur-
ing preferences. However, their use in multiagent negotiation is
not straightforward. The main reason for this is that CP-Nets cap-
ture partial ordering of preferences, whereas negotiating agents are
required to compare any two outcomes based on the request and
offers. This makes it necessary for agents to generate total orders
from their CP-Nets. We have previously proposed a heuristic to
generate total orders from a given CP-Net. This paper proposes an-
other heuristic based on Borda count, applies it in negotiation, and
compares its performance with the previous heuristic.

1. INTRODUCTION
Modeling users’ preferences is an inevitable part of automated

negotiation tools. While representing the user’s preferences, there
are several issues to be taken into account. One, outcome space
grows exponentially with the number of attributes and their possi-
ble values. It may be infeasible to ask a user to rank all outcomes
when the outcome space is very large. Two, the user may have dif-
ficulty in assessing her preferences in a quantitative way [4]. Rep-
resenting someone’s preferences with numerical values is an ardu-
ous task for a human. Three, it is difficult to find a mathematical
model for representing preferences in which there are preferential
dependencies between attributes. Therefore, it is more effective
and intuitive to use a qualitative preference model.

Although it is desired for users to express their preferences qual-
itatively, most of the current negotiation strategies [5, 7] work with
quantitative preferences. Hence, to use qualitative preferences in
negotiation, it is necessary to estimate quantitative preferences from
qualitative preferences. Accordingly, this paper is about estimation
of quantitative preferences from qualitative preferences. That is,
we propose heuristics to allow agents to have a qualitative prefer-
ence model, while their negotiation strategy employs quantitative
information. In order to do so, we start from a qualitative prefer-
ence representation, namely CP-Nets. CP-Nets allow representa-
tion of conditional preferences and tolerate partial ordering. We
extend the GENIUS negotiation framework [6] to allow elicitation
of acyclic CP-Net preferences. Then, we apply our heuristics to
generate utility-based information from the given CP-Net.

We compare the performance of agents when they apply heuris-
tics on their users’ qualitative preferences and negotiate with esti-
mated utilities versus when they have their users’ real total prefer-
ence orderings and negotiate with real utilities. To accomplish this,
users were asked to create their preference profiles both quantita-
tively (UCP-Nets) and qualitatively (CP-Nets), using the GENIUS
∗This research is supported by Boğaziçi University Research Fund
under grant BAP5694 and Turkish Research and Technology Coun-
cil.

interface for an apartment renting domain. The given UCP-Nets
serve as ground truth. The agents apply heuristics on the given
CP-Net and then negotiate with the resulting estimated utilities.
Each negotiation outcome is evaluated based on the given UCP-
Net, which is not only consistent with the CP-Net but also provides
a total ordering of outcomes.

The rest of this paper is organized as follows: Section 2 gives
an introduction on CP-Nets and UCP-Nets. Section 3 explains the
heuristics that we propose to be used with CP-Nets. Section 4 ex-
plains our experimental setup, metrics, and results. Finally, Sec-
tion 5 discusses our work.

2. BACKGROUND: CP-NETS & UCP-NETS
Conditional preference networks (CP-nets) is a graphical model

for representing qualitative preferences in a compact way [4]. In
CP-nets, each node represents an attribute and each edge denotes
preferential dependency between nodes. If there is an edge from X
to Y , X is called “parent node” and Y is called “child node”. The
preference on child nodes depends on their parent nodes’ values.
To express conditional preferences, each node is associated with a
conditional preference table (CPT), which represents a total order
on possible values of that node with respect to its parents’ values.

Consider apartment renting domain in Example 1 and a CP-NET
expressing that its user’s preference on parking area depends on
neighborhood. CPT for Parking Area shows that the user prefers
an apartment having a parking area when the neighborhood is either
Kadikoy or Kartal. However, she prefers an apartment not having a
parking area when it is at Etiler. In CP-nets, each preference state-
ment is interpreted under “everything else being equal” interpreta-
tion. The statement, “Etiler is preferred over Kartal”, means that if
all other attributes such as price and parking area are the same, an
apartment at Etiler is preferred over an apartment at Kartal.

EXAMPLE 1. For simplicity, we have only three attributes in
our apartment renting domain: Price, Neighborhood and Parking
Area. There are three neighborhoods: Etiler, Kadikoy and Kar-
tal whereas the valid values for the price are categorized as High,
Medium and Low. A parking area may exist or not. Thus, the
domain for parking area has two values: Yes and No.

We need to check whether there exists an improving flip sequence
from one outcome to another (and vice versa) to answer whether
an outcome would be preferred over another. An improving flip is
changing the value of a single attribute with a more desired value
by using CPT for the attribute. If there are not any improving flip
sequences between two outcomes, we cannot compare these two
outcomes. Thus, the inability of comparing some outcomes is the
challenge of using CP-Nets in negotiation.
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Boutilier et al. propose UCP-nets [3] by CP-Nets with general-
ized additive models. UCP-nets are able to represent preferences
quantitatively rather than representing simply preference ordering.

Similar to CP-nets, we firstly specify preferential dependency
among attributes. Instead of specifying a total preference ordering
over the values of each attribute according to their parents’ values
(conditions), we assign a real value (utility) for all values of each
attribute. Utility function u(X1, X2,...Xn) is represented in Equa-
tion 1 where Xi is the ith attribute of outcome, Ui denotes parents
of Xi and fi(Xi, Ui) represents a factor. Assume that our UCP-Net
involves three factors f1(Neighborhood), f2(Price) and f3(Parking
Area, Neighborhood). The utility of an outcome is estimated as the
sum of these factors.

u(X1, X2, ...Xn) =
∑

i

fi(Xi, Ui) (1)

3. PROPOSED HEURISTICS
Most of the negotiation strategies [5, 7] work with quantitative

preferences such as utility functions. However, it is desired for
users to express their preferences qualitatively. Thus, we propose
heuristics to use acyclic CP-Nets in negotiation while agents still
negotiate with their strategies using quantitative information, util-
ity (a real value between zero and one). To do this, we generate
predicted utilities from a given CP-Net by applying our heuristics.

In our framework, a preference graph is induced from a given
CP-Net while eliciting a user’s preferences as a CP-Net. In this
preference graph, each node denotes a possible outcome and each
edge represents an improving flip. The direction of edges are or-
dered from less desired to more desired services. Therefore, the
worst outcome will be placed at the top of preference graph (root
node) whereas the leaf node holds the best outcome. For interme-
diate nodes, we only compare the nodes having a path from others.
The nodes having no path to each other cannot be compared.

Figure 1 shows a preference graph induced from a CP-Net. The
node (Yes, Etiler, Low) represents a low-priced apartment at Etiler
having a parking area. There is an edge from (No, Kartal, High )
to (No, Kartal, Medium). This means that an apartment with a
medium price at Kartal not having a parking area is preferred over
an apartment with a high price at Kartal not having a parking area.

An agent having a CP-Net applies one of the following heuristics
and uses the estimated utilities produced by a chosen heuristic.

3.1 Depth Heuristic (DH)
We have previously proposed an approach based on capturing

the depth of an outcome in preference graph [1] but in that study
depth is used by the proposed negotiation strategy — it is not in-
dependent from the negotiation strategy. However, in this study
we use the concept of depth to produce estimated utilities of out-
comes regardless of negotiation strategy. That is, the agent using
this heuristic is able to apply any negotiation strategy.

The depth of an outcome node in a preference graph indicates
how far it is from the worst choice. It is intuitive to say that the
better (more preferred) a service is, the further it is from the worst
outcome. The depth of an outcome node is estimated as the length
of the longest path from the root node keeping the worst choice.

According to this approach, the higher the depth of an outcome,
the more likely it is to be preferred by the user. Further, if two out-
comes are at the same depth, it is assumed that these outcomes are
equally preferred by the user. We apply Equation 2 to estimate the
utility values between zero and one. In short, the depth of a given
outcome is divided by the depth of the preference graph (the high-
est depth) to obtain estimated utility of that outcome. For example,

if we have a preference graph with a depth of 6 in Figure 1, an
outcome whose depth is equal to 3 will have utility of 0.5(= 3/6).

U(x) =
Depth(x,PG)

Depth(PG)
(2)

3.2 Borda Scoring Heuristic
CP-Nets order outcomes partially and there are a plenty of linear

orderings consistent with the partial ordering of outcomes induced
from a CP-Net. One of these linear orderings may reflect the user’s
real preference orderings. Thus, this heuristic is based on finding
all possible linear extensions of a given partial preference ordering
and selecting one of the most suitable linear extensions.

One possible way of a linear ordering is to apply a voting proce-
dure. To do this, we estimate all linear extensions of a given partial
preference ordering induced from a preference graph and apply a
voting procedure called “Borda Rule” [2] to obtain one of the most
suitable linear orderings.

According to Borda Rule, we score outcomes according to their
position in the ordering. Assume that we have m alternatives or-
dered as < o1, o2...om > where oi+1 is preferred over oi. When
we score the outcomes, each outcome will get a point of its position
minus one (oi will get i−1). The sum of points namely Borda count
represents the aggregation of existing alternative orderings. To il-
lustrate this, consider we have three orderings such as < x, y, z >,
< z, x, y >, < x, z, y > where x, y and z are possible outcomes.
Borda count of x would be equal to one (= 0 + 1 + 0). In this
approach, Borda count of each outcome over all possible linear ex-
tensions will reflect how much that outcome is preferred. Thus, we
will estimate utilities based on the calculated Borda counts.

On the other hand, the number of all possible linear extensions
of a given partial ordering may be so huge that this technique may
become impractical because of high complexity. In order to reduce
the complexity, we partition the preference graph and apply Borda
Rule to all possible linear extensions of each subpartition.

How do we partition the preference graph? We know that the
root node holds the worst outcome while the leaf node holds the
best outcome. Thus, we need to find an ordering for the outcomes
within the intermediate nodes. We partition this part in such a way
that each subpartition can involve at most n, predefined number of
outcomes. For this purpose, n can be taken as 10 or 15 according
to the size of the preference graph. We choose 10 in this study.

After applying Borda rule to each partition, we normalize Borda
counts in a way that Borda count of each outcome will be between
zero and one. To do this, we divide Borda count of each outcome
in that partition by the maximum Borda count.

Another issue pertains to using these normalized Borda counts in
order to estimate final utilities. We distribute the utilities by consid-
ering the number of outcomes at each partition. To achieve this, we
apply the formula in Equation 3 where U(x, pi) denotes the utility
of outcome x in the ith partition, Umax(i−1) denotes the utility of
outcome whose utility is maximum in the previous partition (i−1),
N denotes the number of possible outcomes, Spi denotes the num-
ber of outcomes in ith partition and BRCount(x, pi) denotes nor-
malized Borda count of the outcome x. Umax(p0) , the utility of
worst outcome (root node in the preference graph), is equal to 1/N .

U(x, pi) = Umax(pi−1) +
Spi

N
∗ BRCount(x, pi) (3)

4. EXPERIMENTS
To evaluate the proposed heuristics, we extend GENIUS [6], which

is a platform for bilateral negotiation. Our extension enables an
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Figure 1: Induced preference graph from a given CP-Net.

agent to elicit user’s preferences as CP-Nets and to use utilities es-
timated by chosen heuristic while negotiating. The platform also
stores the user’s total ordering of outcomes as UCP-Nets and eval-
uates each negotiation outcome for that agent based on the given
UCP-Net. The given UCP-Net is consistent with the given CP-net.
In our experiments, the UCP-Net serves as ground truth. After an
agent negotiates using its CP-Net, we evaluate its performance as
if we knew the correct total ordering (UCP-Net).

We investigate three test cases to compare the performance of the
heuristics. In each test case, two agents Agent A and Agent B ne-
gotiate with each other. We fix both agents’ negotiation strategies
so that Agent A negotiates with the same Agent B (having same
preference profile and strategy). In the first case, Agent A has a
CP-net and applies Depth Heuristic (DH) to derive the estimated
utilities. During the negotiation, the agent will act on according to
these estimated utilities. In the second case, Agent A has the same
CP-Net with the first case but it applies Borda Scoring Heuristic
(BSH) to estimate utilities which will be used in negotiation. In the
last case, Agent A has its user’s real total preference orderings in
the form of UCP-Net (consistent with the CP-net and able to com-
pare all outcomes). Thus, it uses the real utilities. Consequently,
we are able to observe what the agent gets at the end of negotiation
when it applies heuristics on partial preference information (CP-
Net) versus when it has total preference information (UCP-Net).

In our experiments, each agent uses a concession based strategy
in which the agent starts with the outcome having the highest utility
and concedes over time. It also remembers the best counter offer
that is made by the opponent agent. If the utility of the current
counter offer is higher than or equal to the utility of agent’s previous
offer, then the agent will accept the offer. The agent will take the
best counter offer of its opponent into account while generating its
offer. If the utility of the current offer is lower than that of the best
counter offer, the agent will take the opponent’s best counter offer.

Since the opponent agent (Agent B )’s preference profile has a
significant impact on negotiation outcome, we generate 50 differ-
ent preference profiles for Agent B. That is, the same Agent A will
negotiate with 50 different Agent Bs. Agent B ’s preferences are
represented with a linear additive utility function in this experi-

ment. Another factor having an influence on negotiation outcome
in this setting is UCP-Net of the user. Different UCP-Nets mean
different ordering of outcomes, so represent different users. Thus,
we generate four different UCP-Nets for Agent A consistent with
the given CP-net—four different users having the same CP-net. As
a result, both agents will negotiate 200 times (4 different users of
Agent A * 50 different Agent B ).

Furthermore, we investigate the performance of the heuristics
from a different point of view by taking the structure of CP-Nets
into account. We generate three different CP-Nets. CPNet-1 in-
volves one dependency such as preference of parking area depends
on neighborhood whereas CPNet-2 involves two dependencies such
as both preferences of parking area and price depend on neighbor-
hood. There are not any dependencies between attributes in CPNet-
3. For each CP-Net, we generate four different UCP-Nets consis-
tent with them and perform the experiments mentioned above.

4.1 Sum of Utilities for Agent A
Our first evaluation criterion is the sum of negotiation outcomes’

utilities with respect to Agent A over 50 different negotiations with
Agent B. Table 1 shows these total utilities for three different CP-
Nets and four different UCP-Nets consistent with each CP-Net. As
expected Agent A using UCP-Net gets the highest score when it
has a consistent UCP-Net with CPNet-1 and CPNet-3 since it ne-
gotiates with user’s real preference orderings. Overall, the perfor-
mance of the agent using BSH is quite close to that of the agent
using UCP-Net (172 vs. 179 and 171 vs. 172). For the case of
CPNet-2, the score of BSH is approximately the same as the score
of UCP-net. Since CPNet-2 involves two dependencies (the user
specifies her preferences in a more detailed way), the agent may
get more information than the case of other CP-Nets (one depen-
dency and no dependency). This leads to better results. The score
of heuristics are the highest when they have CPNet-2.

Moreover, Agent A ’s score while applying Borda Scoring Heuris-
tic (BSH) is higher than the case in which it uses Depth Heuristic
(DH) for all CP-Nets (based on overall sum over 200 negotiations).
According to this criterion, BSH may be preferred over DH.
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Table 1: Sum of Outcome Utilities over 50 Negotiations for Agent A
AGENT A DH BSH UCP-Net
CPNET-1 with UCPNet-1A 39.03 39.00 41.88
CPNET-1 with UCPNet-2A 38.27 40.73 43.66
CPNET-1 with UCPNet-3A 45.73 45.69 45.80
CPNET-1 with UCPNet-4A 46.88 46.94 47.29
Overall Sum (200 negotiations): 169.91 172.36 178.63
CPNET-2 with UCPNet-1B 39.93 41.66 41.70
CPNET-2 with UCPNet-2B 42.94 43.56 43.21
CPNET-2 with UCPNet-3B 46.15 46.76 46.75
CPNET-2 with UCPNet-4B 42.18 43.56 43.53
Overall Sum (200 negotiations): 171.20 175.55 175.20
CPNET-3 with UCPNet-1C 40.17 41.61 40.83
CPNET-3 with UCPNet-2C 41.58 42.50 45.64
CPNET-3 with UCPNet-3C 42.83 43.97 43.37
CPNET-3 with UCPNet-4C 42.36 43.36 42.64
Overall Sum (200 negotiations): 166.94 171.44 172.48

4.2 Number of Times as Well as UCP-Net
Our second evaluation criterion is the number of times that the

agent that applies a heuristic on a given CP-Net negotiates at least
as well as the agent having a UCP-Net. If the utility of outcome
for the agent using a heuristic is higher than or equal to the utility
of outcome for the agent having UCP-Net, that agent receives one
point. Since 50 different Agent Bs negotiate with the same Agent
A, we evaluate this criterion over 50 negotiations.

According to Table 2, when Agent A uses CPNet-1 and applies
DH, it negotiates at least as well as the agent having total preference
ordering (UCP-Net) in 78 per cent of negotiations whereas BSH
is successful at least as UCP-Net in 76 per cent of negotiations.
Although the performance of BSH with respect to sum of utilities
is better than that of DH, it negotiates as successfully as UCP-Net
more than BSH for CPNet-1 (78 per cent versus 76 per cent). This
stems from the fact that when BSH completes a negotiation better
than DH, the difference between utilities of the outcomes is much
higher than the case when DH negotiates better than BSH.

Table 2: Number of Times Heuristics Performs As Well As UCP-Nets
AGENT A DH BSH
CPNET-1 with UCPNet-1A 40 35
CPNET-1 with UCPNet-2A 26 35
CPNET-1 with UCPNet-3A 46 38
CPNET-1 with UCPNet-4A 44 44
Overall Sum (200 negotiations): 156 152
CPNET-2 with UCPNet-1B 43 49
CPNET-2 with UCPNet-2B 48 48
CPNET-2 with UCPNet-3B 44 50
CPNET-2 with UCPNet-4B 44 50
Overall Sum (200 negotiations): 179 197
CPNET-3 with UCPNet-1C 44 50
CPNET-3 with UCPNet-2C 27 31
CPNET-3 with UCPNet-3C 45 49
CPNET-3 with UCPNet-4C 47 47
Overall Sum (200 negotiations): 163 177

For CPNet-2 and CPNet-3, the agent using BSH negotiates suc-
cessfully as the agent having UCP-Net more than the agent using
DH. When agents have CPNet-2, it is seen that BSH beats DH.
Note that in 89.5 per cent of negotiations DH negotiates at least as

well as UCP-Net whereas 98.5 per cent of negotiations BSH per-
forms at least as good as the UCP-Net.

5. DISCUSSION
Our experimental results show that it would be better to apply

Borda Scoring heuristic (BS) in small domains since its perfor-
mance is higher than that of Depth heuristic (DH). However, we
may prefer to use DH in large domains since its complexity is lower
than BSH.

Li et al. study the problem of collective decision making with
CP-Nets [8]. Their aim is to find a Pareto-optimal outcome when
agents’ preferences represented by CP-Nets. They firstly gener-
ate candidate outcomes to increase the computational efficiency in-
stead of using the entire outcome space. Then each agent ranks
these candidate outcomes according to their own CP-Nets. For
ranking an outcome, they use the longest path between the opti-
mal outcome and that outcome in the induced preference graph.
Thus, the minimum rank is desired for the agents. They choose the
final outcome for the agents by minimizing the maximum rank of
the agents. In contrast, we use the longest path between the worst
outcome and that outcome to estimate the utilities with our depth
heuristic. Moreover, while they propose a procedure for collective
decision making, we focus on estimating utility values of each out-
come that will be used during the negotiation for an agent.

Rosi et al. extend CP-Nets to capture multiple agents’ pref-
erences and present mCP-Nets [9]. They propose several voting
semantics to aggregate agents’ qualitative preferences and to de-
termine whether an outcome is preferred over another for those
agents. They propose to rank an outcome in term of the length
of the shortest sequence of worsening flips between that outcome
and one of the optimal outcomes while we use the longest sequence
of improving flips between the worst outcome and that outcome in
our depth heuristic to get the estimated utilities.
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ABSTRACT 
Agent-based e-commerce is a popular and promising field to 
make rational and robust trading. In e-commerce, buyer can know 
trader effectively by evaluation system. However, the evaluation 
information includes incomplete and asymmetric information. We 
propose a novel evaluation model based on multiattribute. The 
new part of this model is that seller makes up multiattribute 
evaluations and number of selected evaluation attributes affect 
evaluation value. We conduct some experience to survey relation 
between number of attribute and evaluation value in the situation 
in which questionnaire results about e-commerce are reflected. 
Proposed our model shows to reduce incomplete and asymmetric 
information.  

Categories and Subject Desceiptors 
I.2 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search; I.6 [Simulation and Modeling]: Model Validation 
and Analysis 

General Terms 
Theory and Experiment 

Keywords 
Evaluation System, E-Commerce, Incentive Design, Incomplete 
Information, Asymmetric Information 

1. INTRODUCTION 
In recent years, a lot of naive users experience a trade on the 
Internet, such as e-auction, e-group buy, and e-shoppings. The 
market size of them has been developing and increasing, that is, e-
commerce market has increased 10 % or more annually in Japan. 
As the market size develops, the number of crimes and frauds on 
the Internet has been increasing year by year. Generally, 
electronic commerce site provides seller rating function in order 
to make seller’s information disclose [1][2]. Even if the e-
commerce site uses simple evaluation system, the evaluation 
system is effective to avoid dishonest behavior [3][4]. Existing 
evaluation system has a strong limitation that users input rating on 
unified evaluation attributes. Criteria to be evaluated also are not 
defined in existing evaluation systems. Even though a seller 
provides incomplete/incorrect information on an e-commerce 
website, buyers can never to declare on the seller rating system. In 
some cases, there are a lot asymmetric information between 
buyers and sellers. 

To solve the above problems in e-commerce and evaluation 
system, we propose a new evaluation method in which sellers 
disclose a lot of faithful item's information. In our method, sellers 
can freely choose evaluation attributes that is important for sellers 

to deal. Evaluation for seller is determined the synthetic 
evaluation based on number of the attributes. If the seller provides 
many evaluation items, our model give extra points for the seller. 
In latter of this paper, we provide the result of experiment 
reflected buyer’s preferences to clarify the feature of our model 
and give some discussion regarding seller's strategy.  

The rest of this paper shows as follows. In Section 2, we explain 
about incomplete information in e-commerce. Section 3 
introduces existing evaluation systems and some related work. 
Then, in Section 4, we propose a novel evaluation model based on 
the number of displayed information. After that, Section 5 gives 
experiments using real data regarding buyer's preferences and 
discusses seller's strategy in each experiment case. Finally, we 
summarize our study and show our future work in Section 6. 

2. PRELIMINARY DISCUSSIONS 
2.1 Incomplete Information 
In the Internet-based auction, buyers view items information and 
sellers information based on only displayed information on the 
web browser. Buyers cannot perfectly know the actual 
information by the Internet until they receive purchased items. 
These situations put out incomplete information, such as every 
existing electronic commerce web site. On another hand, in an e-
marketplace, differences of quantity and quality of information 
between sellers and buyers are huge issue for them. These 
situations put out the problem on asymmetric information. Web-
based marketplace has more asymmetric information than actual 
marketplaces. In the actual marketplaces, buyers can view items 
from multiple aspects, sometimes touch and pick up them. Thus, 
they make sure the material, quality, size, and several other 
information. On the other hands, when users try to buy items on 
the electronic marketplace, they cannot touch and pick up items. 
Further, they just look at some pictures taken by sellers. Some 
sellers are good faith and honesty, but others may hide a scuff on 
the item and do not provide adverse information. It makes unfair 
trades. It is very important for buyers to be filled the gap of 
information between them and sellers. When there are above 
unfair issues on the trades, buyers sometimes fail their decision 
making to select items. This means that buyers' utilities are 
decreased by unfair information provision. 

2.2 Existing Evaluation Systems 
Yahoo! [5], Rakuten [6] and amazon.co.jp [7] are popular e-
commerce sites in Japan. In their system, users can input their 
evaluation including total/synthetic evaluation and evaluation by 
free description. total/synthetic evaluation is not detailed the 
information and is abstract information. In additional, overall 
rating is no clear criteria and has the trend to be evaluated 
according to buyer's subjectivity. Although existing evaluation 
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systems have these features, buyers can never perfect information 
about sellers and items with incomplete and asymmetric 
information. A lot of causes of criminal acts are set up by these 
problems on information.  

3. EVALUATION MODEL 
In this section, we propose a new objective evaluation model 
based on quality and quantity of disclosure of information. First, 
we put and attach the concept of criteria to evaluate. In existing 
evaluation systems, users sometimes confuse because of non-
criteria for evaluation. For example, popular e-commerce sites 
provide only synthetic evaluation. Some other sites provide 
multiple attributes to evaluate like "Speedy deliver", "Politeness 
to customers", and several others. However, How do sellers gain 
good evaluation about "Speedy deliver" ? How do sellers get 
positive score about "Attitude to buyers" ? Even though a seller 
does same attitude toward helping and taking care of the customer, 
each evaluation from buyer would be different. Thus, to make 
more useful information, our proposed evaluation system sets 
concrete criteria. Further, we set an incentive model for sellers to 
grow and improve on trading skill.  

3.1 Model 
Evaluation index for sellers in the evaluated by buyers defined 
I={1,2,...,i,...,n}. Impression value A={α1,α2,...,αi,...,αn} is 
defined an impression when a buyer looks at the item's 
information on the e-commerce site. Influence value CA is also 
defined from external effects at a browsing the e-commerce site. 
Impression value B={β1,β2,...,βi,...,βn} is defined an impression 
after a buyer receives the item. Influence value CB is also defined 
from an external effects when a buyer receives the delivered item. 
We define that buyer's synthetic impression value CA with 
impression function FA when a buyer browses the item 
information at the e-commerce site. The value is indicated as 
GA=FA(A, CA). We define that buyer's synthetic impression value 
with impression function FB when he/she receives the delivered 
item. The value is indicated as GB=FB(B, CB). We simply assume 
that the functions FA and FB are additional value functions. 

3.2 Evaluation from Trading Partners 
Even though an expression value and item information value are 
same, sensitivity and feeling of the explanation and introduction 
of items are different for each buyer. When evaluations are given 
using a stage assessment model, each buyer evaluates based on 
his/her multiple scale. To avoid such dispersion, we set a criterion 
for each evaluation attribute. For example, when the delivered 
item is evaluated on the sameness between actual item and the 
picture shown at the e-commerce site, we give a certain criterion 
like shown in Table 1. The adjusted value of important criteria is 
higher and the value of unimportant criteria is lower. The values 
can be changed by the e-commerce site manager.  

 
Table 1. Example of criteria and adjusted values 

Criteria Rate 
Delivered item is same with the picture on the web 1.5 

Actual item’s size is same with the description on the web 1.3 
:  

 

Thus, incomplete information are reduced by these evaluations 
based on comparison between actual things and criteria. If a lot of 

buyers evaluate the attribute in which the original item is different 
from the picture on the web in the past, the seller is known as a 
person who does not deal in the acceptable item. Our proposed 
model provides more concrete information comparing with 
existing e-commerce sites. 

3.3 Evaluation from the System 
3.3.1 Information Disclosure 
Our proposed model is based on number of disclosure of 
information. Multiple attributes to evaluate are prepared and a 
seller selects attributes based on his/her strengths. If he/she is 
good at packing, he/she can choose the "Package" as the evaluated 
attribute. On the other hand, if he/she does not want to disclose his 
weakness, he/she can omit the attribute to be evaluated. To design 
a desirable mechanism in evaluation, we set a control value based 
on number of information disclosure. When a seller changes five 
attributes from four attributes to be evaluated, the system gives an 
incentive points to the seller. Namely, if the seller discloses more 
attributes, the incentive points are given in proportion. Thus, 
he/she sets up a lot of attributes to get many incentive points. And 
also, incomplete information reduce from the shopping site. 
However, if he/she does so, he/she needs to be careful in each 
activity on a trade. if a seller provides an item's information by 
pictures and explanation, a risk on trade is decreased [10][11]. 

3.3.2 Cumulative Extra Point 
Here, we define an experience value based on the cumulative 
number of trades for each seller. In existing evaluation systems, 
the score/rating of evaluation is calculated simple cumulative 
trading experience. For example, when a seller has 30 positive 
rating without any negative rating and he/she gets a positive rating 
in a subsequent trade, his/her score becomes 31 rating. However, 
we propose an appreciate model for outstanding sellers. The 
outline of the model is that the system gives an extra point for a 
seller who continues a lot of trading without negative rating from 
buyers. On the other hands, once he/she gets a negative point, the 
cumulative number goes back to the start. For example, when a 
seller has cumulative 100 positive rating without any negative 
rating and he/she gets a positive rating in a subsequent trade, the 
system give some extra score automatically. Thus, the 
marketplace positions outstanding sellers apart from the rest.  

4. EXPERIMENTS 
We conducted experiments to measure our proposed model. When 
the system changed the evaluation depending on the number of 
evaluation attributes, we searched the market conditions where 
buyer can have dealings with confidence. In the market conditions, 
we configured (1) Buyer takes precedence elements in dealing, (2) 
Buyer has a impression to concern the evaluation for seller when 
buyer looks at multiple attributes, (3) About the number of each 
buyer type defined by (1) and (2). In the definition of (1), the 
experiments assumed three buyer types including price-oriented 
(PO), evaluation-oriented (EO), and neutral buyers (N) in the 
marketplace. Price-oriented buyers prefer low price item rather 
than rating of evaluation to decide a seller to trade. Evaluation-
oriented buyers have a trend to choose sellers with rating of 
evaluation rather than item's price. Neutral buyers have both 
above features. In the definition of (2), we set that buyer has a 
good impression on the specific number of evaluation attributes 
and gives seller higher one level rating. In the definition of (3), we 
investigated how many there are buyer types defined because we 
didn't know it exist in actual marketplace. 
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4.1 Survey 
We surveyed fifty-seven peoples in order to set parameters in our 
experiments. We asked two questions. Question (1) Which do 
you prefer buying the item in e-commerce, products low prices, 
height of seller's rating or both low price and high evaluation? 
Question (2) When there are various sellers disclosing some 
evaluation attributes between 1 to 10, how many evaluation 
attributes are you desirable? 

Table 2 shows the questionnaire result regarding buyer's 
preference in online market. From questioner's answer in the 
question (1), most of them are interested in a feature both low 
price items and high evaluation sellers. Table 3 shows the 
questionnaire result regarding buyer's impression about number of 
evaluation attributes. From questioner's answer in the question (2), 
many questioners wish the evaluation attributes is around five. We 
involved the distribution of each buyer type gotten by the above 
result into the experiments.  

 
Table 2. Questionnaire Result (1) 

Priority Item Price Evaluation Both Other 
Totals 13 4 39 1 

 
Table 3. Questionnaire Result (2) 

Attributes 1 2 3 4 5 6 7 8 9 10 
Totals 3 0 5 5 20 10 3 5 0 6 

 

4.2 Setting 
In the marketplace, rating of evaluation is rated through 1 to 5 of 
integers. Item's price is assumed between $400 and $600 chosen 
by a normal distribution on distribution value 50. The average of 
price of sold items is $500. We assume three types of preferences 
in which buyers have. First, if buyer has the preference about 
price of item, the threshold of decision-making Dp is shown as 
equation (1). If Ps is larger than the equation, buyer trades with a 
seller who deals in at the lowest price out of candidates. 

! 

Dp : p "
e
10

 

Second, if buyer has the preference about seller's evaluation, the 
threshold of decision-making De is shown as equation (2). If Es is 
larger than the equation, buyer trades with a seller who deals in at 
the highest rating out of candidates. 

! 

De :
500 " p
10

+ e  

Third, if buyer is neutral for price and seller's evaluation, the 
threshold of decision-making Dn is shown as equation (3). If Es /3- 
Ps /500 is larger than the equation, buyer trades with a seller who 
deals in at the highest value (than threshold value) out of 
candidates.  

! 

Dn :
e
3
"

p
500

 

p indicates item's price and e indicates rating of evaluation. Ps 
indicates item's price shown by seller. Es indicates seller's rating 
of evaluation. In the setting of experiments, four types of trends of 
evaluation are assumed with number of evaluated attributes. The 
number of evaluated attributes is between 1 and 10.  

We assume four types of about evaluation given for seller. The 
following is detail of each evaluation type. (A) Average of 
evaluation value monotonically increases when the number of 
evaluated attributes increase. (B) When the number of evaluated 
attribution increases, the average of evaluation value 
exponentially increases. (C) When the number of evaluated 
attribution increases, the average of evaluation value increases 
with marginal decreasing. (D) When the number of evaluated 
attribution is around 5, it tends for buyers to give high rating like 
normal distribution. Figure 1 shows types of evaluation used in 
experiments. Horizontal axis shows the number of evaluation 
attribute, vertical axis shows the distribution of average evaluation. 
These evaluation types include both the rating given by buyer and 
the extra point from number of evaluation attributes.  

Table 4 is a setting of 4 cases of experiments. Buyer's preferences 
are shown as PO, EO, and N. PO indicates the buyer's preference 
in which he/she has a price-oriented preference. EO indicates the 
preference in which he/she has a evaluation-oriented preference. 
N indicates a neutral buyer who has a preference both price and 
evaluation. In cases 1 and 2, we assume there is same number of 
types of buyers in the market. In cases 3 and 4, the rate of buyer's 
preferences are respectively used from our survey result shown in 
Table 2. EP indicates the condition where the number of attributes 
effect buyer's input to evaluate. When EP=0, number of 
evaluation attributes are not effected in an evaluation by buyers. 
When EP=1, some buyers give high rate when the number of 
attribute to be evaluated is same as their preferences shown in 
Table 3. For example, when a buyer prefer that the number of 
attributes is 6, he/she give a high rate if the trader provides 6 
attributes to be evaluated. In the experiment, we assume that 
buyer gives 1 additional rate in such case.  

 
Table 4. Experiment Setting 

Experiments Number of Buyer’s Type 

Experiments 
(A), (B), 
(C), (D) 

Case1: PO=100, EO=100, N=100, EP=0 
Case2: PO=100, EO=100, N=100, EP=1  
Case3: PO=69, EO=21, N=210, EP=0  
Case4: PO=69, EO=21, N=210, EP=1 

 

Result of experiments shows the average of rate of successful 
trade in 1000 trials. We assume that there are three hundred 
potential buyers and one hundred potential sellers to trade. 

4.3 Result of Experiment 
Experiment results show in Figure 2 to 5. Each experiment 
condition is respectively employed the evaluation types (A), (B), 
(C), and (D) shown in 5.2. Horizontal axis indicates the number of 
evaluation attribute, vertical axis indicates the rate of successful 
trade in graphs. 

4.3.1 Experiment (A) 
In this experiment, the type (A) in 1 is used as buyers trend. 
Figure 2 shows the result of experiment on a setting of 
Experiment (A) in Table 4. When the each buyer type exists 
respectively the same rate, the transaction success rate is flat in 
the number of each evaluation attribute. On the other hands, when 
we employ a condition of cases 3 and 4, successful trade rate is 
high when the number of evaluation attribute is between 5 and 10. 
This means that seller's best strategy is to declare 5 or more than 6 
attributes to be evaluated. 
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4.3.2 Experiment (B) 
In this experiment, the type (B) in 1 is used as buyers trend. 
Figure 3 shows the result of experiment on a setting of 
Experiment (B) in Table 4. When the average of evaluation given 
by buyers and the system is three or less (see the type (B) curve in 
Figure 1), effects of the impression value is low.In cases 3 and 4, 
the rate of successful trade is extremely low. Namely, the best 
strategy for sellers is to provide a lot of attributes to be evaluated. 

4.3.3 Experiment (C) 
In this experiment, the type (C) in 1 is used as buyers trend. 
Figure 4 shows the result of experiment on a setting of 
Experiment (C) in Table 4. The successful trade is high on the 
number of evaluation attributes between 3 and 5. On the other 
hands, in cases 3 and 4, the number of successful trade is quite 
low on the number of evaluation attributes between 7 and 10. This 
means that seller's best strategy is to prepare 4 attributes or around 
4 to be evaluated. 

4.3.4 Experiment (D) 
In this experiment, the type (D) in 1 is used as buyers trend. 
Figure 5 shows the result of experiment on a setting of 
Experiment (D) in Table 4. In the Cases 1 and 2, successful trades 
is the highest between 5 and 8. Considering actual tradings, 
seller's best strategy is to prepare attributes between 6 and 7 to be 
evaluated. 

5. CONCLUSION 
In this paper, we designed an evaluation model in which sellers 
become to have an incentive to disclose a lot of information of 
item and themselves. By using our proposed method, users 
evaluate more precisely sellers because our proposed method 
provides concrete criteria to be evaluated. Our model is based on 
multiple attribute evaluation including evaluation from buyer and 
system. System gives extra point based on the number of 
evaluation attributes set by sellers. Even though a seller is good at 

packaging, the system discounts the rating as a penalty when 
he/she chooses only one attribute "packaging" as detailed rating. 
Because our model makes an effect to promote information 
disclosure, to reduce incomplete, and to decrease asymmetric 
information. Our future work includes to analyze and to model a 
situation where buyer's preferences to evaluate dynamically 
changes. 
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ABSTRACT
Mediation is an important paradigm for dispute resolution.
If done properly, it can lead to“win-win” situations and ben-
efit all parties. Thus, the advantage of designing a proficient
automated mediator capable of interacting with people dur-
ing their negotiations is of great importance. Yet, succeed-
ing in this task is difficult due to the diversity of people and
their bounded rationality. To be successful, the mediator
must take this into account, and propose solutions deemed
relevant, or otherwise, lose the focus and trust of the ne-
gotiators. In this paper we present AniMed. AniMed is an
automated animated mediator, incorporated with a novel
proposal generation strategy, aimed to increase the social
benefit of the negotiating parties. To validate the benefits of
using AniMed in negotiations, experiments were conducted
with more than 100 people negotiating with each other. The
results demonstrate the significant increase both in the social
welfare and the individual utilities of both parties, compared
to negotiations in which another state-of-the-art automated
mediator or no mediator was involved.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems
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Bilateral Negotiations
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bilateral negotiations, automated mediation, incomplete in-
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1. INTRODUCTION
Negotiations are procedures for resolving opposing prefer-
ences between two or more parties, by means of discussion.
The goal is to reach an agreement, i.e. a mutually accepted
solution, without resorting to a struggle. Mediation, which
is the involvement of a third party in the negotiation pro-
cess, dates back to Ancient Greece [11] and has evolved to
assist the negotiating parties in reaching beneficial solutions
and increasing their social welfare. In many occasions, the
mediator does not have the authority to impose a solution
on the parties or the power to compel them to uphold the
agreement reached (unlike arbitration), and the mediator is
usually neutral (unbiased) and objective. This emphasizes
the importance of a successful mediation, and thus nowa-
days it is widespread for dispute resolution ([12], Chapter
2).

Automated mediators, intelligent agents that take the role
of an active mediator in the negotiation process, can play
an important role in the mediation process between peo-
ple. They offer a discrete, impartial facilitator that might
be more trusted than a human one. The computational re-
sources of automated mediators may also be more useful
when incomplete information exists and there is uncertainty
regarding the preferences of the parties, as the difficulty for
a human mediator only increases. Yet, the use of automated
mediators is far from widespread, perhaps due to the difficul-
ties in bridging between people, or due to the computerized
(perhaps “cold”) nature of them.

In this paper we introduce AniMed – a domain-independent
automated vivid and animated mediator designed to im-
prove the social welfare of people in bilateral negotiations.
AniMed, an English speaking avatar, interacts with people
who negotiate by means of a video-conference. AniMed ’s
novel design allows it to propose solutions that are in the
context of the current negotiation state. This strategy dif-
ferentiates it from other automated mediators found in the
literature. Another original feature implemented in AniMed
is its capability to propose partial solutions, and by doing so
it provides the negotiators with the option to incrementally
strive for a beneficial solution. Moreover, the strategy in-
corporated in AniMed does not rely on the structure of the
utility function of both negotiators, but rather constructs
a preference relation between the possible solutions. Thus,
AniMed has a generic strategy mechanism, allowing it to be
matched and mediate proficiently with many possible types
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of negotiators without any restriction to any specific domain.
Lastly, as AniMed was built on top of Genius, a generic ne-
gotiation framework [7], it will be available for the public
and can be modified and used in numerous domains and
settings.

AniMed was evaluated in experiments with more than 100
people who negotiated face-to-face on a neighbor dispute
domain by means of video-conferences. The negotiation in-
volved uncertainty with respect to the utility values of op-
posing parties. This uncertainty was also shared by the me-
diator, that had information solely on the preference relation
between the issues under negotiation. AniMed significantly
increased the individual utility score and the social welfare,
measured by the sum of utilities, of both negotiators, com-
pared to experiments in which another state-of-the-art me-
diator or no mediator were involved. The results also in-
dicate that while people are content with the agreements
they achieve without any mediator involved, better agree-
ments can be achieved when AniMed is present, which only
emphasizes the benefits of using it in human-to-human nego-
tiations. The animated design of AniMed and the structure
of the experiments was also motivated by findings of Nass
and Moon [9], with respect to human-human versus human-
computer interaction.

The rest of the paper is organized as follows. Section 2
provides an overview of automated mediators. Section 3 de-
scribes the negotiation context, followed by Section 4 that
presents the design of AniMed, including the user-interface
design. Section 5 describes the experimental setting and
methodology and reviews the results. Finally, Section 6 pro-
vides a summary and discusses future work.

2. RELATED WORK
Few automated mediators are mentioned in the literature.
Some are discussed in the context of online dispute reso-
lutions, which are mostly alternative services to litigation.
For example, eBay’s resolution center1 tries to facilitate the
resolution of conflicts between buyers and sellers.

A number of negotiation support systems are also described
in the literature. Family Winner [1], for example, is software
that assists divorcees to rationally negotiate their disputes.
It does this by advising rational options for trade-offs of as-
sets between opposing parties. However, it is focused on a
single domain and cannot be generalized. The HERMES
system [6] is a collaborative decision support system that
acts as an assistant and advisor by facilitating communi-
cation and recommending solutions to members of a deci-
sion makers group aiming at reaching a decision. It uses an
argumentation framework that provides an issue-based dis-
cussion forum [5] whereby users can propose and discuss al-
ternative solutions. Like HERMES, AniMed uses the issue-
based discussion approach, yet AniMed is implemented to
support face-to-face negotiation, and not as a collaborative
decision support system.

PERSUADER [13] is a computer program that acts as an
automated labor mediator in hypothetical negotiations re-
lying on Case-Based Reasoning methods (i.e., logic formula-

1
http://resolutioncenter.ebay.com/

tion of the problem). PERSUADER is topic-embedded, and
requires data from previous negotiation sessions to reason.
In addition, it employs manipulation methods as a mean of
manipulating the parties. In contrast, AniMed enables the
parties to reach satisfactory agreements without the need to
resort to manipulations and without the need of a historic
database. In addition, unlike PERSUADER, AniMed was
evaluated with people.

e-Alliance [2] is an automated mediator that offers support
for multi-issue, multi-participant (different partners can be
involved) and multiple-cycle (cycles of proposals and counter
proposals over the same set of attributes) negotiations. These
characteristics make the facility flexible enough for use in
different domains. While e-Alliance was developed for agent-
agent interactions, we are interested in the problem of human-
human interactions.

Olive et al. [10] formalize the functionalities an automatic
mediator should be able to activate when operating in a
multi agent environment. However, as AniMed operates in
bilateral human environments, some of the defined function-
alities are not implemented. For example, the storage of the
dialog protocol and its specifications, as well as resolving dis-
putes over the protocol’s rules, are irrelevant since AniMed
uses a pre-defined protocol.

AutoMed [4] is an automated mediator that most resembles
our proposed mediator. AutoMed monitors the exchange of
offers and actively suggests possible solutions, during the
negotiation process. It uses a qualitative model for the ne-
gotiator’s preferences, without past knowledge. The sugges-
tions it makes are basically Pareto-optimal solutions that
maximize the social welfare of the negotiating parties. Au-
toMed was evaluated with human negotiators, who negoti-
ated using a computer system, by exchanging offers selected
from drop-down lists. AutoMed participates as a third-party
that sends suggestions via the system. However, AutoMed
has its limitations. Mainly it does not suggest incremental
(partial) solutions nor does it provide explanations for its
suggestions. Moreover, AutoMed constrains the negotiators
to negotiate through the system, while a more natural ap-
proach would be to negotiate face-to-face. These drawbacks
are nonexistent in AniMed, allowing it to generate more sat-
isfactory agreements that are deemed more relevant by the
negotiating parties.

3. NEGOTIATION PROBLEM DESCRIPTION
We consider the problem of a proficient automated media-
tor as a key to improving the performance of two human
negotiators, who strive to reach an agreement on conflicting
issues. The mediator is situated in finite horizon bilateral
negotiations with incomplete information between two peo-
ple. The negotiation consists of a finite set of multi-attribute
issues and time constraints. The incomplete information is
expressed as uncertainty regarding the utility preferences of
the opponent, as explained below.

The negotiation can end when (a) the negotiators reach a full
agreement, (b) one of the negotiators opts out, thus forcing
the termination of the negotiation with an opt-out outcome,
or (c) a predefined deadline, denoted dl, is reached, whereby,
a status quo outcome, denoted SQ, is implemented.

65



Given a set of issues, I = {I1, I2, . . . , Im} and a set of val-
ues dom(Ij) = {vj1, v

j
2, . . . , v

j
bj
,⊥} for each Ij ∈ I (since

we allow partial solutions to be proposed, ⊥ ∈ dom(Ij))
and let O be a finite set of discrete values for all issues
(I1 × I2 × . . .× Im). A solution is denoted as a vector ~o ∈
O, where its utility is calculated as a sum of its values. While
the utility is known to each negotiator, it is unknown to the
mediator. A full order, ≺, exists over the values of dom(Ij)
and this is the only information shared between the negotia-
tors and the mediator, that basically captures the preference
values in the sense of which is “more important than”.

It is assumed that the negotiators can take actions during
the negotiation process until it terminates. If a partial agree-
ment was accepted it is then implemented. While we did not
incorporate time costs in our settings, they can be easily
generalized to include time costs which are assigned to the
negotiators’ utilities. In each period each agent can propose
any number of possible agreements, and the other agent can
accept the offer, reject it or opt out. Each agent can either
propose an agreement which consists of all the issues in the
negotiation, or a partial agreement.

To make the problem more realistic the negotiation we con-
sider a setting in which the negotiation is done face-to-face
using a video conference and a negotiation system. Thus,
the parties negotiated freely and discussed the different is-
sues until they arrived at potential solutions to agree upon.

The negotiation problem also involves incomplete informa-
tion with regards to the preferences of the opponent. While
each side knows its own utilities, the utilities of the other side
are private information. Formally, we denote the utility of
each side l ∈ {A,B} as ul, and ul : {O∪{SQ}∪{OPT}} →
R.

4. MEDIATOR DESIGN
The design of AniMed is built on top of the Genius infras-
tructure, which is an integrated environment for supporting
the design of generic automated negotiators [7]. This envi-
ronment is rich and supports bilateral multi-issue and multi-
attribute negotiations, both with human counterparts and
automated agents. An example snapshot of a negotiation
interface is given in Figure 1. The focus of the research was
to design an automated formulating mediator (as opposed
to a manipulative one). That is, the agent tries to propose
solutions and help the negotiators reach a mutually agreed
outcome. AniMed is not topic embedded, allowing it to be
used in many scenarios, and it is aimed to be proficient in
bilateral negotiations involving people.

AniMed was implemented using two main considerations.
First, a proficient strategy was used to enable it to gener-
ate offers deemed relevant by the negotiating parties. To
achieve this, AniMed utilizes recent offers proposed by the
negotiators when generating its own offers, thus centering
its offer on the current context of the negotiation. The sec-
ond consideration involves its user interface design. AniMed
was implemented with a rich animated interface to make it
appealing and user friendly for people (see Figure 2).

The motivation behind the strategy design of AniMed was
to generate offers that would maximize the social welfare of

Figure 1: An example of a negotiation snapshot us-
ing Genius.

both negotiators. However, this is a difficult task due to
conflicting interests between the negotiators. To overcome
this, AniMed starts proposing only after both negotiators
have proposed or accepted an offer in the past. It uses this
information to try to find a set of solutions that can still
increase both negotiators’ utilities. One of its strengths is
its ability to provide a solution only on a subset of the issues
under negotiation, allowing the negotiators to incrementally
improve the final solution. In addition, to prevent the ne-
gotiators from labeling its offers as irrelevant, AniMed does
not propose any offer if it is identical to the last offers made
by the negotiators.

The strategy used by AniMed consists of five steps, which
we describe hereafter using an example to better illustrate
it. Assume that in a given negotiation domain there are
two agents, A and B, and 7 possible solutions. Also assume
agent A and B just proposed solutions indexed 3 and 5,
respectively. Table 1 lists the information about the domain
and the steps taken by AniMed to decide on a solution to
propose.

The first step in the algorithm used by AniMed is taken
before the negotiation starts. While the utilities of the so-
lutions are private information of each negotiator and un-
known to the mediator, AniMed uses a linear function, order(·),
to obtain an ordinal scale of all solutions. Each issue Ij is
given a cost, λIj , which is its ranking compared to all other
issues, based on the preference relation between the issues.
Each issue’s value is also ranked based on the preference re-
lation between the possible values of the given issue. Then,
the mediator multiplies the costs of issues and values to ob-
tain the linear preference relation. Note that this order may
be different from the actual order of the values of the ne-
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Solution Idx orderA(~o) orderB(~o) joint order diff order

1 7 1 8 6

2 6 2 8 4

3 5 3 8 2

4 4 4 8 0

5 3 6 9 3

6 2 5 7 3

7 1 7 8 6

Table 1: A sample domain for choosing a solution to
propose. For each negotiator, A and B, the possible
solutions are ordered by her own preferences. The
last offers made by the negotiators are marked in
bold.

gotiators. Then, during the game play, AniMed chooses its
suggestions based on these orderings and on the last offers
made by the negotiating parties, which are marked in bold
in Table 1.

The next two steps are motivated by the strategy of Au-
toMed. The second step in AniMed ’s strategy is to discard
all solutions that, for each party, have a lower ranking than
her last proposal. Thus, AniMed removed solutions #1, #2
(higher ordering for agent A) and #7 (higher ordering for
agent B) while it kept the four other offers. Then, in its
third step, AniMed searches for any non-Pareto optimal of-
fers and removes them as well. In our example, one of the
solutions was non-Pareto optimal (#6).

In the fourth step AniMed orders all remaining solutions
based on the following criteria. First, it orders them based
on the solutions’ joint ordering (that is, the sum of both
orderings, marked as “joint order” in Table 1). If the so-
lutions have the same joint ordering, it compares them to
previous solutions proposed by each negotiator. However, to
allow AniMed to propose solutions which are in context with
the solutions previous suggested by the negotiating parties,
solutions that are more similar to previously suggested so-
lutions, measured by the number of similar values between
the solutions, are ordered higher. If there are still solutions
with the same rank, it orders them based on the absolute
difference in their ordering (marked as “diff order” in Table
1). Algorithm 1 describes the pseudo-code of the algorithm
for generating a full proposed solution.

AniMed now has a full solution that it can propose. How-
ever, from preliminary experiments, we observed that the
dynamics of the negotiation mainly involves partial agree-
ments. Thus, the fifth step in AniMed ’s strategy is to gen-
erate partial solutions that could still benefit the negotia-
tors. AniMed incorporates two mechanisms for generating
partial solutions. The first is based on joint-value issues.
That is, issues with values that are estimated as generating
higher utilities for both parties, based on their orderings,
can be suggested by the mediator. The second is based
on a trade-off between the issues. This is done by calcu-
lating the distances between the ordering of given issues,
denoted by “diff order” in Table 2. AniMed then contin-
ues to calculate the difference between the orderings of each

Algorithm 1 Generating A Full Proposed Solution

1: for all ~o ∈ O do
2: Insert ~o to OrderedListA, OrderedListB
3: Using orderA(~o), orderB(~o)
4: end for
5: if Both sides interacted then
6: for all ~o ∈ O do
7: if orderA(~o) < lastOffer(A) then
8: remove ~o from OrderedListA
9: end if
10: if orderB(~o) < lastOffer(B) then
11: remove ~o from OrderedListB
12: end if
13: end for
14: OffersList =

Intersect(OrderedListA, OrderedListB)
15: OffersList = ParetoOffers(OffersList)
16: Define jointOrder(~o) = orderA(~o) + orderB(~o)
17: Define diffOrder(~o) = abs(orderA(~o) - orderB(~o))
18: Sort OffersList

Using jointOrder(~o)
Then SimilarityToRecentOffers(~o)
Then diffOrder(~o)

19: end if

Issue Idx orderA(issue) orderB(issue) diff order

1 1 4 3

2 2 2 0

3 3 3 0

4 4 5 1

5 5 1 -4

Table 2: An example of deciding the trade-off be-
tween issues. For each negotiator, the order of im-
portance of an issue is determined by the maximum
value she can achieve from that issue.

pair of issues, that is, ∀i, j ∈ I, (orderA(i) − orderB(i)) −
(orderA(j) − orderB(j)). For example, the result for the
pair 〈Issue1, Issue5〉 is 3 − (−4) = 7. The higher the sum,
the better candidate it is for selection in the partial solution
in order to allow trade-offs. This evaluation is motivated by
our belief that people tend to perceive issues as “important”
or “not important”, thus they do not use the full possible
ranking of solutions. The aforementioned evaluation tries to
capture this observation, that is, a pair of issues that would
be deemed “important” and “not important” to one of the
negotiators, and the opposite to the other party.

From those possible partial solutions, AniMed tries to make
proposals based on trade-offs between issues, or joint-value
issues, that were agreed upon or discussed by the negotia-
tors.

Another consideration implemented in AniMed is a simple
argumentation mechanism to try to convince the parties why
the proposed solution suggested by AniMed should be con-
sidered. When AniMed proposes a solution it attaches a text
message stating that if the negotiators make the suggested
trade-off they can achieve higher scores (the text is slightly
different if the suggested solution includes issues that were
previously agreed upon by the parties or simply discussed).

An additional approach incorporated in AniMed relates to
its presence during negotiations. In order to compel people
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Figure 2: AniMed avatar example.

to listen to the mediator’s proposals, whenever it proposes a
solution, it takes over the entire screen so people cannot con-
ceal or ignore it. Moreover, the mediator was implemented
as an English (translation to native language was given in
the text) speaking avatar (see Figure 2), using a commer-
cial text-to-speech engine, to convey a more “humanized”
appearance and a less distant and computerized one.

5. EXPERIMENTS
We matched people on a given domain using the Genius
environment, an integrated environment for supporting the
design of generic automated negotiators [7]. The two nego-
tiators were given a task to negotiate a beneficial agreement.
Four different experiments were conducted using the same
domain, in order to compare the proficiency of AniMed. One
experiment involved matching people without any mediator.
In another experiment we matched two people with a sim-
ple automated mediator, AutoMed, suggested by [4]. Cha-
lamish and Kraus demonstrated that this mediator enables
the negotiators to achieve more satisfactory agreements in
environments where only messages are exchanged.

Finally, we matched people in a setting which included our
proposed mediator, once while providing them a facilitation
mechanism that provided them a “negotiation calculator”
which enabled them to calculate the utilities of each solu-
tion at any given time, and once without that mechanism.
They played in only one of the experiments in order not to
bias the results. We begin by describing the domain which
was used in all the experiments and then continue with the
experimental methodology and the results.

5.1 The Negotiation Domain
For the negotiation domain we chose a neighbor dispute do-
main. In this domain, a negotiation takes place between two
tenants, Alex and Tyler, due to a neighbors’ dispute. Both
negotiators need to negotiate in order to resolve the dispute,
or otherwise be forced to undergo a lengthy and costly dis-

pute resolution process. The issues under negotiation are:

1. Trash. This issue dictates the solution to the fact
that Alex puts its trash every morning on the stairwell,
making Tyler angry as it attracts flies and stinks. The
possible values are (a) Alex will continue to put trash
on the stairwell, (b) Alex will put trash at 5pm, (c)
Alex will get a friend to take out the trash, (d) Alex
will pay the doorman to take out the trash, or (e) Alex
will put trash after 8pm.

2. Basketball court. This issue describes how the bas-
ketball court will be shared between Alex and Tyler on
Saturdays. The possible values are (a) Alex will con-
tinue to use the court on Saturdays at any given time,
(b) Alex will use court for two hour only, (c) Alex will
use court for one hour only, (d) Alex will leave court
when Tyler asks him to, or (e) Alex will not use the
court on Saturdays.

3. Noise. The noise issue tries to resolve the problem of
Tyler making noise at nights, disturbing Alex’s sleep.
The possible values are (a) Tyler will be quiet after
11pm, (b) Tyler will be quiet after 12am, (c) Tyler
will be quiet after 1am, (d) Tyler will be quiet upon
request by Alex, or (e) Tyler will continue to be loud.

4. Patio. This issue describes how the patio will be
shared between Alex an Tyler. The possible values
are (a) Tyler will not use patio, (b) Tyler will use pa-
tio for one hour every other night, (c) Tyler will use
patio for one hour every night, (d) Tyler will use patio
for two hours every night, or (e) Tyler will continue to
use patio whenever he wants to.

5. Parking lot. This issue describes the resolution for
using the parking lot by Tyler’s guests. The possible
values are (a) Call the police to give tickets or tow
away unauthorized cars, (b) Alex and Tyler will try
to recruit other residents to move unauthorized cars,
(c) Alex and Tyler will donate money to install “non-
parking” signs , (d) complain to the owner about the
situation, or (e) Tyler and Alex do nothing.

In this scenario, a total of 3,125 possible solutions existed
(5 × 5 × 5 × 5 × 5 = 3125). The scenario was symmetric
for both negotiators, in the sense that the negotiators could
compromise and make tradeoffs between the issues and the
gains and losses were equivalent. On one of the issues both
negotiators received the same utility. On two other issues
the more one gained, the less the other gained. These two
issues had the same scale in the utility scores. For the last
two issues, the negotiators could use tradeoffs between the
values of both issues to gain the same utilities2. The utility
values ranged from 0 to 1,000 for both negotiators, where
the Pareto-optimal solution generated a utility of 720 for
both.

Each turn in the scenario equated to two minutes of the
negotiation, and the negotiation was limited to 28 minutes.

2Detailed score functions for the domain can be
found at http://u.cs.biu.ac.il/~linraz/Papers/
neighbors-utilities.pdf
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If the negotiators did not reach an agreement by the end of
the allocated time, the negotiation ended and both tenants
would be required to undergo a costly dispute resolution
session. This outcome was modeled for both agents as the
status quo outcome. Each negotiator could also opt-out of
the negotiation if it felt that the prospects of reaching an
agreement with the opponent were slim and that it was no
longer possible to negotiate. The status quo value equaled
the opting out value and which was 280 for both negotiators.

5.2 Experimental Methodology
The human negotiators accessed the negotiation interface
via a web address. The negotiation itself was conducted as
follows. Using a video conference the two negotiators negoti-
ated face-to-face on the different negotiable issues. Since the
focus of the research was on the strategy of the automated
mediator, natural language processing (NLP) was beyond
the scope of our research, and thus we required the nego-
tiators to submit their proposals also using the negotiation
system. This allowed the information to be processed by the
automated mediator. Nonetheless, the negotiation itself was
not constrained and was employed via a face-to-face video
conference. The acceptance or decline of the offer was also
done using the user interface. The mediator in turn sent
proposed solutions to the parties via the animated avatar
and the negotiation system.

We tested our agent against human subjects, all of whom
are computer science undergraduates and graduate students.
104 human subjects participated in the experiments (52 pairs).
A total of four sub-experiments were conducted, 13 pairs
in each sub-experiment. The subjects did not know any
details regarding the automated mediator with which they
were matched, e.g., whether it was a human or an automated
one and what type of strategy it used. The outcome of each
negotiation was either they reached a full agreement, they
opted out or the deadline was reached.

Prior to the experiments, the subjects were given oral in-
structions and were shown an instruction video regarding the
experiment and the domain. The subjects were instructed
to play based on their score functions and to achieve the
best possible agreement for them.

5.3 Experiment Results
To verify the proficiency of AniMed we compared the fi-
nal utility results in all experiments, as well as the number
of proposals exchanged between the negotiators in each ex-
periment. Lastly, we administrated questionnaires inquiring
about the satisfaction of the negotiators from the outcome
and their view on the helpfulness of the automated mediator.

Throughout this section, we also evaluate the significance of
the results, compared to the results of AniMed without the
facilitation mechanism. With respect to the utility values,
the significant test was performed by applying the t-test on
the results, which is a statistical hypothesis test in which
the test statistic has a t-distribution if the null hypothesis
is true. This test requires a normal distribution of the mea-
surements ([3], Chapter 3). Thus, in our analysis it is used
to compare the utility values of the negotiation parties in
the different experiments conducted, which have continuous
values. We applied the Mann-Whitney U-test on the results

Alex Tyler SW

AniMed w/o facilitation Average 723 665 1388
Stdev 92 69 75

AniMed with facilitation Average 735 669 1404
Stdev 52 45 59
p-value 0.35 0.43 0.28

AutoMed Average 651 590 1241
Stdev 80 103 145
p-value 0.022 0.02 0.002

No Mediator Average 645 595 1240
Stdev 130 121 150
p-value 0.045 0.041 0.002

Table 3: Average utility scores, standard deviations,
social welfare (SW) and p-values in the different ex-
periments. p-values are compared to experiments in-
volving AniMed without the facilitation mechanism.

of all other parameters [8]. The Mann-Whitney U-test is a
non-parametric alternative to the paired t-test for the case
of two related samples or repeated measurements on a single
sample, suitable for data without normal distribution (as in
our case).

Table 3 summarizes the results of the individual utilities and
the social welfare, measured by the sum of utilities of the ne-
gotiating parties (in our domain they are denoted as Alex
and Tyler). First, we examined the final utility values of all
the negotiations for each role, and the social welfare, mea-
sured by the sums of the final utility values. When AniMed
was involved, the average utility for both negotiators was
significantly higher (735 and 669 or 723 and 665 for Alex
and Tyler with and without facilitation, respectively) than
in any of the cases in which it was not involved (that is, with
AutoMed – 651 and 590 for Alex and Tyler, respectively –
or without any mediator – 645 and 595).

Comparing the sum of utility values of both negotiators
when AniMed was involved to cases in which it was not in-
volved, also reveals that the sum was significantly higher in
cases in which AniMed was involved (1241 and 1240 with
AutoMed or without any mediator, respectively, as com-
pared to 1,388 and 1,404 with AniMed). These results were
found to be significant (using the 2-sample t-test : p < 0.002
for both cases). It is interesting to note that though the
utility scores were symmetric for both negotiators, on aver-
age Alex received higher scores than Tyler. When analyzing
the results and videos we can see that there were two issues
(noise and garbage) for which non-symmetric agreements
were reached. We believe this was due to possible values
of the issues and their scores. It seems that the content of
the value caused subjects to choose them since they seemed
reasonable enough, though other values could have gener-
ated higher utilities. For example, for the noise issue there
were two values – being quiet after 1am, which yielded equal
utilities for both Alex and Tyler, or being quiet after 12am,
which yielded a higher utility for Alex, yet was preferred by
both negotiators. It seems that the country where the ne-
gotiations were conducted, being quiet after 12am seemed
reasonable enough to be chosen, even though it generated
lower utilities for Tyler.

It is also noteworthy that in the two cases in which AniMed
was involved, once with the facilitation mechanism, and once
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AniMed AniMed AutoMed No
w/o with Mediator
facilitation facilitation

Average Proposals 7.38 6.46 5.77 6.38

Table 4: Average number of proposals exchanged.

Outcome p-value Mediator’s p-value
Satisfaction Helpfulness

AniMed w/o facilitation 3.29 1.08

AniMed with facilitation 3.31 0.05 2 0.01

AutoMed 3.11 0.18 0.35 0.03

No Mediator 3.19 0.31 N/A

Table 5: Average satisfaction levels (with 0 being
the lowest and 4 the highest) and p-values in the
different experiments. p-values are compared to ex-
periments involving AniMed without the facilitation
mechanism.

without, similar results were revealed without any statistical
differences between them, both for the individual utilities of
the parties and for the social welfare.

We then analyzed the number of proposals exchanged be-
tween the negotiating parties (see Table 4). More propos-
als were exchanged when AniMed was involved than in the
other cases, though the differences were not statistically sig-
nificant. We believe this could be due to the fact that when
AniMed intervenes in the negotiation process it makes the
parties aware of more resolution possibilities, which they
later propose themselves.

Finally, we gathered the satisfaction levels of the negotiators
from the final outcome they reached and their perception of
how helpful the mediator was in reaching this outcome (see
Table 5). The satisfaction levels ranged from 0 (lowest) to 4
(highest). The results significantly demonstrate that the ne-
gotiators perceived AniMed as more helpful than AutoMed
(p < 0.03). Surprisingly, the negotiators were content with
the final outcome in every experiment, and though the sat-
isfaction level was slightly higher when AniMed was the me-
diator the difference was not statistically significant. This
is in contrast to the fact that the negotiators achieved sig-
nificantly higher utilities, both individually and combined,
when AniMed was involved, compared to the other experi-
ments. These results support our belief in the need and ben-
efits of using mediators in negotiation settings when people
are involved.

6. CONCLUSIONS
This paper presents AniMed, a novel automated mediator
capable of proficiently interacting with people. The success
in proficiently interacting with people has great implications
on the outcome of the negotiations and allows the negotiat-
ing parties to maximize their revenues.

Experiments with more than 100 people demonstrated the
benefits of AniMed compared to another automated media-
tor and to settings without any mediator. The fact that Ani-
Med can be employed in any setting with the requirement
of knowing only the structure of the preference relation be-
tween the issues, reflects on its generality and its prospects

of becoming widespread and useful in numerous settings.

Future research will involve validating the results on addi-
tional scenarios, including ones with nonlinear utility func-
tions and ones with a larger number of issues. We will also
extend AniMed to present the negotiators with threats and
the ability to enforce solutions and penalties. These features
will extend the functionality and the richness of the media-
tor. Experiments are needed to validate whether these ca-
pabilities will still allow the mediator to be successful and
whether better agreements can be achieved compared to the
current design. Moreover, this kind of manipulative media-
tor can be used in interesting studies on the impact of dif-
ferent mediation styles on negotiations. In addition, mech-
anism for obtaining information from the video conference
will facilitate the negotiation and will allow the negotiation
turn more realistic.
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ABSTRACT
Recently, discussions among many people about global warm-
ing and global product development have been increasing.
Efficient collaborative support based on multi-agent systems
is necessary to collect the huge number of opinions and reach
optimal agreements among many participants. In this pa-
per, we propose a collaborative park-design support system
as an example of collective collaboration support systems
based on multi-agent systems. In this system, agents elicit
the utility information of users, collect many alternatives,
and reach optimal agreements based on automated nego-
tiation protocol. In particular, we focus on the steps for
determining the attribute space and estimating the utility
spaces of users in real world.

1. INTRODUCTION
Recently, discussions among many people about global warm-
ing and global product development are increasing. Efficient
collaborative support based on multi-agent systems is nec-
essary to collect huge number of opinions and reach optimal
agreements among many participants. Many automated ne-
gotiation mechanisms are existed, however, the perfect util-
ity functions of agents are assumed [1, 2, 3, 4, 5, 6, 7, 8]. In
real world, it takes a lot of time to elicit the whole utility
spaces of users.

In this paper, we propose a collective collaboration sup-
port system based on the multi-issue automated negotiation
mechanisms [1, 2, 3, 4, 5, 6, 7, 8]. In this system, the agents
elicit the utility information of users, collect many alterna-
tives, and reach optimal agreements based on the automated
negotiation protocol. Especially, we focus on the steps of de-
ciding the attribute space and estimating the utility spaces
of users in real world.

In this paper, we adopt a collaborative park-design support
system as an example of a collective collaboration support

system. Many users, like citizens and designers, should join
the work to design parks. Many opinions and preferences of
participants should be respected. Additionally, the designs
of parks have some interdependent issue, for example, there
are some dependence between the amount of playground
equipments and the cost. In such a case, the automated ne-
gotiation protocol with issue-interdependency is effective [5,
6, 7, 8]. However, to apply the automated negotiation proto-
col with issue-interdependency, we need utility functions of
users because most of the papers assumed the perfect utility
functions of agents. In real world, it is impossible to elicit
all the utility information of agents.

Our system estimates the interdependent multi-attributes
utility functions of users based on users’ evaluation of the
designs generated by our system. In this paper, the utility
function is composed of some simple fundamental functions.
One fundamental function is defined by one user’s evalua-
tion of designs. The fundamental functions has a character
that the utility grows low as the point is far from the sam-
pling point corresponding to the design. The bumpy utility
space is generated by combining the simple mound of the
fundamental functions.

The remainder of this paper is organized as follows. First, we
describe the outline of the collaborative park-design support
systems. Next, we propose a new method of estimating the
utility functions of users in real life. Third, we demonstrate
some results of our method and conduct an experiment to
evaluate the effectiveness of our system. Finally, summariz-
ing our paper.

2. COLLABORATIVE PARK DESIGN SUP-
PORT SYSTEM

Figure 1 shows the outline of a collaborative system based
on multi-agent system. The details of the system are follow-
ings.

[Step1]Collecting the opinions and preferences
The system decides sampling points and generates the al-
ternative of the park design at the sampling point. After
that, this system elicit the uses’ preferences based on users’
evaluations.

[Step2]Estimating utility functions
The system predicts the whole utility spaces based on the
sampling points collected in the [Step1]. This estimation
will be shown in the section3.
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Figure 1: Collaborative public space design pro-
cesses

[Step3]Multi-agent automated negotiations
The agent which is behalf of the users finds the optimal
agreements by the automated negotiation protocol[1, 2, 3,
4, 5, 6, 7, 8].

[Step4]Proposal of the agreements to users in real
world
The system generates a design from the agreement (a point
on the attribute space) in [Step3].

[Step5]Feedback
The system sends the design result(final alternative) in this
round, and the users give a feedback. If the most of users
agree to the final alternative, it is an optimal agreement.
If the most of users don’t agree to the final alternative,
these steps are repeated([Step1]∼[Step5]). But, our sys-
tem doesn’t have this step to be simple because our study
and implementations of system based on multi-agent system
are in its early stage.

3. METHOD OF ELICITING THE UTILITY
SPACES

The method of eliciting utility functions corresponds to the
[Step1],[Step2] in the section2. This system generates the
park designs automatically, receives the users’ evaluations,
and estimates the utility spaces.

We employ the parametric design because the parameters
in the attribute space correspond one-to-one with park de-
signs. In other words, our system can convert an agreement
point in the automated negotiation to the park-design in real
world.

In this paper, the utility function is composed of some simple
fundamental functions. The fundamental functions has a

Adjustment

Figure 2: The Fundamental Function is Under the
Other Fundamental Function (Case1)

Adjustment

Figure 3: Most of the Fundamental Function are
Under the Other Fundamental Function (Case2)

character that the utility grows low as the point is far from
the sampling point. The bumpy utility space is generated by
combining the simple mound of the fundamental functions.

3.1 Fundamental Function
Definition 1. Fundamental Function

R+ is a set of positive real numbers more than 0, R∗
+ is

a set of all positive real numbers. When i is an index, si

shows a sampling point, di is the distribution of fi and vi

is the evaluation value of si(vi, di ∈ R∗
+). The fundamental

function fi is defined as a following expression.

fi(~x) = vi · exp(− (~x − ~si)
2

di
) (1)

• The fundamental function is always more than 0 and
a multi-dimensional space.

fi : R+n → R+

• The maximum of the fundamental function is equal to
the evaluation value of the user.

max fi(~x) = vi

• The maximum point of fundamental function means
the sampling point.

arg max
~x

fi(~x) = ~si

• The value of the fundamental function is smaller as it
grows far from the sampling point.

|| ~x1 − ~si|| > || ~x2 − ~si|| → fi( ~x1) < fi( ~x2)
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3.2 The combination of the fundamental func-
tions

Definition 2. Utility Function

When there are N sampling points; (~s1, .., ~sN ), the utility
function U is defined as follows:

U(~x) = max
i=1,..,N

fi(~x) (2)

However, the definition 2 has two main problems as Figure
2, Figure 3 shows. In the left part of Figure 2, the sampling
sj don’t work well because the function fj is totally smaller
than the function fi. For instance, our system should employ
fj at the square area because the sample point of fj (sj) is
closer to the square area than that of fi (si). In the left
part of Figure 3, the sampling sj don’t work well because
most of the function fj is smaller than the function fi. For
instance, our system should employ the function fj at the
square area in the Figure 2 because the point in the square
area is closer to the sampling point of function fj (sj) than
that of function fi (si). Following two techniques resolve
these two problems by modifying di which is the distribution
of the fundamental function fi.

Method 1. A fundamental function is under other fun-
damental function (Case 1)

This method adjusts the fi as Figure 2 showing by modify-
ing di. For instance, we assume that two different sam-
pling points ~si, ~sj((i 6= j, max fi(~x) ≥ max fj(~x))) exist.
If fi(~sj) > fj(~sj), then this method modifies di to satisfy
fi(~sj) = fj(~sj) using the expression(3).

di =
(~sj − ~si)

2

ln vi
vj

(3)

Method 2. Most of a fundamental function are under
other fundamental function (Case2)

This method adjusts the fi as Figure 3 showing by modify-
ing di. For instance, we assume that two different sampling
points ~si, ~sj(i 6= j, di > dj) exist. If fi(~c) > fj(~c), then this
method modifies di to satisfy fi(~c) = fj(~c) by the expres-
sion(4).

di =
(~c − ~si)

2

k2

2
− ln

vj

vi

(4)

~c = ~sj + k
q

dj

2
~u, ~u = 1

|| ~sj− ~sj ||
(~sj − ~sj). ~u is the unit

vector whose direction is from ~si to ~sj . ~c is a control point
of adjusting. ~c depends on the parameter k(∈ R∗

+). As k
grows, this method is performed at the point which distance
from sj is large. For example, ~c goes right as k grows in
Figure 3.

The simple way of estimating utility functions is to connect
all sampling points smoothly as Figure 4 showing. However,
the utility is usually estimated as higher value than real one
when the distance between some sampling points is large.
Our method improves this issue by using a maximum of
fundamental functions as Figure 4 showing.

(A) Connecting Sampling Points Smoothly (B) Employing Maximum Points of Fundamental 

      Functions Directory (Our method)

Figure 4: A Estimated method of Connecting Sam-
pling Points Smoothly and Employing Maximum
Points of Fundamental Functions Directory

Figure 5: User Interface of Creating a Fundamental
Park Design

Our method has a tendency to make agreement at the area of
containing more information because the utility with enough
information is large. By contract, it is difficult for agents to
make agreement when the number of samples is not enough.
However, our method modifies this problem because the
sampling points are decided based on the users’ suggestions.

3.3 Estimating the Utility Space of users in real
world

In this paper, our system estimates the user’s utility space
as follows([Step1]～[Step4]).

[Step1]Creating a Fundamental Design
The manager of the negotiation sets up a negotiation. The
manager creates a fundamental design by the user-interface
as Figure 5 showing. The manager decides the arrangements
of trees, playground equipments, facilities and so on. The
manager can check the park designs generated automatically
by our system, and change some parameters for reflecting his
ideas.

[Step2]Deciding Sampling Points
Our system decides some sampling points in the attribute
space. In this paper, the sampling points are selected ran-
domly.

[Step3]Evaluation by the users
Our system generates the park designs at the sampling points.
There are some appraising methods for evaluating the sam-
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Figure 6: User Interface of Evaluating Park Designs

Figure 7: Estimated Utility Function

pling points (e.g. voting, rating). In this paper, we employ
the rating method. Users rate each park design and submit
the results of rating by the user-interface as Figure 6 show-
ing.

[Step4]Estimating Utility Functions
First, the system generates the fundamental functions. Next,
our system combines all of the fundamental functions by
Method1 and Method2). Specifically, these methods adjust
di, dj(0 ≤ j < i). di is initialized by D0(di := D0, D0 is the
initial value of the distribution of fundamental function).

[Step2]∼[Step4] is repeated during the period of negotia-
tion decided by the manager in the [Step1].

4. AN EXAMPLE OF ESTIMATING UTIL-
ITY FUNCTION

In this section, we demonstrate some results of our systems.
The purpose of the demonstration is to evaluate our method
and to show the characters of our method.

In this demonstration, we assume that the user has a fol-
lowing idea: “The parks which have many trees and some

U1 U2 Est1 Est2 Err1 Err2
User1 80 85 94 61 14 24
User2 80 80 - 64 - 16
User3 60 50 19 74 41 24
User4 80 85 - - - -
User5 85 75 80 73 5 2
User6 90 97 62 82 28 15
User7 70 80 57 51 13 29
User8 90 86 67 58 23 28
User9 80 80 90 87 10 7
User10 90 90 86 75 4 15
User11 65 65 69 71 4 6
　　 Average 79.09 79.36 69.30 69.60 15.78 16.60

Table 1: Utility Values for The Optimal Agreement

playground equipments are good. The parks which have too
many or few playground equipments are not so good.” Fig-
ure 7 shows an example of the estimated utility function. In
this demonstration, the number of sampling is 30 and the
number of attributes is 2. The reason of small number of at-
tributes is that we can’t show graphically when the number
of attributes is more than 3. As you know, our method can
be applied when the number of attributes is more than 3.

The axis “Nature” in Figure 7 shows how rich the nature of
the park is. The large value of “Nature”means that the park
has rich nature. The axis “Playground Equipment” shows
how many the playground equipments are in the park. The
large value of “Playground Equipment”means that the park
has many playground equipments.

In Figure 7, the utility is the highest when “Playground
Equipment” is 50 and “Nature” is the high value. There-
fore, the estimated utility function represents the accurate
preferences of the user. However, the utility is too high when
“Nature” is 60 and “Playground Equipment” is 50. This is
because that too many samplings are happened at the point.
The efficient sampling for estimation of utility spaces is one
of the future work.

5. EXPERIMENTS
5.1 Setting of Experiments
We conducted an experiment to evaluate the effectiveness
of our system and confidence of our preference elicitation
method. In the experiment, we ran 2 negotiations. In each
negotiation, a number of participants is 11. ”Nature” and
”Playground Equipment” are used as attributes. Each at-
tribute is a real number which is bigger than or equal to 0
and less than or equal to 100. The period of first negotiation
is 10 minutes and second negotiation is 5 minutes. Because
participants understood our system, the period of second
negotiation is reduced. To find the optimal agreement, we
used simulated annealing (SA) and the best result of 5 SAs
is adopted as the optimal agreement because SA is easy to
implement and finding optimal agreement is not our main
work. After the negotiations, we send out questionnaires to
get users’ comments.

5.2 Results of Experiments
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Figure 8: Negotiation Results

Figure 8 shows the results of negotiations. Table 1 shows
some information about utility values for the results. U1 and
U2 are user’s rates (real utility values) for the results. Est1
and Est2 are user’s estimated utility values for the results.
Err1 and Err2 are margins of error between real utility value
(U1, U2) and estimated utility value (Est1, Est2). U1, Est1
and Err1 are values for the first negotiation. U2, Est2 and
Err2 are values for the second negotiation.

An average of U1 is 79.09 and U2 is 79.36. Therefore, we
find many people agree to the results. An average of Err1 is
15.78 and Err2 is 16.60. These values are not so good but
our method of preference elicitation can elicit tendencies of
user’s preference.

Table 1 shows that most of the users’ utility function are
accurately elicited like User5 but some users’ preference elic-
itation are not accurately elicited like User3. Figure 9 is a
elicited utility function of User5. This case is preference of
a user is accurately elicited. Figure 10 is a elicited utility
function of User3. This case is preference of a user is not
accurately elicited. A shape which has many sharp mounds
like Figure 10 occurs when some close points on a attributes
space have very different utility values, in other words, some
similar park designs are got very different rates. A reason
of this problem is no considering changes of preferences. In
fact, User3 commented ”My criteria of rating are inconsis-
tent in a process of evaluations.” on a questionnaire. In real
world, human preferences change as time passes. Addition-
ally, almost all methods of preference elicitation[9, 10, 11]
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Figure 9: A Good Case of Elicitation (Elicited Util-
ity Function of User5)
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Figure 10: A Bad Case of Elicitation (Elicited Util-
ity Function of User3)

and utility theory has this problem, too. It seems establish-
ing ”time” as a attribute resolves this problem but sampling
points on a utility space from a user can not be finished.
Because a number of samples getting at once is limited and
samples acquired on different steps have different time as
an attribute. As a result, a number of samples can not be
enough to describe a utility space.

6. RELATED WORKS
Most previous works on multi-issue negotiation have ad-
dressed only linear utilities[1, 2, 3, 4]. Recently some re-
searchers have been focusing on more complex and non-
linear utilities. For example, Ito, Fujita and Mizutani et.
al[5, 6, 7, 8] proposes the automated negotiation protocol
with issue-interdependency. However, most of the paper as-
sumed the perfect utility functions of agents. In real world,
it is impossible to elicit the all utility information of agents.
In this paper, we propose the method of estimating the util-
ity spaces with issue-dependences.

Luo et al.[9] proposes a method of eliciting and quantifying
the trade-off between issues by the user-interactions. How-
ever, the system don’t work well when the utility function
is complex with the dependences between more than 3 is-
sues. On the other hand, our system can work well when
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the utility functions are more complex.

In [12, 13], the system supports a yard-design based on in-
teractive GA. This system can generate the efficient yard-
designs based on the preference of users. However, this sys-
tem isn’t assumed the multi-party negotiations. Our system
supports to the multi-party collaborative designs and con-
sensuses among many users.

7. CONCLUSION
In this paper, we implemented a collaborative park-design
support system based on the multi-agent systems. In par-
ticular, we focused on the steps for determing the attribute
space and estimating the utility spaces of users in real world.
Our experimental results shows our system succeeded to
build a consensus many participants agreed to.

Our future works are the method of selecting sampling points
for efficient estimation of utility spaces, an implementation
of a feedback step and establishing a new model considerd
changes of human preferences.
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APPENDIX
A. THE PRODUCTION OF THE EXPRES-

SION (3)
The expression (3) modifies di to satisfy fi(~sj) = fj(~sj).

fi(~sj) = fj(~sj)

vi · exp(− (~sj − ~si)
2

di
) = vj

di =
(~sj − ~si)

2

ln vi
vj

di is produced.

To fi becomes the gaussian, di must be positive.

di =
(~sj − ~si)

2

ln vi
vj

> 0

vi > vj

Because of fi(sj) > fj(sj) which is the condition of applying
the method 1,

vi = fi(si) > fi(sj) > fj(sj) = vj

di > 0 is evidenced.

B. THE PRODUCTION OF THE EXPRES-
SION (4)

The expression (4) modifies di to satisfy fi(~c) = fj(~c).

fi(~c) = fj(~c)

vi · exp(− (~c − ~si)
2

di
) = vj · exp(− (~c − ~sj)

2

dj
)

Because of ~c = ~sj + k
q

dj

2
~u,

exp(− (~c − ~si)
2

di
) =

vj

vi
· exp(−k2

2
~u2)

~u2 = 1 because ~u is a unit vector.

exp(− (~c − ~si)
2

di
) =

vj

vi
· exp(−k2

2
)

di =
(~c − ~si)

2

k2

2
− ln

vj

vi

di is produced.
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ABSTRACT
We address the challenges of evaluating the fidelity of au-
tonomous agents that are attempting to replicate human
behaviors. This is a fundamental issue in the emerging in-
tersection of artificial intelligence and social science moti-
vated by problems such as training in virtual environments,
human-agent negotiations, and large-scale social simulation.
Our specific interest focuses on emulating human strategic
behavior over time, in a repeated negotiation setting. We
introduce and investigate the Social Ultimatum Game, an
extension of the classical Ultimatum bargaining game, and
discuss the efficacy of a set of metrics in comparing vari-
ous autonomous agents to human behavior collected from
experiments.

Categories and Subject Descriptors
I.1.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Human-Agent Negotiation, Metrics, Multi-Agent Systems,
Game Theory, Ultimatum Game, Mathematical Models of
Human Behavior, Learning, Adaptation

1. INTRODUCTION
Much of the complexity in a multi-agent interaction lies not
in the complexity of the domain being considered, but in
the complexity of the decision-making processes of the other
agents involved. To play optimally, a player must make the
right assumptions and arrive at the correct beliefs about the
opponents being faced. For example, in the classic Ultima-
tum bargaining game, a player acting as the proposer would
choose to act quite differently depending on the player’s be-
liefs about the kind of opponent being faced. A typical west-
erner, Peruvian Amazonian tribe-member, economist, or an
autistic individual all behave differently [6], and the player
would have to adjust his negotiating strategy accordingly. In
this paper, we are interested in autonomous agents that can
replicate human behavior in this type of negotiation setting,
and in metrics that are suitable for evaluating the similarity
between the agent behavior and actual human behavior.

In traditional AI, the classical Turing Test relies on human
evaluation to judge the verisimilitude of the conversation

produced by the autonomous agent. In more restricted prob-
lems, such as classification, we are satisfied when a machine
consistently produces the correct label (a perfect match),
given a test data point. In this paper, we are concerned
with domains falling somewhere in the middle, where an
agent’s human-like behavior will not necessarily produce a
perfect match to some predefined standards, but where we
would prefer not to rely exclusively on human judgement
to determine whether an agent’s outputs are “close” to real
human behavior.

In particular, we are interested in multi-agent domains where
humans make sequential decisions over time, such as in a
multi-round negotiation. Building a realistic autonomous
agent in this type of domain has practical applications in
many other areas, for example training in virtual environ-
ments [13], large-scale social simulation [3], and adversarial
modeling [1]. In the emotional agents community, the de-
gree of realism is typically evaluated by a human judge [9].
In the machine learning and reinforcement learning com-
munity, agent “goodness” is typically evaluated relative to
optimal behavior, using a metric like expected reward. How-
ever, realistic human behavior is often not optimal, and in
many of the domains of interest, the notion of optimality is
ill-defined.

Optimality of one agent in a multi-agent domain is depen-
dent on the other agents. If a machine’s assumptions about
the other agents is incorrect, then its behavior, even if opti-
mal given those assumptions, could be wildly different from
normal human behavior. We will see an example of this
shortly, in a variant of the classic Ultimatum game. Since
the validity of these assumptions is an essential part of what
must be evaluated, optimality based on the assumptions is
not a good metric for realism. We need a different approach.

Human data in multi-agent domains is getting easier to col-
lect, given the current state of access to the Internet and
online interaction. Thus, we can obtain baseline collections
of behavior trajectories that describe human play. The chal-
lenge is to find a way to compare collections of traces pro-
duced by autonomous agents with this existing baseline, in
order to determine which agents exhibit the most realistic
behavior.

In this paper, we investigate these issues in the context of
the Social Ultimatum Game (SUG). SUG is a multi-agent
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multi-round extension of the Ultimatum Game [6], which has
been a frequently studied game over the last three decades
as a prominent example of how human behavior deviates
from game-theoretic predictions that use the “rational ac-
tor” model. Data gathered from people playing SUG was
used to create various classes of autonomous agents that
modeled the behaviors of the individual human players. We
then created traces from games with autonomous agents em-
ulating the games that the humans played. We develop sev-
eral metrics to compare the collections of traces gathered
from games played by humans and games played by the au-
tonomous agents. From this analysis, it becomes clear that
human behavior contains unique temporal patterns that are
not captured by the simpler metrics. In SUG, this is re-
vealed in the likelihood of reciprocity as a function of the
history of reciprocity. The key implication is that it is criti-
cal to retain the temporal elements when developing metrics
to evaluate the efficacy of autonomous agents for replicating
human strategic behavior in dynamic settings.

2. THE SOCIAL ULTIMATUM GAME
To ground our subsequent discussion, we begin by intro-
ducing the Social Ultimatum Game. The classical Ulti-
matum Game, is a two-player game where P1 proposes a
split of an endowment e ∈ N to P2 who would receive q ∈
{0, δ, 2δ, . . . , e− δ, e} for δ ∈ N. If P2 accepts, P2 receives q
and P1 receives e − q. If P2 rejects, neither player receives
anything. The subgame-perfect Nash or Stackelberg equilib-
rium has P1 offering q = δ (i.e., the minimum possible offer),
and P2 accepting, because a “rational”P2 should accept any
q > 0, and P1 knows this. Yet, humans make offers that
exceed δ, make “fair” offers of e/2, and reject offers greater
than the minimum.

To represent the characteristics that people operate in so-
cieties of multiple agents and repeated interactions, we in-
troduce the Social Ultimatum Game. The players, denoted
{P1, P2, . . . , PN}, play K ≥ 2 rounds, where N ≥ 3. The
requirement of having at least three players in necessary to
give each player a choice of whom to interact with. In each
round k, every player Pm chooses a recipient Rk

m and makes
them an offer qkm,n (where n = Rk

m). Each recipient Pn

then considers the offers they received and makes a decision
dkm,n ∈ {0, 1} for each offer qkm,n to accept (1) or reject (0)

it. If the offer is accepted by Pm, Pm receives e− qkm,n and

Pn receives qkm,n, where e is the endowment to be shared. If
an offer is rejected by Pn, then both players receive noth-
ing for that particular offer in round k. Thus, Pm’s reward
in round k is the sum of the offers they accept (if any are
made to them) and their portion of the proposal they make,
if accepted:

rkm = (e− qkm,n)dkm,n +
∑

j=1...N,j 6=m

qkj,md
k
j,m (1)

The total rewards for Pm over the game is the sum of per-
round winnings, rm =

∑K
k=1 r

k
m. A game trajectory for Pm

is a time-series of proposed offers, Ok
m = (Rk

m, q
k
m,n, d

k
m,n)

and received offers, Ok
n,m = (Rk

n, q
k
n,m, d

k
n,m). At time k, the

trajectory for Pm is its history of offers made and received:

T k
m = (Ok

m, {Ok
n,m}n, Ok−1

m , {Ok−1
n,m}n, . . . , O1

m, {O1
n,m}n). As-

suming no public information about other players’ trajecto-
ries, T k

m includes all the observable state information avail-
able to Pm at the end of round k.

3. METRICS
Let Cm be the collection of trajectories Pm produces by tak-
ing part in a set of Social Ultimatum Games. In other do-
mains, these traces could represent other interactions. Our
goal is to evaluate the resemblance of a set of human trace

data C to other sets of traces C̃, namely those of autonomous
agents. We need a metric that compares sets of multi-

dimensional time series: d(C, C̃). Standard time-series met-
rics such as Euclidean or absolute distance, edit distance,
and dynamic time warping [11] are not appropriate in this
type of domain.

One challenge arises because we are interested in the un-
derlying behavior that creates the trajectories rather than
superficial differences in the trajectories themselves. If we
can collapse a collection of traces C to a single probability
distribution Q, by aggregating over time, then we can define
a time-collapsed metric,

d(C, C̃) = KL(Q||Q̃) +KL(Q̃||Q) (2)

where KL denotes the Kullback-Leibler divergence. The sum
enforces symmetry and nonnegativity. Time-collapsed met-
rics for SUG include:

• Offer Distribution. Let QO be the distribution of of-
fer values {qkm,n} observed over all traces and all play-
ers.

• Target-Recipient Distribution. Let QR denote the
likelihood that a player will make an offer to the kth

most likely recipient of an offer. This likelihood is non-
increasing in k. In a 5-person game, a single player
may have an target-recipient distribution that looks
like {0.7, 0.1, 0.1, 0.1} which indicates that they made
offers to their most-targeted partner 7 times more of-
ten than their second-highest-targeted partner. We
can produce QR by averaging over all games to char-
acterize a player and further average over all players
to characterize a population.

• Rejection Probabilities. For each offer value q, we
have a Bernoulli distribution QBq that captures the
likelihood of rejection by averaging across all players,
games and rounds in a collection of traces. We then
define a metric:

dB(C, C̃) =

10∑
q=0

KL(QBq ||Q̃Bq ) +KL(Q̃Bq ||QBq ).

We can also define time-dependent metrics that acknowl-
edge that actions can depend on observations of previous
time periods. One prominent human manifestation of this
characteristic is reciprocity. We define two time-dependent
metrics based on reciprocity:
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• Immediate Reciprocity When a player receives an
acceptable offer from someone, they may be more in-
clined to reciprocate and propose an offer in return
in the next round. We can quantify this p(Rk+1

m =
n|Rk

n = m) across all players and games in a collection
of traces. This probability defines a Bernoulli distri-
bution QY from which we can define a metric dY as
before.

• Reciprocity Chains Taking the idea of reciprocity
over time further, we can calculate the probability that
an offer will be reciprocated, given that a chain of reci-
procity has already occurred. For example, for chains
of length c = 2, we p(Rk+1

m = n|Rk
n = m,Rk−1

m = n);
for c = 3, we calculate p(Rk+1

m = n|Rk
n = m,Rk−1

m =
n,Rk−2

n = m). As before, these probabilities can be
used to define a Bernoulli distribution QYc for each
length c. Then, for some L, we define

dYL (C, C̃) =

L∑
c=1

KL(QYc ||Q̃Yc) +KL(Q̃Yc ||QYc).

We expect that the longer a pair of players reciprocate, the
higher the likelihood that they will continue doing so. The
probabilities of how likely humans are to reciprocate can be
obtained from the experimental data.

4. AUTONOMOUS AGENTS
In this section, we describe various agent models of behav-
ior. We first apply traditional game-theoretic analysis to
the Social Ultimatum Game to derive the “optimal” behav-
ior under rational actor assumptions. We then describe two
distribution-based agents that do not model other agents
but are capable of incorporating human behavior data. Fi-
nally, we describe an adaptive agent that incorporates some
aspects of human behavior such as fairness and reciprocity.

4.1 Game-Theoretic Agents
Let strategies be characterized by the statistics that they
produce in steady-state: the distribution of offers made by
each player, where pgm(n, q) denotes the likelihood that Pm

will give an offer of q to Pn, and the distribution of offers
accepted by each player, where pam(n, q) denotes the likeli-
hood that Pm will accept an offer of q from Pn. Then, the
expected reward for Pm per round in steady-state is rm =

∑
n,q

qpgn(m, q)pam(n, q) +
∑
n,q

(e− q)pgm(n, q)pan(m, q) (3)

where
∑

n,q p
g
m(n, q) = 1, ∀m, as the total outgoing offers

must total one offer per round, and the acceptance likeli-
hoods are pam(n, q) ∈ [0, 1], ∀m,n, q. A player maximizing
these rewards will modify their offer likelihoods {pgm(n, q)}
and acceptance likelihoods {pam(n, q)}, given those of other
players. A player can create the desired statistics by playing
a stationary mixed strategy with the desired likelihoods. To
optimize the offer likelihoods, Pm sets

pgm(n, q) > 0,∀n ∈ N g ⊂ arg max
n

max
q

(e− q)pan(m, q)

such that
∑

n,q p
g
m(n, q) = 1, and pgm(n, q) = 0, otherwise.

Thus, in equilibrium, Pm will make offers to those agents
whose acceptance likelihoods yield the highest expected pay-
off.

Proposition. In the Social Ultimatum Game, accepting all
offers is not a dominant strategy.

We first note that players make offers to the players and of
the values that maximize their expected rewards. Thus, for
Pn to receive an offer from Pm, it must be the case that
(e− q)pam(n, q) is maximized for Pm over n and q, given P ′ns
choice of pam(n, q). Let us now assume that

pam(n, q) = 1 ∀q ≥ q,m, n (4)

pam(n, q) = 0,∀q < q,m, n (5)

for all m,n and q > δ. This says that all players accept of-
fers above some minimum threshold that is greater than the
minimum offer and never accept offers below that threshold.
Let us further assume the case that all offers are made uni-
formly among players. Under these conditions, each player
gains q per round in rewards from incoming offers. If Pm

was to switch to the strategy of accepting all offers of value
δ, then all players would see an expected value of (e− δ) of
making all offers to Pm which would result in Pm gaining
(N −1)δ in rewards per round. We note that it is not neces-
sarily the case that (N −1)δ ≥ q, thus the “greedy” strategy
is not dominant in the Social Ultimatum Game. �

Consider the case where all players accept only (e − δ) or
above in a game where e = 10 and N = 5. Switching to the
“greedy” strategy would reduce gains from receiving offers
from 9 per round to 4 per round. This rationalizes the idea
that getting fewer high value offers can be more valuable
than a lot of low offers.

Proposition. In the Social Ultimatum Game, Nash equilib-
rium outcomes only happen when players employ strategies
of the form “greedy’ strategies, where

pgm(n, q) = 0, ∀q > δ,m, n, pam(n, δ) = 1,∀m,n, (6)

i.e.,“greedy” strategies where players only make the mini-
mum offers of δ, and all players accept all minimum offers.

Given the characterizations above, if Pm was to switch to
the strategy where

pam(n, q − 1) = 1, ∀n, (7)

then all players would make all offers to Pm who would gain
(N−1)(q−1) per round incoming offers which is greater than
q, for N ≥ 3. Thus, any strategy that can be “undercut” in
this manner cannot yield a Nash equililibrium outcome. We
note that if we relax the assumption that offers are made uni-
formly among players that maximize expected reward from
outgoing offers, then there will exist some player who will be
making at most q per round, and that player will still have
incentive to“undercut”. By a similar argument, if all players
are accepting a particular value of q, then the likelihood of
accepting that offer will gravitate to 1. Thus, all players,
will be driven down to accepting all offers q = δ. Given,
this players will only make offers for q = δ, and thus, the
“greedy” strategy is the only Nash equilibrium. �
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It is interesting that this outcome, while similar to the Ulti-
matum Game, is not due to the first player leveraging their
position as the offerer and being “greedy”, but instead from
the “rational” players competing to maximize gains from re-
ceived offers.

4.2 Distribution-Based Agents
One way to create agents that satisfy a set of metrics is to
use the metrics to generate the agent behavior. Using only
time-collapsed metrics, one could create a distribution-based
agent (DBA) as follows. Learn distributions of offer value,
target recipient and rejection percentage from human data.
Find the appropriate target-recipient distribution based on
number of participants and assign agents to each position
(i.e., most likely to least likely). In offer phases of each
round, choose a target by sampling from the target-recipient
distribution and an offer value by sampling from the offer
distribution. For received offers, decide via Bernoulli trial
based on the rejection percentage for that offer value.

The DBA has no notion of reciprocity. We also investi-
gated a class of distribution-based reciprocal agents (DBRA)
which behave like the DBA agents in all aspects other than
target selection. If DBRA agents receive an offer it will
decide to reciprocate based on a reciprocation percentage
that is learned from human data. If multiple offers are re-
ceived, the target is chosen using a relative likelihood based
on the target-recipient distribution. Similarly, if it doesn’t
receive any offers, it uses the target-recipient distribution.
While the distribution-based agents act on the basis of data
of human play, they do not have models of other agents and
consequently execute an open-loop static policy. The follow-
ing model introduces an adaptive model that is not based
simply on fitting the metrics.

4.3 Adaptive Agents
In order to create adaptive agent models of human play-
ers for the Social Ultimatum Game, we need to incorporate
some axioms of human behavior that may be considered “ir-
rational”. The desiderata that we address include assump-
tions that people will

1. start with some notion of a fair offer,

2. adapt these notions over time at various rates based
upon their interactions,

3. have models of other agents, and

4. choose the best option while occasionally exploring for
better deals.

Each player Pm is characterized by three parameters: α0
m : Pm’s

initial acceptance threshold, βm : Pm’s reactivity and γm : Pm’s
exploration likelihood

The value of α0
m ∈ [0, e] is Pm’s initial notion of what con-

stitutes a “fair” offer and is used to determine whether an
offer to Pm, i.e., qkn,m, is accepted or rejected. The value of
βm ∈ [0, 1] determines how quickly the player will adapt to
information during the game, where zero indicates a player
who will not change anything from their initial beliefs and

one indicates a player who will solely use the last data point.
The value of γm ∈ [0, 1] indicates how much a player will
deviate from their “best” play in order to discover new op-
portunities where zero indicates a player who never deviates
and one indicates a player who always does.

Each player Pm keeps a model of other players in order
to determine which player to make an offer to, and how
much that offer should be. The model is composed as fol-
lows: akm,n : Pm’s estimate of Pn’s acceptance threshold;

ākm,n : Upper bound on akm,n ; and akm,n : Lower bound on

akm,n. Thus, Pm has a collection of models for all other play-

ers {[akm,na
k
m,nā

k
m,n]}n for each round k. The value am,n is

the Pm’s estimate about the value of Pn’s acceptance thresh-
old, while akm,n and ākm,n represent the interval of uncer-
tainty over which the estimate could exist. Each player Pm

initializes these values as follows:

• a0m,n = αm

• ākm,n = de/2e

• akm,n = 0

This denotes that each player begins with the assumptions
that other players in the game (1) have acceptance thresh-
olds that are the same as theirs, (2) will always accept an
equal split of the endowment, and (3) may be willing to
accept an arbitrarily low offer.

During the course of the game, each player will engage in
a variety of actions and updates to their models of agents.
Below, we present our model of how our adaptive agents
address those actions and model updates. For simplicity, we
will assume that δ = 1.

4.3.1 Making Offers
In each round k, Pm may choose to make the best known of-
fer, denoted q̃km, or explore to find someone that may accept
a lower offer. If there are no gains to be made from explor-
ing, i.e., the best offer is the minimum offer (q̃km = δ = 1),
a player will not explore. However, if there are gains to
be made from exploring, with probability γm, Pm chooses a
target Pn at random and offers them qkm,n = q̃km − 1. With
probability 1− γm, Pm will choose to exploit. The target is
chosen from the players who have the lowest value for offers
they would accept, and the offer is that value:

qkm,n = dakm,n − εe where n ∈ arg min
ñ6=m
dakm,ñe (8)

The previous equation characterizes an equivalence class of
players from which Pm can choose a target agent. The ε pa-
rameter is used to counter boundary effects in the threshold
update, discussed below. The target agent from the equiv-
alence class is chosen using proportional reciprocity, by as-
signing likelihoods to each agent with respect to offers made
in some history window.

4.3.2 Accepting Offers
For each offer qkm,n, the receiving player Pn has to make a

decision dkm,n ∈ {0, 1} to accept or reject it, based on its
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threshold:

If qkm,n ≥ dαk
m − εe, then dkm,n = 1, else dkm,n = 0 (9)

4.3.3 Updating Acceptance Threshold
The acceptance threshold is a characterization of what the
agent considers a “fair” offer. Once an agent is embedded
within a community of players, the agent may change what
they consider a “fair” offer based on the received offers. We
model this adaption using a convex combination of the cur-
rent threshold and the offers that are received, with adap-
tation parameter βm. Let the set of offers that are received
be defined as: Rk

m = {qki,j : j = m, qki,j > 0}. If |Rk
m| ≥ 1,

then αk+1
m =

(1− βm)|R
k
m|αk

m +
(1− ((1− βm)|R

k
m|)

|Rk
m|

∑
i

qki,m (10)

If |Rk
m| = 0, then αk+1

m = αk
m. Thus, offers higher than your

expectation will raise your expectation and offers lower than
your expectation will lower your expectation at some rate.

4.3.4 Updating Threshold Estimate Bounds
As a player makes an offer qkm,n and receives feedback on

the offer dkm,n, they learn about Pn’s acceptance threshold.
Using this information, we can update our bounds for our
estimates of their threshold, with the following rules.

If you make an offer and it is rejected, then the lower bound
for the acceptance threshold for that player must be at least
the offer that was rejected:

qkm,n > 0, dkm,n = 0 ⇒ ak+1
m,n = max{qkm,n, a

k
m,n} (11)

If you make an offer and it is accepted, then the upper bound
for the acceptance threshold for that player must be at most
the offer that was rejected:

qkm,n > 0, dkm,n = 1 ⇒ āk+1
m,n = min{qkm,n, ā

k
m,n} (12)

The next two conditions occur because acceptance thresh-
olds are dynamic and the bounds for estimates on thresholds
for other players may become inaccurate and may need to
be reset. If you make an offer, it is rejected and that offer
at least your current upper bound, then increase the up-
per bound to the “fair” offer that you expect that the other
player will accept:

qkm,n > 0, dkm,n = 0, qkm,n ≥ ākm,n ⇒ āk+1
m,n = de/2e (13)

If you make an offer, it is accepted and that offer is lower
than your current lower bound, then decrease the lower
bound to zero:

qkm,n > 0, dkm,n = 1, qkm,n ≤ ak+1
m,n ⇒ ak+1

m,n = 0 (14)

4.3.5 Updating Threshold Estimates
Once the threshold bounds are updated, we can modify our
estimates of the thresholds as follows. If the player accepts
the offer, we move the estimate of their threshold closer to
the lower bound and if the player rejects the offer, we move
our estimate of their threshold closer to the upper bound

using a convex combination of the current value and the
appropriate bound as follows.

dkm,n = 1 ⇒

ak+1
m,n = min{βm ak+1

m,n + (1− βm)akm,n, ā
k+1
m,n} (15)

dkm,n = 0 ⇒

ak+1
m,n = max{βm āk+1

m,n + (1− βm)akm,n, a
k+1
m,n + 2ε} (16)

The min and max operators ensure that we don’t make un-
intuitive offers (such as repeating a just rejected offer), if our
adaptation rate is not sufficiently high. The adaptive agent
described above fulfills the properties of the desiderata pre-
scribed to generate behavior that is more aligned with our
expectations in reality.

5. EXPERIMENTS
Thus far we have introduced several autonomous agent mod-
els, and metrics to evaluate their verisimilitude to actual hu-
man behavior. In this section, we first discuss the collection
of human data, and the use of this data to fit the described
agent models. We then evaluate the agent performance us-
ing our proposed metrics.

5.1 Human Play
Data was collected from human subjects recruited from un-
dergraduates and staff at the University of Southern Cali-
fornia. In each round, every player is given the opportunity
to propose a $10 split with another player of their choos-
ing. Games ranged from 20 to 50 rounds. A conversion
rate of 10 ultimatum dollars to 25 U.S. cents was used to
pay participants, i.e., $5 per 20 rounds per player in an
egalitarian social-welfare maximizing game, leading to total
U.S. denominated splitting opportunities of $5 per player
per game. Each game lasted approximately 20 minutes, once
regulations and training were completed. The subjects par-
ticipated in organized game sessions and a typical subject
played three to five games in one session. Between three
and seven players participated in each game. During each
session, the players interacted with each other exclusively
through the game’s interface on provided iPads, shown in
Figure 1. No talking or visual communication was allowed.
The rules of the game were as outlined in Section 2.

As shown in Figure 1, players were also randomly assigned
an avatar from one of two “cultures”: monks or warriors.
Monk avatars tend to look similar, while warriors have more
individualistic appearances. Names for each cultures also
follow a naming convention. We were interested whether
such small cultural cues would have any noticeable effect on
game behavior – thus far this does not appear to be the
case. If anything, there is a slight tendency for all players,
regardless of culture, to make offers to warriors, perhaps
because their avatars are more eye-catching and memorable.

The collected data includes every GUI command input by
each player, with corresponding timestamp. For example,
this includes not only the offers made and accepted, but
also provides information about length of time a player de-
liberated about an offer, and occasions where a player may
have changed his mind about the recipient of an offer or the
amount of an offer.
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Figure 1: The Social Ultimatum Game Interface

After each game, a written survey was completed by each
participant. They were asked to provide answers regarding
their own game play strategies during the game, the ob-
served strategies of the other players, and any additional
comments. We have collected data from 27 human subject
games thus far. In this paper, we focus on the seven 5-person
games in the dataset. By restricting our attention to five-
player games, we avoid biases that may be introduced if we
attempted to normalize the data from the other games to
reflect a five-person composition. Analysis on the games of
other sizes yields similar results.

5.2 Autonomous Agents
To create the Distribution-Based Agent and Distribution-
Based Reciprocal Agent using the collected data, we cal-
culated the appropriate distributions (offer value, rejection
percentage by value, targeted-recipient) by counting and av-
eraging over all games and all players. The agents then
selected target-recipients and offers based on these distri-
butions, and made their acceptance decisions based on the
rejection-by-value distributions.

For the Adaptive Agents, we analyzed the traces of each
game, and estimated game-specific α, β, γ parameters of each
of the participating players, as follows. For each player Pm

in the game,

• αm : This is set as the player’s first offer in this game.

• βm : When a player decreases his offer to a specific
player from q1 to q2 after K steps (not necessarily con-
secutive), we find and store the best β value such that
K applications of βq2 + (1 − β)q1 yields a result less
than q1+q2

2
(so that the next offer should be closer to

q2 then it is to q1). We then take βm to be this stored
β value.

• γm : This is the likelihood that a player’s offer is less
than the minimum known accepted offer, where the
minimum accepted offer at a given round k is the min-
imum offer known to be accepted by any player at time
k − 1.

Having estimated the population parameters of each game,

we then use them as input to create an autonomous agent for
each player, and simulate each game ten times to produce
ten traces. Within each of these games, each of the five
players uses the parameters corresponding to one of the five
original human players.

6. EVALUATION
These experiments and simulations result in a collection of
game traces for each of the five types of agent discussed:
Human, Adaptive, DBA, DBRA, and Game-theoretic (GT).
Table 1 shows the similarity between the collection of human
traces and each of the four collections of autonomous agent
traces, according to the metrics discussed earlier.

Adaptive DBA DBRA GT

dO 0.57 0.008 0.008 33.26
dR 0.21 0.0005 0.01 0.19
dB 11.74 0.008 0.11 32.83
dY8 4.22 16.34 20.10 97.02

Table 1: Similarity to human play, based on various
metrics.

The DBA and DBRA agents score very well on the three
metrics based on offer value, rejection percentage, and target-
recipient. We fully expect this result as both these agents
generate their behavior by sampling from these distribu-
tions. It is also clear that the GT agent performs very differ-
ently from the human data, based on most of the metrics. It
is only close to the human trace data when compared on dR,
the metric based on the target-recipients distribution. This
is because we assumed that the game-theoretic agent would
distribute its offers uniformly across the other players, and
human play roughly approximates this phenomenon. It is
worth noting that the Adaptive Agent scores approximately
the same as the GT agent on this metric. Naturally, the
Adaptive Agent scores worse than the distribution-based
agents on the temporally-independent distribution metrics
dO, dR, and dB , but its behavior is still relatively close to hu-
man behavior. On the temporally-dependent reciprocation-
chain metric dY8 , the Adaptive Agent scores much better in
similarity to the human traces.

To get a more intuitive sense of the differences in the trace
data, we also display the actual distributions that underlie
the metrics in Figures 2-5, which shows the distributions of
offer amounts for each of the agent types, the probability of
rejection given each offer amount, the distribution of offer
recipients, ordered from most likely to least likely, and the
probability that an offer will be reciprocated, given that a
chain of c offers have been made between the players in the
past c = 1, 2, . . . , 8 time periods.

While the Adaptive Agent may not have been the most
human-like agent according to the other three metrics, the
form of its distributions still reasonably resembled the dis-
tributions produced by human play. However, on the time-
dependent reciprocation-based metric, it is very clear that
the Adaptive Agent is the only one that exhibits behavior
that is similar to human play. This temporal dependence
is crucial to creating agent behavior that emulates human
behavior.
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Figure 2: (Top to bottom) Distribution of offer
amounts, for each of the five types of agents dis-
cussed. dO is based on these distributions.
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Figure 3: Rejection probabilities given offer
amounts, for each of the five types of agents dis-
cussed. In our game-theoretic agent, we assumed
that offers of $0 would be rejected. dB is based on
these probabilities.
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Figure 4: Target recipient distribution, for each
of the five types of agents discussed. The game-
theoretic agent was assumed to distribute its offers
uniformly across the other agents. dR is based on
these distributions.
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Figure 5: Graph showing the probability that an
offer is reciprocated, given that a chain of recipro-
cation of length c = 1, 2, . . . , 8 has just occurred. dY8
is based on these probabilities.

7. RELATED WORK
Our choice to investigate the Ultimatum Game was moti-
vated by its long history in the field and the fact that it is a
leading example of where game-theoretic reasoning fails to
predict consistent human behaviors [5, 12, 6]. Economists
and sociologists have proposed many variants and contexts
of the Ultimatum Game that seek to address the divergence
between the “rational” Nash equilibrium strategy and ob-
served human behavior, for example, examining the game
when played in different cultures, with members of differ-
ent communities, where individuals are replaced by groups,
where the players are autistic, and when one of the play-
ers is a computer. Interestingly, isolated non-industrialized
cultures, people who have studied economics, groups, being
autistic, and playing with a computer all tend to lead to
less cooperative behavior [5, 12, 10, 7, 2, 4]. Learning hu-
man game data is a promising approach for quickly learning
realistic models of behavior. In the paper, we have demon-
strated this approach in SUG, and proposed metrics that
evaluate the similarity between autonomous agents’ game
traces and human game traces.

Recently, there has also been other work attempting to model
human behavior in multi-agent scenarios, primarily in so-
cial network and other domains modeled by graphical re-
lationship structures [8]. In contrast, our work focuses on
multi-agent situations where motivated agents make sequen-
tial decisions, thus requiring models that include some con-
sideration of utilities and their interplay with psychological
effects. Our Adaptive Agent is a simple model, with param-
eters that are fit to the collected data, that demonstrates
this approach.

Finally, a critical aspect of this line of work must include
the development of appropriate metrics for evaluating the
verisimilitude of the autonomous agent behaviors to human
behavior. While there is a long literature on time-series
metrics [11], in this paper, we show that these metrics do
not capture the temporal causality patterns that are key
to evaluating human behaviors, and thus are insufficient to
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evaluate agent behaviors when used alone.

8. CONCLUSION
Our goal is to develop approaches to create autonomous
agents that replicate human behavior in multi-agent do-
mains where humans make sequential decisions over time.
To create and evaluate these agents, one needs appropriate
metrics to characterize the deviations from the source be-
havior. The challenge is that a single source behavior in
dynamic environments produces not a single decision but
instead multiple traces where each trace is a sequence of
decisions. A single source can produce a diverse collection
of traces. Thus, the challenge is to find a way to compare
collections of traces.

We introduced the Social Ultimatum Game and in that
context, developed time-collapsed and time-dependent met-
rics to evaluate a collection of autonomous agents. We
showed that agents built on time-collapsed metrics can miss
key characteristics of human play, in particular an accurate
model of temporal reciprocity. While our adaptive agent
was able to perform closer to this metric, the key is the
identification of time-dependent metrics as a key factor in
evaluating emulation agents. This also has implications on
the type of agent model necessary to have as a substrate
upon which one can learn from human data.

Going forward, we will consider more complex domains and
potential corresponding models. We will require both gen-
eral, parameterized models that can be learned from data,
as well as more formal methods for constructing appropri-
ate temporal metrics to automatically evaluate the realism
of the learned behaviors.
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ABSTRACT
Many practical distributed systems environments require
novel automatic mechanisms, including multi-attribute re-
verse auctions, for efficient partner selection and contracts
negotiation. Recent results [2] show that the property of
transferable utilities is not of vital importance, as qualita-
tive versions of the standard auctions are proved to exhibit
nice efficiency properties as well. Such auctions require that
the preferences of the auctioneer are publicly known. Prac-
tical protocols of multi-bilateral closed negotiations are ex-
perimentally shown [5] to approximate the Pareto-efficient
best-seller QVA outcome, without requesting that any of the
parties explicitly reveals their preferences. The only condi-
tion is to enable bidders to learn preferences. In this paper
we introduce and discuss a novel protocol that tries to im-
plement a qualitative ascending English auction, overcoming
some restrictions imposed by the non-transferable utilities
environment and without being needed that auctioneer re-
veals his preferences. Our auction-like protocol is designed
for fully automatic environments and, when learning agents
play the bidders’ roles, we expect to reach the QEA outcome.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - intelligent agents, multi-agent systems

General Terms
Algorithms, Economics, Theory

Keywords
Automated multi-issue negotiation, Non-transferable utili-
ties, English auction

1. INTRODUCTION
Classical auctions, especially English and Vickrey are widely
studied in the literature and existing theoretical results can
guide a mechanism designer to select the proper protocol for

trading services in a distributed environment. In the context
of independent private-value models, the English and Vick-
rey auctions exhibit several important properties [6]: (i) the
two auctions are strategically equivalent, (ii) the outcome
of both is Pareto-optimal and (iii) the winner is the bidder
who values the object most highly. In the English auction
the dominant strategy of a player is to bid actively until the
price announced by the auctioneer reaches the value of the
object to him. In the Vickrey auction, if a bidder knows
the value of the object to himself, the dominant strategy is
to submit a sealed bid equal to that value. These observa-
tions are valid in auction models with transferable utilities,
i.e. there is a good established as currency in the commu-
nity, bids are expressed in the form of price quotations and
the auctioneer simply prefers a higher price to a lower one.
From these fundamental assumptions, auctions evolved to
environments where a center holds some amount of money,
being interested to buy the best good or service he can get
for that amount.
In this paper we consider such a reversed auction setup, with
one buyer against several sellers, while bids are expressed as
bundles of characteristics of the good / service under dis-
cussion. Such setups are of interest in (e.g.) service-based
computing, where service level agreements can be either in-
dividually negotiated or auctions can be employed to select
the provider that supplies the best SLA [8].
To address this reversed auction setup, several novel prac-
tical and theoretical results exist. Harrenstein et al. [2]
defines a qualitative Vickrey auction (QVA) protocol that
generalizes the classical second-price Vickrey auction for en-
vironments without payments. They show that the dom-
inant strategy of each bidder is to make that offer, which
among the ones that are acceptable to him, is most pre-
ferred by the center. If all bidders adhere to this strategy,
the outcome is weakly Pareto-optimal. They also suggest
that in an English-like auction the straightforward strategy
for each bidder is to offer the highest alternative in his pref-
erence order, such that the new bid is preferred by the center
to the last submitted bid. In both cases, the results are de-
rived under the main assumption that the center publicly
announces his preference profile at the beginning of the auc-
tion. Considering this issue and referring to the QVA setup
of [2], Hindriks et al. [5] provides a practical protocol that
approximates the QVA outcome.
Within the research framework just described, this paper
introduces a protocol to practically implement a qualitative
ascending English auction (QEA), overcoming the restric-
tions imposed by the non-transferable utilities environment.
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We construct around the principles of ascending English
auctions in order to bypass the limitation that the buyer
is unable to explicitly elicit his value function or he might
not know the complete domain of possible outcomes of the
sellers [5]. For a fully automatic environments, we provide
an auction-like protocol that is expected to enable learning
agents playing the bidders’ roles to reach the QEA outcome.
The structure of the paper is the following. Section 2 defines
the qualitative multi-issues auction environment, including
the definition of the theoretical QEA. Section 3 presents
a practical protocol implementing the QEA with learning
agents on the bidders’ side, while the auctioneer’s prefer-
ences is not public information. Section 4 presents the ex-
perimental results. Section 5 concludes the paper.

2. DEFINITIONS
We tackle with a virtual environment where sellers and buy-
ers negotiate over a good or service. Each service has m
issues of interest x = (x1, x2, . . . , xm) with x ∈ X = X1 ×
X2 × · · · ×Xm. Buyers and sellers associate an utility value
ui(x) ∈ [0, 1] for each outcome x, and each player i has a
reservation value vi below which he does not accept any out-
come. The utility functions ui can be written as linear com-
binations of the individual utility functions ui,k: ui(x) =∑m

k=1 wkui,k(xk), with
∑m

k=1 wk = 1, where ui,k(xk) rep-
resents the utility that the agent i obtains by receiving the
value xk for the issue k and 0 ≤ wk ≤ 1 represent the weights
measuring the importance of a given issue k for the agent.
Agents prefer a higher utility to a lower one. An outcome x
is weakly Pareto-efficient if there is no other outcome under
which all players are strictly better off.
Further in this paper, without loss of generality, we shall
assume a reverse-auction setup with one buyer and many
sellers. The goal of the buyer is to design a mechanism that
provides an efficient outcome and which is the best possible
for him. Formally, the buyer (with the utility function u0)
is interested in selecting the seller i∗ such that:

i∗ = arg maxi∈{1,...,n}max{u0(x)|x ∈ X,ui(x) ≥ vi} (1)

As in [2, 5], the above-defined environment is called a quali-
tative one, since no general accepted currency is defined and
the bids and outcomes are represented as vectors x.
The classical English auction as described by [6, 2] implies
that the center announces the price level (or the acceptable
bid in a qualitative setup) and bidders adhere or not to the
center’s announcements. Variants of the classical English
auction exist and among them, the one in which the bidders
themselves call the bids and the auction ends when no one
is willing to raise the bid. In such an English auction, in the
case of independent private-values, the dominant strategy of
a bidder is to always bid a small amount over the current
highest bid and to stop when his private value is reached [7].
The equivalence between this sort of English auction and the
second-price auction holds in a transferable-utility environ-
ment with private-value agent models [6]. In non-private
English auctions with at least three bidders, the auctioneer
is better off than in the Vickrey case, because other bidders’
willing to raise the price causes any bidder to increase his
own valuation of the item [7].
Given these theoretical assertions, we define the qualitative
English auction protocol as in Alg. 1. In QEA, the buyer
accepts only bids in increasing order (of the global ordering
induced by his preferences) until no bidder is interested any

Algorithm 1 The qualitative English auction

1 The buyer announces his preferences.
While only one bidder remains or no bidder is willing to raise
the bid utility of the buyer during a time frame
2. Bidders submit offers with a higher utility for the buyer
than the best offer announced by the other bidders.
3. At any time, a bidder can withdraw (without a re-entering
possibility)
End while
4. The last remaining bidder wins with his last bid.

more to submit. Therefore, a straightforward seller strategy
is to offer the highest alternative in his preference order, that
it is higher (in the global ordering of the buyer) than the last
submitted bid [2]. On the other hand, in the QVA protocol
described in [2], the sellers’ dominant strategy is to bid an
offer that is just acceptable to himself and ranks highest in
the buyer’s preferences. Furthermore, QVA selects the best
seller and let him to adjust his offer up to the utility of the
second best seller.
Fig. 1 presents a comparison between the QEA and the
QVA outcomes. Let a buyer asking for an outcome x and
let us consider two sellers with reservation values v1 > v2.
In both auctions, seller 2 wins, because it can supply better
outcomes for the buyer. In the first round of the QVA, seller
2 announces a bid which is the closest (or identical if pos-
sible) to u2 for the buyer (and to v2 for himself). This bid
is preferred by the auctioneer to the bid offered by seller 1.
In the second round, seller 2 is allowed to adjust his bid up
to u1 (the utility for the buyer induced by seller 1’s offer).
Thus, the game will end in the outcome denoted by QVA.
On the other hand, in QEA both sellers will announce bids
giving increasing utility to the buyer. When the outcome
reaches the point (u1, v1), the first seller will exit, as he is
not able to further improve his bid. Thus, only seller 2 re-
mains in the game, with his offer inducing utility ue for the
buyer, i.e. representing the next offer ranked highest in seller
2’s preferences, but with increasing utility for the buyer.
We note that the QEA outcome is the next outcome on the
Pareto frontier for the above winning seller, such that the
utility of the buyer is higher than the one induced by the
QVA outcome. If the domain is continuous, the utility ue

Figure 1: QEA and QVA outcomes
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of the QEA outcome is only ε-better (0 < ue − u1 < ε for
a very small ε > 0) than the one of the QVA outcome and
practically, both outcomes coincide. However, if the domain
is discrete (and sparse) and the Pareto frontier is defined by
discrete points, a significant difference between the utility
of the QEA outcome and the one of the QVA may occur.
Therefore, in the discrete case, a center willing to improve
his outcome, might select the QEA.

3. IMPLEMENTING THE QEA
In this section we present a protocol that tries to practically
implement the QEA. In the theoretical QEA (see alg. 1),
to submit bids with increasing utility for the buyer, sellers
need to know the buyer’s preferences or the buyer’s utility
function. If, because of various reasons, the buyer cannot re-
veal his preferences, another signaling procedure should be
used, such that the sellers to be notified to deliver increasing
value bids to the buyer. Thus, we propose the auction-like
protocol of Alg. 2.
We assume that each seller learns the buyer’s profile from

his bids, exactly like in an one-to-one bilateral negotiation.
Initially, all buyer’s profiles from sellers’ point of view are
blank, thus, each seller initializes to zero the threshold Uexp

0,i

for the expected utility for the buyer. In each round, each
seller i who has not reached his reservation value vi, sub-
mits a bid x(i) such that this bid is better off for the buyer:
uexp
0,i (x(i)) > Uexp

0,i . More precisely, for a rational seller, this
bid will be exactly the next one in decreasing order, fol-
lowing his preference ordering, which increases the expected
utility for the buyer. If, for a given seller i, there are no
more bids which satisfy the condition above, that particular
seller should withdraw from the negotiation.
We notice that the buyer reveals little information, in each
round he just signals the best submitted bid to all sellers.
Each seller, who is capable of learning the opponents’ pro-
files, will infer both the buyer’s and the best competitor’s
profile. Further, the round winning seller will know that he
won the round, because his bid was repeated by the buyer.
To keep the similarity with the QEA, we translated the ex-
iting condition of line 3 in Alg. 1 in the while condition of
Alg. 2. This condition states that a seller will remain in
the protocol while he has offers, acceptable to him, that are
greater than the threshold of the round. If, within a round,
a seller does not submit an offer, this means that the seller
exited the auction.
One possible problem with this protocol is that each bidder
should submit an offer in a reasonable amount of time. In

Algorithm 2 The practical implementation of the QEA

1. Each seller i sets Uexp
0,i = 0

While sellers i have offers x(i) such that uexp
0,i (x(i)) > Uexp

0,i

and ui(x
(i)) ≥ vi, for those sellers i perform:

2.1 Each seller submits an offer x(i) with expected buyer utility
higher than Uexp

0,i

2.2 The buyer selects the offer x(i∗) with the highest utility

u0(x(i∗))

2.3 The buyer announces the bid x(i∗) to every seller
2.4 Each seller updates its Uexp

0,i to the expected utility value

for the bid x(i∗)

end while
3. The last remaining bidder wins with the his last bid

this first version of the protocol, we assume that the sellers
are not trying to exploit the time restrictions, thus, if a seller
has an available offer, it will present this offer, if not, he will
immediately withdraw. A similar behaviour is obtained if
we impose a short time limit for every round. If a seller
does not respond with an offer within the time limit, he is
considered withdrawn from the negotiation.
Note that the protocol proposed here has many nice practi-
cal properties. First, it does not require the buyer to make
public his profile. Furthermore, even if the buyer does not a
priori know the range of the possible offered outcomes, this
fact does not represent a problem for the protocol, as the
buyer is not required (at any time) to produce an outcome.
All what buyer is requested is that he is able to rank the
possible incoming offers. Second, the protocol is ascending -
simulating an English auction; at every round sellers are be-
ing presented the highest bid up to the moment. Third, the
protocol can simulate a non-private value setup, the sellers
being actually able to learn competitors’ profiles by observ-
ing the best bid in each round. Thus, the protocol might
yield a higher utility for the buyer.
The existence of learning agents is essential for the success
of the protocol presented in Alg. 2. Learning agents usu-
ally perform two steps when producing an offer: (i) process
all information from the environment to infer a model for
the environment, auctioneer and competitors; (ii) select and
propose the next offer. We consider that a learning agent of
this type can be easily adapted to the protocol presented in
Alg. 2. This is because, from his point of view, the selling
agent plays a game like in the one-to-one negotiation.

4. EXPERIMENTS AND RESULTS
In this section we present the experimental results of the
protocol presented in Alg. 2 compared to the theoretical
outcome of the QEA

4.1 The experimental setup
In this subsection we present the experimental setup. To
assure the comparability of results, we used the same nego-
tiation domain and only two sellers, as in [5]. In the future,
we shall extend the results to many sellers, as the simulation
software allows it.
To simulate the negotiation, we used a modified version of
the Genius simulator [3], allowing for one-to-many negoti-
ations. The service-oriented negotiation domain described
in [1] was used as testbed. This domain refers to negoti-
ating a service with four issues of interest: delivery time,
quality, duration and penalty, each issue having 30 possi-
ble values. Thus, there are 810000 total number of possible
agreements.
Adapted for the one-to-many negotiation, we used the 12
preference profiles per role that were considered in [5]. Play-
ing one buyer against two sellers results a total of 792 pos-
sible games. We conducted all our experiments on a sample
of size 50 out of the full population of 792 possible auctions.
To work with the Genius simulator, we adapted the Bayesian
learning agent [4] for playing the protocol described in Alg. 2
as seller. This adapted Bayesian agent will never accept a
bid proposed by the buyer and will withdraw when no fur-
ther possible bids are available. The condition to select the
next bid is further restricted by considering for selection only
bids that have the estimated utility for the buyer higher than
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Figure 2: Utility difference between the practical protocol
and the QEA on the buyer side (left) and on the seller side
(right)

95% conf. interval
Agent Mean Std. Dev. Lower Upper
buyer 0.0821 0.1499 0.0386 0.1256
seller -0.1096 0.1801 -0.1619 -0.0573

Table 1: Synthetic statistical results for utility differences
between the practical protocol and the theoretic QEA

buyer’s last announced bid. When winning the round, the
Bayesian agent will repeat the winning bid, up to the mo-
ment that one competitor submits a better bid.

4.2 The practical protocol against QEA
This subsection presents a comparison between the outcomes
of the practical protocol and those generated by the theo-
retical QEA. Fig. 2-left presents the distributions of utility
differences for the buyer and Fig. 2-right for the winning
seller1. Table 1 presents synthetic statistical results. In all
50 runs, the outcome is situated on the Pareto frontier.

In Fig. 2 one can notice that the practical protocol sta-
tistically produces a better outcome for the buyer than the
theoretical QEA. Table 1 shows the synthetic statistical re-
sults and the 95% confidence intervals for the buyer and for
the winning seller. The average of the differences are sig-
nificantly different from 0, clearly positively biased for the
buyer and negatively biased for the seller. Out of the 50
runs, only in 5 cases the outcome is situated on the left side
of the QEA outcome. Therefore, the practical protocol pro-
duces results under which the buyer is better off, while the
winning seller is worse off than in the theoretical case.
This may be due to several reasons. First, the protocol
does not entirely fit the private-value model. The sellers are
learning both buyer’s preferences and those of the competi-
tors (mostly the latter preferences). Thus, as indicated in
the literature [7], we can expect the buyer to obtain bet-
ter results than in the private-value case, and clearly better
than in the second-price auction.
The second possible explanation for these results come from
the fact that the sellers are learning agents that are meant
to only estimate the buyer’s profile. This estimation may
not be perfect; it often happens that the Bayesian agent to
retrieve an offer better for him than the theoretical QEA
outcome. In this case, if the buyer returns back this offer,
the ascending property of the protocol does not allow the
selling agent to propose the bid again, even if, based on the

1The solid line of Fig. 2 represents the standard normal dis-
tribution with mean 0 and variance 1

re-estimation of buyer’s profile within the future rounds, the
offer would represent for the seller a maximizing behavior
fulfilling the right constraints.

5. CONCLUSIONS
In this paper we propose a protocol to practically imple-
ment the qualitative English auction for multi-issue auction
setups with non-transferable utilities. Qualitative Vickrey
auction and, by extension, qualitative English auction are
proved [2] to possess nice theoretical properties, generaliz-
ing the classical Vickrey auction to environments without
an established currency. The proposed protocol is expected
to enable learning agents playing the bidders’ roles, to reach
the QEA outcome in practical experiments. We consider
this protocol of practical usage, as the center is not required
to reveal his profile at the start of the auction. Experiments
show that this version of our protocol produces outcomes
that are still Pareto-efficient, however with a better off buyer
and worse off winning seller than in the case of theoretical
QEA (or QVA). This may be due to the fact that the pro-
tocol is not entirely fit into the private-value model. Here,
the sellers are learning both the buyer’s preferences and also
those of the competitors.
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ABSTRACT  
Agents participating in a negotiation dialogue may use 
argumentation to support their position, hence achieving a better 
agreement. The Extensible Argumentation Framework (EAF) 
provides modularity and extensibility features that facilitates its 
adoption by agents in MAS. In order to emphasize the EAF 
potential and applicability, this paper proposes an argument-based 
negotiation process grounded on the EAF adoption. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence 
– agents, multi-agent systems, negotiation, argumentation.  

Keywords 
Negotiation, Argumentation, Agents, MAS 

1. INTRODUCTION 
Internally agents may use argumentation for both (i) reasoning 
about what to believe (i.e. theoretical reasoning) and/or (ii) for 
deciding what to do (i.e. practical reasoning). Despite existing 
differences between both, from a standpoint of first-personal 
reflection, a set of considerations for and against a particular 
conclusion are drawn on both [1]. On the other hand, concerning 
the types of agents’ dialogues (e.g. Deliberation, Negotiation, 
Persuasion, Inquiry, Information-seeking dialogues), while a clear 
distinction between each one exist, most of agents’ dialogue 
occurrences involve mixtures of dialogue types. Within this 
context, argumentation is seen as an activity where each 
participant tries to increase (or decrease) the acceptability of a 
given standpoint for the others participants by presenting 
arguments. In particular, agents participating in a negotiation 
dialogue may use argumentation to support their position and by 
that achieve a better agreement. Therefore, argumentation is 
foreseen as an adequate modeling formalism to reduce the gap 
between models governing the internal and external agent 
behavior. Grounded on that, this paper presents a generic 
negotiation process that exploits the expressivity, modularity and 
extensibility features of the Extensible Argumentation Framework 
(EAF) [2]. The core idea behind the EAF-based process is: while 
a common argumentation vocabulary is shared by all agents, 
internally each agent is able to extend that vocabulary to fit its 
own needs and knowledge. 

The rest of this paper is organized as follows:  the next section 
describes the main structures and concepts of the EAF. Section 3 
presents the proposed negotiation process based on the adoption 
of EAF in MAS. Section 4 presents a brief summary of performed 
experiments in the domain of ontology alignment [3] applying the 
proposed negotiation process. Finally, section 5 draws 
conclusions and comments on future work. 

2. The EAF 
This section describes briefly and informally the main features of 
the Extensible Argumentation Framework (EAF). The EAF 
comprehends three modeling layers as depicted in Figure 1.  

The Meta-model layer defines the core argumentation concepts 
and relations holding between them. EAF adopts and extends the 
minimal definition presented by Walton in [4] where “an 
argument is a set of statements (propositions), made up of three 
parts, a conclusion, a set of premises, and an inference from 
premises to the conclusion”. For that, the meta-model layer 
defines the notion of Argument, Statement and Reasoning 
Mechanism, and a set of relations between these concepts. An 
argument applies a reasoning mechanism (such as rules, methods, 
or processes) to conclude a conclusion-statement from a set of 
premise-statements. Intentional arguments are the arguments 
corresponding to intentions ([5], [6]).  

The Model layer defines the entities and their relations for a 
specific domain according to a community’s perception. The 
resulting model is further instantiated at the Instance-pool layer. 
The � relation is established between two argument types (e.g. ��,�� ∈ �) when � supports or attacks �. Through � it is also 
determined the types of statements that are admissible as premises 
of an argument. Additionally, arguments, statements and 
reasoning mechanisms can be structured through the ��, �� and �� relations respectively. These are acyclic transitive relations 
established between similar entity types (e.g. arguments), in the 
sense that in some specific context entities of type �� are 
understood as entities of type ��. While these relations are 
vaguely similar to the specialization relation (i.e. 
subclass/superclass between entities) it does not have the same 
semantics and it is constrained to 1-1 relationship. 

The Instance-Pool layer corresponds to the instantiation of a 
particular model layer for a given scenario. A statement instance �� is said to be in conflict with another statement instance �� 
when �� states something that implies or suggests that �� is not 
true. The statement conflict relation is asymmetric (in Figure 1 �� 
conflicts with �� too). The support and attack relationships (���� 
and �	

 respectively) between argument instances are 
automatically inferred exploiting (i) the � relations defined at the 
model layer and (ii) the existing premise relations and the 
statements conflicts at this level. 

An EAF model may reuse and further extend the argumentation 
conceptualizations of several existing EAF models. Inclusion of 
an EAF into another EAF is governed by a set of modularization 
constraints ensuring that no information of included EAF is lost.
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Figure 1. The three modeling layers of EAF 

3. NEGOTIATION PROCESS 
This section proposes a negotiation process based on the adoption 
of EAF by agents in MAS. While other negotiation processes 
using EAF are admissible, we aim to provide an end-to-end 
negotiation process that emphasizes its potential and applicability. 

The proposed negotiation process relies on the following 
assumptions: (i) a negotiation process between two or more agents 
always occurs in the scope of a given community of agents, (ii) 
the agents’ community is able to define an EAF model (i.e.	
��) 
representing the community minimal common understanding 
about the domain of discourse that all agents of that community 
are able to understand, and (iii) each agent is able to exploit the 
modularization and extensibility features of the EAF such that 
each agent is free to internally extend the common argumentation 
model so it better fits its own needs and knowledge. Concerning 
latter assumption, it is especially relevant the application of the ��,�� and �� relations so that the agent explicitly states the 
specialization of its individual EAF model (i.e. 	
���	) in respect 
to 	
��. These relations will provide a minimal common 
classification of arguments, statements and reasoning mechanisms 
introduced individually by each agent. Based on these 
assumptions, we propose the EAF-based negotiation process to be 
adopted by each negotiating agent. 

The negotiation process specifies nine phases (Figure 2). 

3.1 Setup 
The Setup phase encompasses a set of domain-dependent 
interactions between agents such as: (i) the identification of the 
(possible) negotiation participants, (ii) the identification of the 
negotiation object, (iii) the identification of which is the 
community minimal common understanding (i.e. 	
��) between 
all participants, (iv) the definition of the required negotiation 
parameters/constraints such as deadline for achieving an 
agreement, (v) the specification of the arguments exchanging 
method used by each agent, (vi) the specification of the 
negotiation method to compute a possible agreement between 
participants (e.g. by consensus between all participants or by the 
majority of participants opinions), (vii) the establishment of 
special rights for some of the participants, (viii) sharing the 

data/information that is required by the agents in order to 
participate in the negotiation. At the end of this phase, the context 
of the EAF-based negotiation is completely defined and known by 
all participating agents. Therefore, such context must be uniquely 
identified and further participants’ interactions related with that 
content must be clearly stated as so. Yet, such context defines a 
set of constraints called negotiation parameters (i.e. 
�). 
Moreover, each participant creates an instance-pool of its own 
EAF (i.e. ��(	
���)) that will capture the argumentation data. 
Contrary to the other phases, this phase occurs only once. 

3.2 Data Acquisition 
During the Data Acquisition phase the agent collects, from the 
environment, a set of data/information (called ���) that 
constitutes the grounds to generate arguments. The agent may rely 
on a communication process with other agents (non-participating 
directly in the ongoing negotiation), namely specialized agents on 
the subject under discussion. 

Figure 2. EAF-based negotiation process 
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3.3 EAF Instantiation 
The goal of the EAF Instantiation phase is to analyze and to 
process the collected data (i.e. ���) in order to add and/or update 
the instances (e.g. argument-instances) in the respective EAF 
instance-pool. For that, the agent makes use of one or more data 
transformation processes whose output is a set of unclassified (or 
partially classified) 	
��� instances. Next, those instances are 
properly (re)classified as required by the EAF. An EAF instances 
(re)classification process is also needed further in the Instance-
Pool Update phase. In that sense, it is envisaged that the instances 
(re)classification process might be the same in both phases, 
however that is not mandatory.  

3.4 EAF Evaluation 
In the EAF Evaluation phase, each agent extracts a preferred 
extension, i.e. a consistent position within 	
��� which is 
defensible against all attacks and cannot be further extended 
without introducing a conflict. According to the agent’s ��(	
���) one or more possible preferred extensions may be 
extracted. If the EAF-evaluation process extracted more than one 
preferred extension then it is necessary to select one. Notice that 
the selection criterion has a special relevance during the 
negotiation process, because it directly defines the public agent’s 
position about the subject under discussion (i.e. its intentions and 
the beliefs behind those intentions). Given that, instead of a simple 
criterion such as “selection of the preferred extension that is 
maximal with respect to set inclusion”, a more elaborated 
selection criterion may take into consideration the preferred 
extension previously selected (if there is any) in order to select, 
for example, the one that differs less. This phase may occur more 
than once due to new data/information acquisition and especially 
due to the exchange of arguments between the agents during the 
persuasion phase. Thus, any change made to ��(	
���) suggest 
that the agent’s consistent position may change, hence requiring a 
re-evaluation of the preferred extension by the agent. 

3.5 Agreement Attempt 
In the Agreement Attempt phase each participant makes a 
proposal of agreement to the other agents in order to find out an 
overall common agreement (called candidate agreement) which 
can be accepted and further settled by all participants. It 
comprehends two steps. In the first step, each agent makes its 
proposal of agreement by exchanging the intentional argument of 
its preferred extension only (called intentional preferred 
extension). As a result of all proposals, two sets of arguments are 
derived and then shared by all agents: (i) the set of arguments 
agreed/proposed by all agents (
�����
���) which represents a 
candidate agreement and (ii) the set of arguments which at least 
one agent disagrees (���������
���). For a negotiation between � agents where ����������� is the intentional preferred extension 
of agent �, these sets can be computed differently depending on 
the agents and according to the setup phase. One of the simplest 
agreement evaluation forms is based on their intersection: 


�����
��� = ������������



���

 

���������
��� = �������������



���

� − 
�����
��� 

In the second step, each participant evaluates its level of 
satisfaction of the current candidate agreement. For that the agent 
considers the defined negotiation parameters/constraints (i.e. 
�) 

and the content of the ���������
��� set. According to the level 
of satisfaction, the participants must decide to either: 

• Continue the negotiation, and therefore proceed to the 
persuasion phase, or 

• Conclude the negotiation, which is either: 
o successful if all agents accept the candidate agreement 

(
�����
���). In such case the process proceeds to the 
settlement phase, or  

o unsuccessful if the candidate agreement is not accepted by 
all agents and it was considered that it is not worth keep 
trying to achieve another candidate agreement. The 
negotiation ends without an agreement. 

3.6 Persuasion 
From previous phase it has been identified a set of intentional 
arguments that are not accepted by at least one participant (i.e. ���������
���). In the this phase, each agent, first selects from 
its preferred extension a (sub-) set of arguments supporting or 
attacking the intentional arguments in ���������
���, which 
will further be exchanged with the opponent agents to persuade 
them. There are two forms to exchange the arguments: 

1. The arguments are exchanged according to the 	
�� and not 
according to 	
���, so the other agents can understand them. 
Due to the ��, �� and �� relations, the transformation of the 
instances respecting the agent’s EAF to the community EAF 
is straightforward. 

2. The arguments are exchanged according to the 	
��� along 
with the 	
��� parts that allow the other agent to transform 
the arguments to 	
��. 

The way the arguments are exchanged is defined in the setup 
phase, and will have implications in next phase.  

Yet, independently of the exchanged method, at the end of this 
phase, each agent has collected a new set of information (	���), 
corresponding to the received arguments presented by the other 
negotiating agents.  

3.7 EAF Refinement 
This phase concerns the refinement of the community’s EAF 
model according to the exchanged arguments and the agents’ EAF 
models. Therefore, if the exchange of arguments does not include 
exchanging parts of the agent’s EAF model, this phase is more 
difficult and therefore may be skipped. It is not the aim of this 
description to present an EAF evolution process, nor the agents’ 
reasoning process leading to such evolution. Instead, this 
description intends to emphasize the ability of the EAF to be 
extended according the agent’s needs, by exploiting the 
modularization features of the proposed argumentation 
framework. 

3.8 Instance Pool Update 
In this phase, the agent reclassifies the 	��� data according to its 	
��� applying an instance (re)classification process, which 
might be the same used in the EAF Instantiation phase. The 
reclassified data that do not exist into ��(	
�	�) is added while 
duplicated arguments are discarded. Added arguments are taken 
into consideration by the agent in the next round of proposals. The 
negotiation process proceeds to the Data Acquisition phase. 

3.9 Settlement 
The goal of the settlement phase is to transform the candidate 
agreement into a definitive agreement according to the settlement 

91



parameters of 
�. Depending of the domain of application and 
the negotiation object (e.g. a good or a service) as well as the 
participating partners, the settlement phase can have a varying of 
sub-functions. In this respect, this phase is seen as an initiator of a 
set of transactions that must occur after the agreed terms are 
known in order to fulfill the terms. For example, in an e-
commerce scenario, to fulfill an agreement for selling a physical 
good may imply to carry on logistic and financial services. 

4. EXPERIENCES 
Since the proposed negotiation approach is domain independent, 
to carry out some experiments we need to choose a domain of 
application. We applied the EAF-based negotiation approach to 
address conflicts arising between agents when they are reconciling 
the vocabulary used in their ontologies. The result of the 
vocabulary reconciliation is a set of correspondences (i.e. an 
alignment) between entities of agents’ ontologies. Such conflicts 
arise because each agent may have its own perspective about what 
are the best correspondences. In that sense, the experiments aim to 
measure the improvement produced on the accuracy (in terms of 
precision, recall and f-measure) of the agreed alignment by the 
negotiation process when compared to each agent’s initial 
proposal, i.e. before the negotiation process runs. For this purpose, 
we adopted an empirical approach using (i) a set of pairs of 
publicly available ontologies used in several ontology alignment 
experiences as, for example, the Ontology Alignment Evaluation 
Initiative (OAEI) and (ii) for each pair of ontologies a widely 
accepted reference alignment that will be exploited to evaluate the 
negotiation results.  

For the sake of brevity and simplicity, the results are presented 
considering the negotiation of all individual alignments as just one 
huge alignment. The reference alignment contains 1402 
correspondences (also referred as matches) corresponding to the 
sum of all correspondences of all reference alignments. We have 
configured three agents, each one using a distinct set of matching 
algorithms and a distinct EAF model (extended from a common 
one). 

Table 1 summarizes and characterizes the automatic alignment of 
each agent before the negotiation process runs. Correct matches 
are those that exist in the reference alignment. 

Table 1. Agents’ alignment before the negotiation process 

Agent  Matches Accuracy % 
Proposed Correct  Precision Recall F-Measure 

A 1358 1296 95.4 92.4 93.9 
B 2025 1266 62.5 90.3 73.9 
C 1290 1219 94.5 86.9 90.6 

 

Table 2 summarizes and characterizes the agreed alignment 
between each possible pair of agents. It also shows (i) on column 
“U.” the amount of matches under discussion on the beginning of 
the negotiation process i.e. the agents’ contradictory initial 
position, (ii) on column “U.C” the amount of correct matches 
under discussion, (iii) on column “R.” the amount of matches that 
even after the negotiation process remain contradictory, (iv) on 
column “R.C.” the amount of correct matches remaining with 
contradictory position and (v) on column “G.P.” the percentage of 
good persuasion occurred, i.e. one of the agents concede its initial 
position in favor of the opponent agent’s position, and that 
concession contributes positively for the quality of the achieved 
agreement.  

Table 2. Agreed alignment between agents 

Age
nt  

Matches Accuracy (%) G.P. 
% P. C. U. U.C. R. R.C. Pr. Re. F-M. 

A-B 1294 1243 813 78 308 67 96.1 88.7 92.2 96.4 
A-C 1250 1214 200 119 130 90 97.1 86.6 91.6 67.1 
B-C 1387 1234 779 75 220 39 89.0 88.0 88.5 82.6 

 

Examination of results shows that independently of the amount of 
resolved conflicts, the percentage of good persuasion is always 
high and consequently the negotiation process is beneficial to the 
overall accuracy of the agreed alignment. Yet, it also perceived 
that it is very hard for an agent to successfully persuade its 
opponent to change position about a correct match proposed by its 
opponent. 

5. CONCLUSIONS  
This paper describes a novel, generic and domain independent 
argument-based negotiation process based on the adoption of the 
Extended Argumentation Framework. Due to the modeling, 
modularity and extensibility features of the EAF, agents are able 
to share an external common argumentation model which is 
further extended internally by each agent to better fit its own 
needs and knowledge. Yet, the common argumentation model 
may continuously evolve along the time profiting from occurring 
negotiation interaction between agents (section 3.7). The proposed 
negotiation process also promotes the use of argumentation as a 
common formalism either for (i) agents’ internal reasoning and 
(ii) agents interactions (namely negotiation interactions). 

Experiences in the ontology alignment field show that the 
adoption of the EAF-based negotiation process leads to a 
substantial improvement in the quality of the agreed ontology 
alignment when compared with the intersection of agents’ 
individual ontology alignment. The good persuasion is achieved 
both by persuading the opponent by accepting a correct match and 
by rejecting an incorrect match.  

An interesting research direction concerns providing agents with 
the ability (i) to learn and improve their argumentation strategies 
based on their past experiences and (ii) to learn (and understand) 
new arguments used by other agents in order to apply in the 
Community’s EAF Update phase. 
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