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Preface

Complex Automated Negotiations have been widely studied and are
becoming an important, emerging area in the field of Autonomous Agents and
Multi-Agent Systems. In general, automated negotiations can be complex,
since there are a lot of factors that characterize such negotiations. These factors
include the number of issues, dependency between issues, representation of
utility, negotiation protocol, negotiation form (bilateral or multi-party), time
constraints, etc. Software agents can support automation or simulation of such
complex negotiations on the behalf of their owners, and can provide them with
adequate bargaining strategies. In many multi-issue bargaining settings,
negotiation becomes more than a zero-sum game, so bargaining agents have an
incentive to cooperate in order to achieve efficient win-win agreements. Also, in
a complex negotiation, there could be multiple issues that are interdependent.
Thus, agent's utility will become more complex than simple utility functions.
Further, negotiation forms and protocols could be different between bilateral
situations and multi-party situations. To realize such a complex automated
negotiation, we have to incorporate advanced Artificial Intelligence technologies
includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs,
predicting and learning methods. Applications could include e-commerce tools,
decision-making support tools, negotiation support tools, collaboration tools,
etc. We solicit papers on all aspects of such complex automated negotiations in
the field of Autonomous Agents and Multi-Agent Systems, including but not
limited to:

- Complex Negotiations

- Multi-Issue Negotiations

- Concurrent Negotiations

- Multiple Negotiations



- Sequential Negotiations

- Bilateral Negotiations

- Multilateral negotiation

- Negotiation and Coordination Mechanisms

- Negotiation under Asymmetric Information

- Large Scale Negotiation

- Matchmaking and Brokering Mechanisms

- Coordination for Local and Global Consistency

- 2-sided Matching

- Predicting Opponent's Behaviors in Negotiation.

- Utility models and Preference models

- Complexity aspects of Multi-issue negotiation

- Negotiation Simulation

- Negotiations in Social Networks

- Preference Elicitation

- Practices and Applications

These issues are being explored by researchers from different
communities in Autonomous Agents and Multi-Agent systems. They are, for
instance, being studied in agent negotiation, multi-issue negotiations, auctions,
mechanism design, electronic commerce, voting, secure protocols,
matchmaking & brokering, argumentation, and co-operation mechanisms. The
goal of this workshop is to bring together researchers from these communities
to learn about each other's approaches, form long-term collaborations, and
cross-fertilize the different areas to accelerate progress towards scaling up to
larger and more realistic applications.

Out of the 16 paper submissions, 9 papers were finally selected as full
papers and 6 papers were selected as short papers. Each paper was carefully
reviewed by three reviewers, who are considered as experts in the topic.

From 2010, ACAN is tightly cooperating with ANAC (Automated
Negotiating Agents Competition). Based on the great success of ANAC2010, the
ANAC2011 will be held at AAMAS2011 at Taiwan. This year, we, ACAN, have the
ANAC special session, in which the finalists of ANAC will describe their

negotiating agents.
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ABSTRACT

Multiagent negotiation may be understood as a consensus
based group decision-making which ideally should seek the
agreement of all the participants. However, there exist sit-
uations where an unanimous agreement is not possible or
simply the rules imposed by the system do not seek such
unanimous agreement. In this paper we propose to use a
consensus policy based mediation framework (CPMF) to
perform multiagent negotiations. This proposal fills a gap
in the literature where protocols are in most cases indirectly
biased to search for a quorum. The mechanisms proposed to
perform the exploration of the negotiation space are derived
from the Generalized Pattern Search non-linear optimization
technique (GPS). The mediation mechanisms are guided by
the aggregation of the agent preferences on the set of al-
ternatives the mediator proposes in each negotiation round.
Considerable interest if focused on the implementation of the
mediation rules where we allow for a linguistic description
of the type of agreements needed. We show empirically that
CPMF efficiently manages negotiations following predefined
consensus policies and solves situations where unanimous
agreements are not viable.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms
Algorithms, Designs, Experimentation

Keywords

*Visiting from Universidad de Alcala, Spain

JfVisiting from Universidad de Alcala, Spain

multiagent negotiation, multiparty negotiation, consensus
policy, pattern search

1. INTRODUCTION

Most research in multiparty automated negotiation has been
focused on building efficient mechanisms and protocols to
reach agreements among multiple participants, being an ob-
jective to optimize some type of social welfare measurement
[6,5,7,2,15,4, 8, 12, 13]. Examples of such measurements
would be the sum or product of utilities, the min utility,
etc... However, social welfare has not been usually placed
itself as an integral part of the negotiation process.

There are remarkable works which incorporate a social wel-
fare criterion within the search process [1, 3, 10]. In these
works, the authors build mechanisms to obtain fair agree-
ments by using fair direction improvements in the joint ex-
ploration of the negotiation space. Put simply, first a me-
diator proposes a solution and agents provide their utility
gradients in the solution, and finally the mediator proposes
a new contract in the bisector or in an arbitrary direction
which is considered fair enough. These proposals present
however several limitations. Firstly, they work only when
utility functions are derivable and quasi-concave. Secondly,
the absolute value of the gradient is not considered, and so,
the marginal utility obtained by the agents in each negoti-
ation round may not be fair. Finally, even considering that
the agents reveal also the gradient magnitude, the proto-
col is prone to untruthful revelation to bias the direction
generated by the mediator.

We argue that the type of consensus by which an agreement
meets in some specific manner the concerns of all the nego-
tiators should be considered as an integral part within the
multiparty negotiation protocols. To study this hypothesis
this paper proposes CPMF, a Consensus Policy Based Med;i-
ation Framework for Multi-Agent Negotiation. CPMF relies
on a novel distributed agreement exploration protocol based
on the Generalized Pattern Search optimization technique
(GPS) [9], and on the use of Ordered Weighted Averaging
(OWA) operators [17]. This framework allows to search for
agreements following predefined consensus policies, which
may take the form of linguistic expressions in order to sat-
isfy system requirements or to circumvent situations where
unanimous agreements are not possible.



Next section presents first the GPS algorithm for uncon-
strained optimization and then the basic operation of the
negotiation protocol. Section 3 focuses on the mechanisms
used by the mediator to aggregate agents’ preferences and
Section 4 presents the agreement search process. The last
section summarizes our conclusions and sheds lights on some
future research.

2. THE MEDIATION PROTOCOL

We shall assume a set of n agents A = {A;]i = 1,...,n}
and a finite set of issues X = {x|l = 1,...,s}, where
each issue x; can be normalized to a continuous or discrete
range d; = [z, 2]"*]. Accordingly, a contract is a vector
' = {x] = 1,...,s} defined by the issues values. Further-
more, we assume that each agent A, has a real or virtual
mapping V; : X — R function that associates with each
contract = a value Vj(z) that gives the payoff the agent as-
signs to a contract. The exact nature of this mapping need
not be known. All that we want to assume is that each agent
has some means for formulating a preference function over
a set of alternatives. Thus, the preference function can be
described as any mapping function between the negotiation
space contracts and the set of real numbers. We make a
general assumption that the preference of each agent can be
non-monotonic and non-differentiable. We only require the
preferences to be rational:

DEFINITION 2.1. The ordinal preference Z; of agent A; in
the negotiation domain is rational if it satisfies the following
conditions:

1. Strict preference is asymmetric: There is no pair of x
and =’ in X such that x <; 2’ and ' <; z;

2. Transitivity: For all z, ', and " in X, if x <; 2’ and
2’ <2, thenx S 2

3. Completeness: For all x and x' in X, either x <; o' or
xS w;

where x <; @ (or x < x') indicates that the offer =’ is at

~t

least as good as (or better than) x for agent i.

The aim of the agents will be to reach an agreement on a con-
tract ', maximizing their individual payoff and minimizing
the revelation of private information.

Next, we describe in detail the GPS for unconstrained opti-
mization, which is used in the construction of the negotiation
protocol. GPS belongs to the familiy of Direct Search Based
optimization algorithms [9]. Note, however, that our nego-
tiation protocol is not a single-objetive or multi-objective
centralized optimization process.

2.1 Generalized Pattern Search Algorithm for

Unconstrained Optimization
The optimization problem can be defined as max f(z), where
f:R™ — R, x € R™. At an iteration k of the protocol,
we have an iterate (k) € R™ and a step-length param-
eter A > 0. We successively look at the points in the
mesh x* (k) = (k) £ Arej, j € {1,...,m}, where e; is the
jth standard basis vector, to search for a contract z'(k) in
2t (k) for which f(2'(k)) > f(x(k)). We will use the no-
tation 21°(k) to designate the mesh at round k including
the current point z(k). Figure 1 illustrates the set of points

Figure 1: An illustration of Generalized Pattern
Search for unconstrained optimization.

among which we search for m = 2. This set of points or
mesh is an instance of what we call a pattern, from which
pattern search takes its name. If we find no z’(k) such that
f(&'(k)) > f(z(k)), then we reduce Ay by half and continue;
otherwise, we leave the step-length parameter alone, setting
ANgy1 = A and z(k + 1) = x(k). In the latter case we
can also increase the step-length parameter, say, by a factor
of 2, if we feel a longer step might be justified. We repeat
the iteration just described until Ay is deemed sufficiently
small. One important feature of pattern search that plays a
significant role in a global convergence analysis is that we do
not need to have an estimate of the derivative of f at z(k)
so long as included in the search is a sufficient set of direc-
tions to form a positive spanning set for the cone of feasible
directions, which in the unconstrained case is all of R™. In
the unconstrained case the set {£e;|j = 1,...,m} satisfies
this condition, the purpose of which is to ensure that if the
current iterate is not a stationary point of the problem, then
we have at least one ascendent direction.

The set e; is defined by the number of independent variables
in the objective function m and the positive standard basis
set. Two commonly used positive basis sets in pattern search
algorithms are the maximal basis, with 2m vectors, and the
minimal basis, with m + 1 vectors. For example, if there
are two independent variables in the optimization problem,
the default for a 2m positive basis consists of the following
pattern vectors: e1 = {1,0}, e2 = {0,1} and —e; = {—1,0},
—ez = {0,—1}. An m + 1 positive basis consists of the
following standard basis set: ey = {1,0}, e2 = {0,1} and
only a negative vector —e; = {—1,—1}. In our approach
we will take the 2m positive basis. We will use the notation
z% (k)|7 = 1,...,2m to describe each point in a mesh, and
z(k) or (k) to designate the current point. For example,
x°! (k) specifies the contract generated by the current con-
tract (k) and the vector ey for the current step-length Ay,
while z°m+1 (k) points to the negative version of z° (k).

2.2 Basic Operation of the Negotiation Proto-

col
The basic protocol of the proposed negotiation process is the
following;:



1. The mediator proposes a mesh from an initial contract
z'"(1) for a step-length parameter A;. The point
2'™* (1) is randomly chosen by the mediator.

2. Each agent provides the mediator their preferences
for the contracts in the current mesh 27, in terms
of a mapping S; : X — [0,1] such that for exam-
ple Si(z% (k)) indicates agent ¢’s support for the al-
ternative 2% (k). An agent does not know the other
agents’ support for the contracts. Though agents are
free to provide support values which are coincident or
not with the corresponding private valuation function
Vi(z% (k)), in this work we will assume a perfect cor-
respondence between both values.

3. The individual agent preferences for each contract are
aggregated by the mediator to obtain the correspond-
ing group preferences for each of the contracts in the
mesh. We shall refer to this as the aggregation of
preferences step.

4. Mediator decides which is the preferred contract in
the mesh according to the group preferences for the
different contracts.

5. Based on the the preferred contract, mediator de-
cides to expand or contract the mesh. Should a con-
traction make Ay small enough negotiation ends, oth-
erwise go to step 2.

We assume that the negotiation process is such that a so-
lution from X is always obtained. Negotiation may end
when Ay is below a predefined threshold value or when a
deadline expires. Essentially, the multi-agent negotiation
is a dynamic process where at each stage of the process an
agent provides a support measure determined by its underly-
ing payoff function and any information available about the
previous stages of the negotiation. The process of choosing
the specific support for the different alternatives in a mesh
at each round of the negotiations then constitutes a partic-
ipating agent’s strategy. An important consideration in an
agent’s determination of their strategy are the rules and pro-
cedures used in the negotiation process. In the following we
shall describe the implementation of the negotiation process
steps outlined above.

3. THE AGGREGATION OF PREFERENCES

Here we look at the process where the mediator aggregates
the individual support for the contracts in the mesh at round
k. Our point of departure here is a collection of n agents and
a set °(k) of contracts (mesh) given a current contract
z(k) at round k. We assume each agent has provided at
round k her preference S;(x°(k)) over the set x7°(k) such
that it indicates the degree to which each agent A; supports
each contract. The mediator objective in this mediation step
is to obtain a group preference function G : z™° — [0, 1]
which associates with each alternative z% (k) € x™°(k) a
value G(z% (k)) = M(S1(z% (k)), ..., Sn(z% (K))).

The form of M is called the mediation rule, which describes
the process of combining the individual preferences. The
form of M can be used to reflect a desired mediation im-
perative or consensus policy for aggregating the preferences

of the individual agents to get the mesh group preferences.
M will guide the mediator in the expansion-contraction de-
cisions in order to meet the desired type of agreements for
the negotiation process.

The most widespread consensus policy found in the auto-
mated negotiation literature suggests using as an aggrega-
tion imperative a desire to satisfy all the agents. However,
the policy of requiring that all the agents be satisfied by
a solution may not be suitable for multi-agent preference
aggregation, or simply the system may need to implement
more sophisticated forms of aggregation.

We propose to use other mediation rules to improve the ne-
gotiation processes where either a quorum is not necessary
or simply such quorum is not possible. For example, a so-
lution may be acceptable if most of the agents support it.
To incorporate these notions into our negotiation framework
we will use a more general class of aggregation rules. The
idea is to use a quantifier guided aggregation, which allows
a natural language expression of the quantity of agents that
need to agree on an acceptable solution. As we shall see
the Ordered Weighted Averaging (OWA) operator [16] will
provide a tool to model this kind of softer mediation rule.

3.1 OWA Operators

An aggregation operator M : S" — G, (S,G € [0,1]) is

called an OWA operator of dimension n if it has an asso-

ciated weighting vector W = [wiws ... wy] such that w; €

[0,1] and >°7 , w: = 1 and where M(S1,...,Sn) = > 1, wibs

where b, is the tth largest element of the aggregates {S1,...,Sn}.

Note that in the definition of OWA we have used the no-
tation M to identify the aggregation operator with the me-
diation rule, S™ to make reference to the preferences of the
agents, and G to define the group preference. In the OWA
aggregation the weights are not directly associated with a
particular argument but with the ordered position of the
arguments. If ind is an index function such that ind(t)
is the index of the tth largest argument, then we can ex-
press M(S1,...,5) = > 1 WeSinae)- It can be shown
that OWA aggregation has the following properties:

1. Commutativity: The indexing of the arguments is ir-
relevant

2. Monotonicity: If S; > S; for all i then M(S;,...,S) >
M(Suvsn)

3. Idempotency: M(S,...,S)=S

4. Boundedness: Max;[S;] > M(Si,...,Sn) > Min;[S;]

Under these conditions the OWA operator is a mean oper-
ator. The form of the aggregation is dependent upon the
associated weighting vector. We have a number of special
cases of weighting vector are worth noting. The vector W*
defined such that w1 = 1 and w; = 0 for all ¢ # 1 gives us the
aggregation Max;[S;]. Thus, it provides the largest possible
aggregation. The vector W, defined such that w, = 1 and
wy = 0 for all ¢t # 1 gives the aggregation Min;[S;]. The
weighting vector Weye defined such that w; = 1/n gives



us the average %Zz;l S;. Finally, an interesting family of
OWA operators are the E-Z OWA operators. There are two
families. In the first family we have wy = 1/q for t = 1 to
q, and wy = 0 for t = ¢+ 1 to n. Here we are taking the
average of the ¢ largest arguments. The other family defines
wt:0f0rt:1t0q,andwt:%_qfort:q+1ton.
We can see that this operator can provide a softening of the
original min and max mediation rules by modifying q.

3.2 Quantifier Guided Aggregation

In the preceding, we have seen how the OWA operators can
be used to compute the group preference for different al-
ternatives, in our case, the different contracts in the current
mesh z7°(k). However, our aim is to define consesus policies
in the form of a linguistic agenda for our mediation mech-
anisms. For example, the mediator should make decisions
regarding the exploration of the negotiation space, i.e. ex-
pansion and contraction of the mesh, following mediation
rules like

Most agents must be satisfied by the contract, at least «
agents must be satisfied by the contract, many agents must
be satisfied, ...

The above statements are examples of quantifier guided ag-
gregations. Zadeh [18] suggested a formal representation of
these linguistic quantifiers using fuzzy sets. He suggested
that any relative linguistic quantifier can be expressed as a
fuzzy subset @ of the unit interval I = [0,1]. In this repre-
sentation for any proportion y € I, Q(y) indicates the degree
to which y satisfies the concept expressed by the term Q. In
most applications of the quantifier guided aggregation we use
a special case class of these liguistic quantifiers, called Reg-
ular Increasing Monotone (RIM) quantifiers. These types
of quantifiers have the property that as more agents are
satisfied our overall satisfaction can’t decrease. Formally,
these quantifiers are characterized in the following way: 1)
Q(0) =0, 2) Q(1) =1 and 3) Q(z) > Q(y) if z > y. Exam-
ples of this kind of quantifier are all, most, many, at least
a. Two examples of RIM quantifiers are all which is repre-
sented by Q. where Q.(1) =1 and Q«(z) =0 for all x # 1,
and any which is defined as Q*(0) = 0 and Q" (x) = 1 for
all z # 0.

The question now is how to obtain the OWA operator to sat-
isfy a quantifier guided aggregation. Again assume we have
a collection of n agents. These agents have their preferences
represented as fuzzy subsets over the set of alternatives in
the mesh {S1(x*°(k)),...,Sn(x"°(k))}. Under the quanti-
fier guided mediation approach a group mediation protocol
is expressed in terms of a linguistic quantifier @ indicating
the proportion of agents whose agreement if necessary for a
solution to be acceptable. The basic form of the mediation
rule in this approach is

Q) agents must be satisfied by the contract,

where @ is a quantifier.

The formal procedure used to implement this mediation rule
is described in the following. The quantifier @ is used to

generate an OWA weighting vector W of dimension n. This
weighting vector is then used in an OWA aggregation to

Figure 2: Example of how to obtain the weights from
a quantifier for n = 5 agents.

determine the group support for the contract. For each con-
tract in the mesh the argument of this OWA aggregation
is the degree of support for that contract by each of the
agents, Si(z% (k)), ¢ = 1,...,n. Thus, the process used in
the quantifier guided aggregation is as follows:

1. Use @ to generate a set of OWA weights, w1, ..., wn,.

2. For each contract z% (k) in x1°(k) calculate the overall
group support G(z% (k)) = M (S1(x% (k)), ...

The procedure used for generating the weights from the
quantifier is to divide the unit interval into n equally spaced
intervals and then to compute the length of the mapped
intervals using

wt:Q(ﬁ)—Q(%)fort:L...,n.

Because of the nondecreasing nature of @ it follows that
wy > 0. Furthermore from the regularity of @, Q(1) = 1
and Q(0) = 0, it follows that >, w; = 1. Thus we can see
that the weights generated are an acceptable class of OWA
weights.

In Figure 2 we show an example of a RIM linguistic quan-
tifier and illustrate the process of determining the weights
from the quantifier. We see that the weights depend on the
number of agents as well as the form of ). In Figure 3 we
show the functional form for the quantifiers all, any, Q., Q™,
at least o percent, linear quantifier, piecewise Q)z, and piece-
wise Qz,. The quantifiers all, any and at least o describe
the consensus policy using a natural language verbal descrip-
tion. However, more generally any function @ : [0, 1] — [0, 1]
such that Q(z) > Q(y) forz >y, Q(1) = 1 and Q(0) = 0 can
be seen to be an appropriate form for generating mediation
rules or consensus policies. Thus there are two techniques
to generating these quantifier based mediation rules. One
possibility is to start with a linguistic expression and then
obtain ). The second approach is to allow the mediation
rule to be directly expressed in terms of a function Q. One

s Sn (2% (K))).
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Figure 3: Functional form of typical quantifiers: all,
any, at least, linear, piecewise linear (Jz, and piece-
wise linear @)z, .

important characteristic of this second method is that we
can easily introduce into our mediation a number of formal
properties that are not very easily expressed using a verbal
description of the quantifier. The linear quantifier Q(y) = y
for instance generates w; = 1/n, and thus, all the agents get
the same weight. The Qz, quantifier it is required that at
least 0 agents are satisfied to initiate a @ linear improve-
ment. @z, initiates the @ linear improvement with the first
satisfied agent, and once there are o agents satisfied there
is no improvement in @ if more agents are satisfied.

One feature which distinguishes the different types of medi-
ation rules is the power of an individual agent to eliminate
an alternative. For example, in the case of all this power is
complete. In order to capture this idea the Value Of Indi-
vidual Disapproval (VOID)

VOID(Q) =1 — /O ' Q(y)dy

measures this power. For the all, any, at least a and linear
quantifiers the VOID measures are respectively 1, 0, o and
0.5. For the Qz, quantifier VOID(Qz,) = % + g) and

therefore VOID(Qz,) € [0.5,1]. The Qz, quantifier gets
VOID(Qz,) = & and VOID(Qz,) € [0,0.5].

Another family of quantifiers are those defined by Q,(y) =
yP? for p > 0. In this case VOID(Q,) =1 — fol rPdr = B
For this quantifier we can easily obtain the OWA Welghts

with
w=|—) —[——
n n

For @, we see that as p increases we get closer to the min
and that as p gets closer to zero we get the max.

4. THE SEARCH PROCESS

The search process is based on a mechanism whereby the
mediator decides if to generate a new mesh in order to con-
tinue with a new negotiation round, or if to finish the negoti-
ation process. This process starts just after any aggregation
of preferences process, when the mediator has determined
the group preferred contract z°* (k). The relevant informa-
tion available to the mediator at this point is at least the

group preference G(z*°(k)), the preferred contract z¢* (k),
the current step-length A, and the current round number
k. With this information, the mediator has to select among
three possible alternatives:

1. Move to the group preferred contract z(k+1) = z** (k)
in £ (k) and expand the mesh by a factor of two
Ak+1 - 2 . Ak

2. Keep the current contract z(k + 1) = (k) and reduce
by half the mesh step-length Ar11 = Ag/2.

3. Finish the negotiation process.

For this paper we will assume what we call the Standard
Search Process which selects among the mentioned alterna-
tives as follows.

The mediator selects alternative 1 if the preferred contract
is in =7 (k), i.e., 2°* (k) € x7 (k). If the preferred contract
is z(k) then the mediator selects alternative 2. Finally, we
define two stopping rules, one which bounds the maximum
number of rounds K.q., and a second one which stops ne-
gotiation when the step-length Ay is below a predefined
threshold v. We assume that in both cases the agreement
reached is the preferred group contract in the last negotia-
tion round.

4.1 Preferred Contract Selection in the Search

Process
Here are described in detail the mechanisms used to select
the preferred contract. The point of departure is the set of
final group preferences for the contracts in z°(k) at round
k. We propose a probabilistic selection process to select the
winner contract in the mesh at a round k. We associate with
each contract x% (k) € z1°(k) a probability

Gz (k)

PO = 5 e e

The process selects the winner contract using a biased ran-
dom experiment with these probabilities. The parameter
o > 0 works as an indication of the significance we give to
the final group preferences. If o — oo we select the contract
with the maximum support, which means that the media-
tor is given the higher significance to the group preferences.
If 0 = 1 then the probability of selecting z%/ (x) would be
proportional to its group support. The rationale behind us-
ing this probabilistic process is to introduce randomness and
avoid local optima in the following way.

With G the mediator is able to select a contract within the
mesh. However, this selection is based on a relative mea-
surement and it is not considering how good is the selection
made. The mediator must consider both the G value and the
relative values to make the decision of expansion and con-
traction. Thus, we make o vary as a function of G and the
number of rounds k. If G is high, ¢ must be high, favouring
a deterministic mesh movement, i.e. with a high probability
the contract with a higher G is selected. Otherwise, if G is
low, o0 must be low to induce randomness and avoid local
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Figure 4: Evolution of o(k,G) for kmaez = 50, a = 6,
Omaz = 200 and omin = 1.

optima. More specifically, for ¢ = 0 the selection of con-
tracts is equiprobable, making such selection independent
of G. For o0 = 1 the selection probability is proportional to
G. Higher values for o increases the probability of choosing
the contract with a higher G. To control o we define
k

U(k7 G) = Omin + (Umaz - Jmin) ' G(17m>ﬂ
where o depends on the negotiation round k, the maximum
number of rounds ke and G. The function is bounded by
Omaz a0d Opmin given G = 0 and G = 1 respectively. The
parameter a > 0 determines the curvature of o(k,G). As
the number of rounds k increases, the function increases its
concaveness, which means that G induces higher values for
o, favouring convergence. Figure 77 shows the evolution of
o(k,G) for kmaz =50, & = 6, Omaez = 200 and omin = 1.
The principle of this approach is analogous to the simulated
annealing technique without reannealing. We can also intro-
duce reannealing for kr < Kkmaz such that k/kmaz converts
into —R=kr__

kmaxz—kr "

S. EXPERIMENTAL EVALUATION

In this section, we test our negotiation framework and show
that the mechanisms proposed provide the mediator the
tools to efficiently conduct multiagent negotiations by con-
sidering different consensus policies.

In the experimental setup, without loosing generality, we
have considered 7 agents, 2 issues and 2 different types of
negotiation spaces: a negotiation space where agents’ util-
ity functions are strategically built to define a proof of con-
cept negotiation scenario, and a complexr negotiation sce-
nario where utility functions exhibit a more complex struc-
ture. In both cases utility functions are built using an aggre-
gation of Bell functions. This type of utility functions cap-
ture the intuition that agents’ utilities for a contract usually
decline gradually with distance from their ideal contract.
Bell functions are ideally suited to model, for instance, spa-
tial and temporal preferences [14, 11]. In addition, they
provide with the capability of configurating different nego-
tiation scenarios in terms of different complexity degrees.

) Bl
m“‘m
M‘ft‘“‘\‘“ ot

9%

i
60 //,,,/l,
4

40 ‘%“““t‘\‘“ - 100

20

Figure 5: Utility functions for the proof of concept
negotiation scenario.

DEerFINITION 5.1. A Bell is defined by a center ¢, height
h, and a radius r. Let || s — c || be the euclidean distance
from the center ¢ to a contract s, then the Bell function is
defined as

h— 2nle=gl’ if |s—cll<r/2,
Z(ls—cl -r)? ifr>|s—cl>r/2,
0 Is—cll>r

foell(s,c,h,r) =

and the Bell utility function as

nb

Us,s(s) = > _fbell(s, cs, hi,ri),

K3

where nb is the number of generated bells. The complexity
of the negotiation space can be modulated by varying c;, hi,
ri and nb.

In the proof of concept negotiation scenario each agent has
a utility function with a single optimum. Figure 5 shows
in the same graph the agents’ utility functions in the bidi-
mensional negotiation space [0,100]?. In this scenario four
agents (Agent 1, 2, 3, 4) are in weak opposition (i.e. their
preferences are quite similar), Agents 6 and 7 are in weak
opposition and in very strong opposition with respect the
other agents, and Agent 5 is in very strong opposition with
respect the rest of the agents. In the complex negotiation
scenario each agent’s utility function is generated using two
randomly located bells. The radius and height of each bell
are randomly distributed within the ranges r; € [20, 35] and
h; = [0.1,1]. Figure 6 shows the utility functions generated
for each agent in this second case.

The configuration of parameters in the mediator is: kmaz =
50 rounds, mesh tolerance le — 6, and a = 2, omin = 1,
Omaz = 200 for the preferred contract selection process.
Previous experiments have confirmed that these parameter
values perform well under most negotiation scenarios.

We tested the performance of the protocol under the proof
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Figure 6: Utility functions for the complex negotia-
tion scenario.

of concept and complex negotiation scenarios for 5 different
consensus policies defined by the corresponding VOIDNESS
degrees: 0, 0.25, 0.5, 0.75 and 0.95, using the quantifier
Qp(y) = y*. We also define a contrast experiment where
the consensus policy based mediation process is deactivated,
such that the mediator uses the pattern search based process
but there is no randomness and the group preference eval-
uation is limited to compute the sum of agents’ valuations
for a given contract (i.e. the winner contract is that with
the highest sum of valuations).This experiment uses also 50
rounds and a mesh tolerance le — 6.

Each experiment consist of 100 negotiations where we cap-
ture the utilities achieved by each agent. To analyze the
results we first build a 7 agents x 100 negotiations utility ma-
trix where each row provides each agent’s utilities and each
column is a negotiation. The matrix is then reorganized
such that each column is individually sorted from higher to
lower utility values. Note that after this transformation the
association row/particular-agent disappears. Given the ma-
trix, we form 7 different utility groups: a first group named
group level 1 where we take the highest utility from each
negotiation (i.e. the first row), a second group named group
level 2 with the two first rows and so on. In order to show
the performance of the protocol we have used the Kaplan-
Meier estimate of the cumulative distribution function (cdf)
of agents’ utilities for each group. Thus, we compute the
cdf for the highest utilities, for the two highest utilities and
so on. The cdf estimates the probability of finding agent’s
utilities below a certain value. The rationale behind using
grouping in the analysis is to evaluate the ability of the pro-
tocol to find solutions which satisfy groups of agents.

In the proof of concept scenario (see Figure 5) it can be seen
that when a quorum is needed, the best alternative is to
get satisfied agents 1, 2, 3 and 4. If it is enough to have
one agent satisfied, any of the utility peaks would be a good
solution. In Figure 7 we show the results for the proof of
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Figure 7: Cumulative distributions of utilities for
the proof of concept scenario.

concept scenario. Each line shows the cdf for a group level
and the number above each line identifies the correspond-
ing level. For instance, for the reference experiment and
the group level 1 there is approximately a 98% probability
of having agents with a utility 0.7, and a 2% probability
of having agents with utility 0. In the group level 7 case,
there is a 50% probability of having agents with utility 0.7,
and a 50% probability of having agents with utility 0. For a
VOIDNESS=0 and group level 1, however, the probability
of having agents with a utility 1 is around 98%, which means
that the mediator is applying efficiently the consensus pol-
icy which states that it is good enough to have one agent
satisfied. As VOIDNESS increases (i.e. as it is necessary
to have more agents satisfied) the cdf for group level 1 per-
forms worse, though better than in the reference scenario,
and for higher group levels the performance increases.

In Figure 8 are shown the results for the complex negotiation
scenario. Here we can also see how as VOIDNESS increases,
the mediator biases the search for agreements where more
agents are satisfied at the expense of not having individ-
ual agents highly satisfied. Globally, the results show that
the proposed mechanisms are able to focus the negotiation
process in terms of consensus policies and to obtain bet-
ter results than when using a classical welfare maximization
approach.

6. CONCLUSION

The main hypothesis of our work is that the consensus type
by which an agreement meets in some specific manner the
concerns of all the negotiators should be considered in the
construction of multiparty negotiation protocols. We argue
that there exist situations where an unanimous agreement
is not possible or simply the rules imposed by the system
may not seek such unanimous agreement. Thus, we develop
a consensus policy based mediation framework to perform
multiparty negotiations. The mediation mechanisms pro-
posed to perform the exploration of negotiation space in the
multiparty negotiation setting are derived from the General-
ized Pattern Search non-linear optimization technique. The
exploration performed in the mediator is guided by the ag-
gregation of the agent preferences on the set of alternatives
the mediator proposes in each negotiation round. The medi-
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Figure 8: Cumulative distributions of utilities for
the complex negotiation scenario.

ation rules at the mediator may take the form of a linguistic
description of the type of agreements needed. We showed
empirically that CPMF efficiently manages negotiations fol-
lowing predefined consensus policies and solves situations
where unanimous agreements are not viable.

We believe that the negotiation framework presented opens
the door to a new set of negotiation algorithms where con-
sensus criteria will play an important role. However, the
strategical issue remains opened. We have assumed that
agents reveal their true valuations. It is expected that the
performance of the protocol deviates from the optimal if
agents act strategically. Thus, the strategy issue needs to
be evaluated, and mechanisms need to be implemented to
avoid or mitigate the incentive compatibility problem.
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ABSTRACT

There is a number of recent research lines addressing auto-
mated complex negotiations. Most of them focus on over-
coming the problems imposed by the complexity of nego-
tiation scenarios which are computationally intractable, be
it by approximating these complex scenarios with simpler
ones, or developing heuristic mechanisms to explore more
efficiently the solution space. The problem with these mech-
anisms is that their evaluation is usually restricted to very
specific negotiation scenarios, which makes very difficult to
compare different approaches, to re-use concepts from pre-
vious mechanisms to create new ones or to generalize mech-
anisms to other scenarios. This makes the different research
lines in automated negotiation to progress in an isolated
manner. A solution to this recurring problem might be to
create a collection of negotiation scenarios which may be
used to benchmark different negotiation approaches. This
paper aims to fill this gap by providing a framework for the
characterization and generation of negotiation scenarios in-
tended to address this problem, facilitating in this way that
researchers compare and share their advancements. Experi-
ments show how the proposed framework is able to generate
scenarios which can be effectively used to compare the per-
formance of different negotiation approaches.
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1. INTRODUCTION

Automated negotiation provides an important mechanism
to reach agreements among distributed decision makers [12,
13]. It has been extensively studied from the perspective
of e-commerce, though it can be seen from a more general
perspective as a paradigm to solve coordination and cooper-
ation problems in complex systems, providing a mechanism
for autonomous agents to reach agreements on, e.g., task
allocation, resource sharing, or surplus division.

A variety of negotiation models have been proposed, yielding
promising results in a wide range of negotiation problems [4].
However, most of these approaches are evaluated for negotia-
tion scenarios meeting very specific requirements. Given the
vast variety of negotiation problems, a recurrent challenge
automated negotiation researches have to face is how to jus-
tify the models and mechanisms they propose are suitable to
solve or model different problems, or how to compare their
approaches and methods with the ones of other researchers.
In the best cases, there are a few number of previous works
similar enough to the new proposal to make a comparison.
In most cases, however, this comparison is not possible due
to the diversity of scenarios the different research groups deal
with, so the different research lines progress in an isolated
manner. In addition, though there exist multiple surveys
about negotiation in the literature [10, 1], they are more in-
tended to classify the different approaches (mediated, non-
mediated, one-shot, iterative...) than to describe or classify
the different negotiation problems.

On the contrary, our research focuses on the properties of the
negotiation scenario regardless of the approach which may
later be used to address it. What we intend is to be able to
measure a set of properties of a given negotiation scenario,
and to be able to generate negotiation scenarios which have
desired values on those properties. The need to have negoti-
ation scenario testbeds to provide reproductivity and coher-
ence to works from different authors has been acknowledged
in multiple occasions [8], and there exist some generators
and testbeds which allow to standardize the scenarios to a
certain extent, though they usually focus on specific nego-
tiation protocols [15] or specific preference representations
[6]. In addition, they usually generate scenarios according
to low-level properties (e.g. weights for the different issues



in a linear additive model, number and width of constraints
in a weighted constraints model...) rather than high-level,
meaningful scenario properties, such as the structure of the
agent utility functions (i.e. autocorrelation, epistasis) or the
relationships between the utility functions of the different
agents (e.g. shape of the Pareto front).

Our aim in this line is to provide a framework which allows
to characterize and generate negotiation scenarios accord-
ing to high-level properties. The benefit of using such a
framework would be twofold. On one hand, it would al-
low to make it easier to test negotiation mechanisms in a
much wider range of scenarios, as well as to compare differ-
ent approaches in the same scenarios. On the other hand,
it would facilitate the creation, by the research community,
of a database of negotiation approaches and scenarios ac-
cording to these high-level properties. In this way, it would
be easier to find out which negotiation mechanisms work
better for the different subsets of the negotiation problem
space. Finally, this would open the door to the rigorous
assessment of the applicability of negotiation approaches to
real-world problems. For a given real negotiation problem,
we could measure the high-level properties of the scenario
and use them to find in the database the negotiation ap-
proach which performs better for scenarios matching these
properties. In this paper we intend to contribute to this goal
in the following ways:

e We provide a set of tools which allow to measure high-
level properties of a negotiation scenario. This include
both structural properties of the agents’ utility func-
tions and properties derived from the relationship be-
tween the different utility functions (Section 2).

e We propose a negotiation scenario generator which
considers the properties outlined above (Section 3).
It is based on building utility functions as aggrega-
tions of hyper-volumes, and on sharing hyper-volumes
among agent utility functions to model zones of po-
tential agreement (or disagreement). This allows us to
model scenario complexity in two orthogonal dimen-
sions: the scarcity of mutually acceptable solutions
and the difficulty to locate these solutions in the con-
tract space.

A set of experiments have been performed to validate our
generator and to asses the possibilities it may bring to the re-
search community on automated negotiation. These exper-
iments are described in Section 4, along with the discussion
of the results obtained. Finally, the last section summarizes
our contributions and sheds light on some future research.

2. CHARACTERIZING NEGOTIATION SCE-

NARIOS

As we have stated before, our aim is to be able to character-
ize negotiation scenarios using high-level properties. To do
this, we should first define what we understand as negotia-
tion scenarios. Different authors agree that there are three
key components in a negotiation model [10]: an interaction
protocol which defines the rules of encounter among the ne-
gotiating agents, a set of decision mechanisms and strategies
which govern agents’ decision making, and the preference
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sets of the different agents which allow them to assess the
different solutions in terms of gain or utility and to compare
them. From this three components, we can easily see that
both the interaction protocol and the decision mechanisms
and strategies are more related to the way the model solves
the negotiation problem than to the negotiation problem
itself. Therefore, in the following we characterize a nego-
tiation scenario according to the preferences of the agents
taking part in the negotiation.

2.1 Agent preferences in negotiation scenar-
ios
From the decision theory perspective, preferences express
the absolute or relative satisfaction for an individual about a
particular choice among different options. In [2], agent pref-
erence structures are classified in four broad families: binary,
ordinal, cardinal and fuzzy preference structures. Among
these families, cardinal preference structures are probably
the most widely used in automated negotiations, and are
the ones we will be focusing in in the following. In particu-
lar, it is usual to define agent preferences by means of utility
functions.

Formally, for a given multi-attribute domain (X, D, Ag,U),
the wtility function for each agent j € Ag is defined as

U’ :D R,

assigning to each possible combination of values in X or deal
s={sili =1,...,n; s € d;} areal number, which represents
the utility that deal s yields for agent j.

There are vastly different utility functions in the negotia-
tion literature. Monotonic negotiation scenarios are usually
modelled simulated with Constant Elasticity of Substitution
(CES) utility function [18], which are widely used in eco-
nomics as production functions, and in consumer theory as
utility functions. An example of a CES utility function for
a utility space of n issues could be

Uls) = Qo-mi)"",

where s = (z1,%2,...,%n) is a contract and z; the ith issue,
«; is the share parameter for issue i, and [ is the elasticity
of substitution parameter. An interesting property of CES
utility functions is that they also model linear utility spaces
if we set the elasticity parameter to 1.

To represent non-monotonic utility spaces, we can use for in-
stance k-additive utility functions [7]. Another widely used
way to represent preferences and utility functions is the use
of constraints over the values of the attributes. A particu-
lar case of constraint-based utility representation which has
been used to model complex utility spaces for negotiation
are weighted constraints [9]. There is a utility value for each
constraint, and the total utility is defined as the sum of the
utilities of all satisfied constraints. More formally, the util-
ity space of the agents may be defined as a set of constraints
C = {cklk = 1,...,1}. Each constraint ¢, has an associated
utility value u(ck). If we note as s € z(ci) the fact that a
given contract s = {s;|i = 1,...,n} is in the set of contracts
that satisfy constraint ci, an agent’s utility for contract s



may be defined as

u(s) = Z

cpeClscx(cy)

U(Ck),

that is, the sum of the utility values of all constraints satis-
fied by s. This kind of utility functions produces nonlinear
utility spaces, with high points where many constraints are
satisfied, and lower regions where few or no constraints are
satisfied. Due to the hypercube shape of the constraints, the
utility functions defined in this way are discontinuous.

An example of a utility representation for continuous, non-
monotonic utility spaces can be found in [16]. Here the
authors model the utility space of an agent as a sum of bell-
shaped functions of the form

h—2h”s:—§u2 if ||s—cll<r/2,
foell(s,c, h,r) = 3—’;(” s—c| =r)? ifr>|s—c|>r/2,
0 |s=c|>r

so that the utility function is
nb
U(s) = Z:fbell(s7 CiyhiyTi)

where, ¢;, h; and r;] are the parameters defining each bell,
and nb is the number of bells in the utility functions.

In [19] utility graphs are used to model issue interdepen-
dencies for binary-valued issues. Utility graphs are used to
decompose highly non-linear utility functions in sub-utilities
of clusters of inter-related items. In a different way, in [22]
the concept of hierarchical negotiation problems is intro-
duced. Hierarchical negotiation problems are those in which
the problem domain can be structured in layers, with dif-
ferent issues being relevant for the different layers. In this
way, a negotiation problem involving a high number of inter-
dependent issues may be addressed hierarchically, exploring
only a subset of the issues at each layer of the hierarchy. In
this way, the internal structure that domain elements have
for many real-world negotiation problems could be exploited
to allow for a more efficient search for solutions. Here we
do not have a single utility function, but a hierarchical tree
of utility, where at each layer a function on a subset of the
issues allows to decide which is the relevant branch to select
in the lower levels of the hierarchy.

The above is just a brief review of a selection of the different
kinds of preference representations used in the most relevant
works in the field. From the formulations and descriptions
we can see the inherent difficulty for the direct compari-
son of approaches which are intended to work in different
kinds of scenarios, and for determining which of the exist-
ing approaches would be most effective to address a new
scenario. We can wonder, for instance, whether the pro-
tocols proven successful for constraint-based utility spaces
could be applied, for instance, to hierarchical negotiation
scenarios, or whether protocols intended to work with bell
utility functions could be applied, with some modifications,
to CES-based utility spaces. However, direct comparison of
the approaches is often very difficult (if not unfeasible) due
to the important differences between the scenarios. Even if
a given negotiation mechanism could be applied to two dif-
ferent negotiation scenarios, it is very difficult to establish
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equivalencies between them, due to the vast differences be-
tween the settings of the different scenarios. For instance,
[9] describes experiments for a negotiation scenario involving
constraint-based utility space, where there are constraints
with widths drawn uniformly from the interval [3,7] (in a
domain [0,9]). If we move onto a bell-based utility spaces,
now we need to define it in terms of bell radii and heights.
Which values would yield a utility function of similar com-
plexity? We believe that such comparison of approaches
could be made possible if there existed a framework for the
characterization of negotiation scenarios according to a set
of common properties. This is what we aim to provide in
the following section.

2.2 High-level propertiesof negotiation scenar
i0S

We have defined a negotiation scenario as a set of agent
utility functions. Therefore, to characterize a given scenario
we have to look at these utility functions and the relation-
ships between them. The most immediate approach is to
study its structural properties like the structural properties
of a fitness landscape which are interesting regarding search
complexity within the space, such as modality, ruggedness,
smoothness and neutrality [20]. Most of the approaches we
can find in the literature are based on the correlation be-
tween different samples of the fitness function f. A metric
which is easy to compute in most scenarios and allows to
make quantitative evaluations about the complexity of a fit-
ness or utility landscape is correlation length or correlation
distance. Correlation distance is defined as the minimum
distance 1 which makes correlation fall below a given thresh-
old (usually 0.5), which gives an idea of the distance we can
move throughout the solution space while keeping a certain
correlation between samples [17].

A property which is usually related to negotiation complex-
ity is issue interdependency. Negotiations with multiple, in-
terdependent issues are assumed to be harder than those
involving independent issues [11]. There are some recent
works suggesting to assess the degree of interdependency be-
tween issues in order to modify the negotiation strategy ac-
cordingly (e.g. by negotiating separately those issues which
are less interdependent). However, in most cases issue in-
terdependency is measured in an ad-hoc manner, usually
restricted to the kind of utility representation used [19, 5].
Here we propose a measure based on information theory,
analogous to the epistasis measure described in [21] for evo-
lutionary computation:

I(;U)+I(5;U . .
€ij = : I(EJ;[SJ) b -1 if 1(i,5;U) #0
’ 0 otherwise

where I(4;U) and I(j; U) are the amount of information that
each issue ¢ and j reveals about the value of the utility func-
tion U, and (¢, j; U) is the amount of information both issues
reveal about the value of U.

Another aspect which may be studied is the point distri-
bution in utility space diagrams. These diagrams represent
the utilities achieved by the different agents participating in
the negotiation for each analyzed solution, allowing for in-
stance to assess the distance of a solution from the Pareto
front, which is used in many works as an evaluation metric



for negotiation mechanisms. However, to our knowledge no
authors have tried to generate negotiation scenarios from ar-
bitrary distributions of points in the utility diagrams, while
this distribution may have a great impact on the complexity
of a negotiation scenario. Intuitively, a negotiation will be
easier as the ratio of mutable acceptable solutions against
total potential solution in high, and will be more difficult
in the opposite case. The same is true with negotiation
efficiently and the ratio of solutions near the Pareto front.
Finally, the very shape of the Pareto front may affect signifi-
cantly the properties of the negotiation scenario, or even the
way to analyze it. For the purpose of assessing the complex-
ity of a given scenario, however, it is not enough to know
if there exist solutions which yield a given set of utilities
to the different agents. With the same utility diagram, a
scenario where an 80% of the solutions are both mutually
acceptable and are in the Pareto front would probably be
much less challenging for a negotiation mechanisms than one
with only a 10% of Pareto-efficient, mutually acceptable so-
lutions. Therefore, we have to consider also the number (or
ratio) of solutions corresponding to each point in the utility
diagram. Taking this into account, we extend the concept
of utility diagrams to utility histograms H (), where @ is
a vector of utility values for the different agents, and the
histogram value at @ represents the number of potential so-
lutions which yield that combination of utility values for the
agents. From these utility histogram we can easily derive
properties like the ratio of mutually accepted solutions and
the ratio of Pareto-efficient solutions.

3. A SCENARIO GENERATOR FOR COM-
PLEX AUTOMATED NEGOTIATIONS

The scenario generation tool we propose in this paper in-
tends to take into account both the structural properties
of the agent utility functions and the relationships between
the utility functions of the different agents. In the follow-
ing, we first describe a parametric mechanism to generate
utility functions, and then an approach to control the rela-
tionship between the utility functions in a scenario through
the utility diagram of the scenario.

3.1 Generation of Utility Functions by means
of Hypervolumes

We aim to build a generator able to create utility functions
which allow to test most of the negotiation approaches we
can find so far. This is a rather ambitious goal, since, as we
have seen, there are many different types of utility functions
used in the negotiation literature. For the purposes of this
work, we will restrict ourselves to cardinal utility functions,
where contracts are mapped to real numbers which corre-
spond to the utility values they yield. Note that cardinal
utility functions may be used to represent ordinal prefer-
ences too, by restricting the range of the utility values to
natural numbers.

Under this assumption, we can get a fully expressive repre-
sentation of utility functions by aggregating hypervolumes.
We define a hypervolume as a constrained cardinal function,
where by constrained we mean that there may be constraints
regarding when this cardinal function contributes to the util-
ity value of the overall utility function. For instance, we can
have a cardinal function C1(Z) = 5, which is constrained so
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Figure 1: Generation of utility spaces with weighted aggre-
gation of hypervolumes.

that it only applies for T € S1, where S is a given subset or
region of the solution space S. In this way, we can use hy-
pervolume C as a weighted constraint. In a similar way, if
we wanted to generate a linear utility function, we could use
a hypervolume defined as a hyperplane, constrained so that
it covers all the domain. Our scenario generator currently
supports constant, cone, bell and CES cardinal functions
as hypervolumes, though it has been designed so that new
categories of hypervolumes may be added if needed.

Apart from adding hypervolumes to the utility function, we
need to be able to define the aggregation operators we use
to compute the overall agent utility from the hypervolumes.
The generator covers a wide range of simple aggregation
operators, like weighted sum (and average), maximum or
minimum. Figure 1 shows three examples of utility func-
tions generated using different kinds of hypervolumes and a
weighted sum aggregation.

Finally, hypervolumes are defined to depend on a set of pa-
rameters (e.g. width, height, aspect ratio...), so that they
may be varied to control the properties of the resulting util-
ity functions. Though the generator API allows to have
complete control over all the parameters, sometimes it is
preferred to specify more wide-sense requirements for the
generated utility functions. In order to do this, we provide
sample templates which receive a set of higher-level param-
eters and generate utility functions from them.
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For instance, we provide a template which allows to generate
utility functions based on weighted hypercubes by specify-
ing probability distributions on the width, height and place-
ment of the hypercubes, along with the issue interdependen-
cies. The template works as shown in Algorithm 1. Vector
L= {lm |m =1,...,m>  lm = l} controls the dependen-
cies between issues, determining the number [, of m-ary
constraints generated (1). Each m-ary constraint is first
generated as a region R placed at the origin. The length
for each one of the m intervals I which comprise the con-
straint is generated by means of a probability distribution
dist_length (2). Different probability distributions may be
used to generate these interval length values, like for in-
stance a uniform distribution in the interval [Wmin, Wmaz].
In this way, we can control in a parametric way the correla-
tion length of the generated utility space. Once the different
intervals I have been generated, each interval is mapped
to one of the n issues in the negotiation domain using a
probabilistic correspondence map_intervals (3). This cor-
respondence allows to control the degree of interdependency
between the different issues. Finally, the generated region
is moved throughout the utility space using a movement
vector 0 generated by means of a multidimensional prob-
ability distribution dist_move (4). Again, different prob-
ability functions may be used for the distribution of the
constraints throughout the agent utility space. The func-
tion restrict_domain truncates the moved regions to bound
them to the domain D (5). Finally, the weights associated
to the constraints are also assigned with a probability distri-
bution dist_weight (6), which can be a function of different
parameters, like constraint dimension or volume, thus al-
lowing to model different situations, like the fact that more
specific constraints have more utility, which is usually the
case in real scenarios.

Algorithm 1: Template for the generation of utility spaces
based on weighted hypercubes

Input:
n: number of issues in the utility space
D: utility space domain
L={lm|m=1,...,n;3%,, lm =1}: vector to control the distribution of
hypercube dimensions
dist_length(...): probability distribution function for the generation of the
intervals If?
map_intervals(...): probabilistic correspondence function to map intervals
to issues
dist_mowve(. ..): probability distribution function for the distribution of
hypercubes throughout the utility space
dist_weight(. ..): probability distribution function for the weights associated
to the hypercubes

Output:
C': constraint set
Q: set of weights associated to the constraints

C = o;
Q= o;
foreach ly, € L do
k = 0;
while k < Iy, do
R = o;
d = 0;
while d < m do
1? = dist_length(...);
R=RUIE
d=d+1;
end
R’ = map_intervals(R, ...);
§ = dist-move(. ..);
¢ = restrict_.domain(R’ 4+ §, D);
C =CUc;
w = dist_weight(. ..);
Q=QUuw;
k=k+1;
end
end

This template allows, for instance, to control the correla-
tion length of the utility spaces depending on the distribu-
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lation lengths.

tions used by the generator and the distribution parameters
set. In particular, using a normal distribution of widths
with mean ., and using uniform probability distributions
for interval generation, issue mapping and constraint dis-
tribution through the utility space standard deviation o,
yields an approximate correlation distance ¥o.7 = pw + ow
for a threshold 0.7. Figure 2 shows constraint-based utility
spaces generated in this way.

The generation of utility functions by means of aggregation
of hypervolumes provides a flexible and expressive way to
model different kind of agent preferences, and allows to con-
trol to a great extent the complexity of finding high utility
regions within the utility space of an agents (by controlling,
for instance, correlation length). The complexity of the in-
dividual agent utility functions, however, does not fully ac-
count for the complexity of the scenario. We may have, for
instance, scenarios where agents may find very difficult to
determine their high utility regions, but where once these re-
gions have been found agreements are fairly straightforward,
because high utility regions for the different agents coincide.
On the other hand, we may have smooth utility functions
for the agent which make very easy to locate high utility
regions, but the negotiation may still be complex because
mutually acceptable regions are hard to find. A mechanism
to take into account the relationships between the utility
functions of the different agents is described in the following
section.



3.2 Generating negotiation scenariosfrom util-
ity diagrams

As we stated above, utility diagrams are usually used to
characterize negotiation scenarios, since they provide a graph-
ical way to visualize the relationship between the potential
solutions to the negotiation problem and the utility values
these solutions would yield to the negotiation agents. Utility
diagrams are useful, for instance, to determine the existence
of mutually acceptable solutions (that is, solutions which
utilities are above the reservation values of all agents), or to
assess the relative efficiency of the solutions (that is, the dis-
tance from the solutions to the Pareto front). Finally, a wide
range of notions for optimal solutions (e.g. Nash solution,
Kalai-Smorodinsky, etc.) make use of the Pareto frontier.

What we propose here is to use these utility diagrams as
the input for scenario generation, so that we are able to
generate agent utility functions which match a given util-
ity histogram. In order to generate utility functions for a
given utility histogram, we propose to use shared hypervol-
umes. The idea behind shared hypervolumes is to include
similar hypervolumes in the utility functions of the differ-
ent agents, adjusting the parameters of the hypervolumes so
that they generate appropriate points within the utility his-
togram. For instance, if we want to generate utility functions
for a trivial utility histogram H (@) for two agents, where the
histogram value is v for @ = {a, b} and 0 otherwise, we could
achieve this by generating two utility functions which share
a hypercube of volume v, with weight a for the first agent
and weight b for the second. Of course, as the number of
points in the utility diagram increase, the complexity of the
generation process also increases, since we have to take into
account the effect of the intersection between shared hyper-
volumes. What we do is to generate a first approximation
of the utility functions by dividing the utility space in non-
overlapping regions and assigning shared hypervolumes to
each region, and then feed this first approximation of the
utility diagram to a nonlinear optimizer which tries to min-
imize the approximation error.

An important property of this scenario generation strategy
is that the shape and parameters of the shared hypervolumes
may be varied so that additional properties of the generated
functions are satisfied. For instance, we can vary the volume
of the shared hypervolumes to adjust the correlation length
of the utility functions. Figure 3 shows an example for two
agents and weighted hypercubes, where we have generated
two scenarios with identical utility diagrams and different
correlation lengths. The type of hypervolumes or the aggre-
gation operators used may be adjusted as well.

4. USING THE SCENARIO GENERATORTO

COMPARE OPTIMIZATION AND NEGO-
TIATION APPROACHES

We have seen that our generation tool is able to create ne-
gotiation scenarios according to high-level properties, such
as correlation length and the shape of the utility histogram.
However, the final purpose of the scenario generator is to
serve as a tool for the comparative analysis of negotiation
approaches. In this section we present a set of experiments
to validate its suitability for this purpose.
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4.1 Experimental Settings

There are two main aspects which define a comparative anal-
ysis of negotiation approaches. The first is the set of different
circumstances in which the approaches are evaluated, that
is, the range of negotiation scenarios used to test them. In
our case, this range of negotiation scenarios is given by the
different dimensions the generator is able to control:

o (Correlation distance, determined by the distribution
of hypervolume “widths” in the agent utility functions.
We have used correlation distances (relatives to the
width of the domain) 0.7 € {0.01, 0.05,0.1,0.5}.

e Shape of the Pareto front. We have generated scenarios
corresponding to Pareto fronts of the form us = (1 —
1
u1)?, with 8 € {0.25,0.5,1,2,4}. This accounts for
highly competitive scenarios, zero sum scenarios, and
scenarios where high joint gains are achievable.

e Ratio of solutions in the Pareto front. Since we gen-
erate scenarios according to a given utility histogram,
we can control how many solutions we allow to be in
the Pareto front. In this case, we have varied the ra-
tio of Pareto-efficient solutions in the range ppareto €
{0.01,0.05,0.1,0.2,0.5}.

e FEpistasis. This first version of the generator is not able
to generate specific values of epistasis while controlling
the other parameters as well. We can, however, control
it roughly by modifying the distribution among the dif-
ferent issues of the hypervolume widths (asymmetric
hypervolumes yield lower epistasis for the same volume
values). So we have defined highly-epistatic scenarios,
which are generated using symmetric hypervolumes,
and lowly-epistatic scenarios, generated using asym-
metric ones.

In this range of scenarios, we have tested three negotiation
approaches:

e Similarity-based Negotiation Protocol (SBNP), based
on the protocol proposed in [14], with a time-based
concession strategy as described in [3]. This approach
relies in the assumption of a monotonic.

e Region-based Negotiation Protocol (RBNP), as described
in [16], which is designed for non-monotonic utility
spaces.

e Complete information (CI): The complete agent’s util-
ity functions were passed to a multiobjective nonlinear
optimizer based on genetic algorithms.

For each combination of scenario generation parameters, 10
different sets of utility functions were generated, and 10 ne-
gotiations were run for each generated function using the
approaches under evaluation. The negotiation mechanisms
were configured with the default values described in the ref-
erenced works. The nonlinear optimizer for the CI approach
was allowed to run for the same time that the slowest of the
other approaches took to complete the negotiation.
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Figure 3: Scenarios with the same utility diagram and different correlation lengths.

Experiments were coded in MATLAB and run on a 2x3.2Ghz
Qad-Core Intel Xeon processor with 4Gb memory using Mac
OS X 10.5.4.

4.2 Experimental Results

Tables 1 and 2 show the result of the experiments for the
highly-epistatic scenarios for different values of the ratio of
Pareto efficient solutions ppareto. FEach table show’s the
average social welfare optimality rates for the different ap-
proaches under evaluation, which are easy to compute since
the maximum social welfare is known a priori (via the utility
diagram). In general, the CI approach clearly outperforms
the other ones, which is reasonable taking into account that
it is using complete information. The results obtained by the
genetic algorithm are in most cases close to the optimum re-
gardless to the values of the different scenario parameters.
However, as the ratio of Pareto-efficient solutions decrease,
a significant difference can be observed when varying corre-
lation distance and (3, with the difference in 8 being more
significant. This accounts for the fact that the crossover and
mutation operators we use are based on locality, and thus
for highly uncorrelated scenarios with few Pareto-efficient
solutions, it is harder for the algorithm to find them. Re-
garding RBNP and SBNP, we can see that, again, low ratios
of Pareto-efficient points make optimality values to decrease.
In this case, we can see that low 8 values make negotiations
fail, due to the fact that both approaches are driven by as-
piration values, and this parameter controls the amount of
potential solutions which fall above the aspiration value of
both agents. However, for high concentration of Pareto ef-
ficient solutions and high g values, the optimality of both
approaches tend to decrease for low values of the correla-
tion distance. This is because in this situation the ratio
of good solutions is high, but the low correlation distance
makes difficult for the mechanisms to search for the optimal
in an efficient manner, so solutions finally accepted are usu-
ally suboptimal. In contrast, in highly correlated scenarios,
this decrease of the optimality with beta is not observed. Fi-
nally, we can see that, while region-based negotiation works
better than similarity for lowly correlated scenarios, SBNP
outperforms RBNP in the highly correlated ones, due to
the fact that the aforementioned monotonicity assumption
holds. The results for lowly-epistatic scenarios are omitted,
since they did not change the general trends observed in the
highly-epistatic ones, besides rising optimality rates.
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Table 1: Optimality rates in highly epistatic scenarios with
PPareto = 0.05.

B
0.25 0.5 1 2 4
0.0000 0.0000 0.2150 0.3350 0.9050 SBNP
0.01 0.0000 0.0000 0.5550 0.6900 0.7950 RBNP
0.7207 0.7483 1.0000 0.9900 1.0000 CI
0.0000 0.3150 0.3750 0.5700 0.8450 SBNP
0.05 0.0000 0.4550 0.5300 0.7550 0.8400 RBNP

0.2207 0.9650 1.0000 1.0000 1.0000 CI
Y0.7 0.0000 0.1150 0.6200 0.7300 0.7150 SBNP
0.1 0.0000 0.5650 0.5950 0.8200 0.8800 RBNP
0.5586 0.9700 0.9750 1.0000 1.0000 CI
0.0000 0.1700 0.5800 0.8300 0.9800 BNP
0.5 0.0000 0.4400 0.6450 0.8800 0.9550 RBNP
0.6000 1.0000 0.9800 1.0000 1.0000 CI

Table 2: Optimality rates in highly epistatic scenarios with
PPareto = 0.2.

0.25 0.5 1 2 4
0.8280 0.9360 0.9310 0.0950 0.5250 SBNP
0.01 0.8200 0.9200 0.8862 0.5100 0.6850 RBNP
0.9880 0.9840 1.0000 1.0000 1.0000 CI
0.8400 0.7655 0.9862 0.1600 0.5700 SBNP
0.5 0.7120 0.8310 0.9241 0.5100 0.6550 RBNP
0.9600 0.9724 1.0000 1.0000 1.0000 CI
Y0.7 0.9040 0.8966 0.2000 0.3950 0.7350 SBNP

0.5 0.8000 0.8379 0.5000 0.5500 0.6850 RBNP
0.9840 0.9966 0.9550 1.0000 .0000 CI

1
0.8800 0.9207 0.2250 0.6289 0.6750 SBNP
0.5 0.9120 0.7655 0.4100 0.6477 0.6150 RBNP
0.9960 1.0000 1.0000 1.0000 1.0000 CI

5. CONCLUSIONSAND FUTURE WORK

One of the main problems in complex automated negoti-
ation research is the difficulty to compare approximations
from different authors, due to the vast diversity of scenarios
considered by the different research groups working in this
field. In this paper we present a framework for the charac-
terization and generation of negotiation scenarios, with the
aim to fill this gap. First, we provide a set of metrics to
measure high-level scenario parameters, taking into account
both the structural properties of the agent utility functions,
and the complexity due to the relationships between the
utility functions of the different agents. Then, we present a
framework to generate scenarios in a parametric and repro-
ducible way. The generator is based on the aggregation of
hypervolumes to generate utility functions, and on the use
of shared hypervolumes and nonlinear regression to generate
negotiation scenarios from utility diagrams.

Though the experiments performed with the scenario gener-
ator yield satisfactory results, there is still plenty of research



to be done in this area. We are interested in exploring new
metrics, like smoothness or neutrality, and to refine the con-
trol of the generator over the current ones (e.g. fine-grined
control of epistasis). We are interested in creating templates
for the generation of the most usual scenarios in the liter-
ature, and in performing an exhaustive comparison of the
most relevant related works in all those scenarios. Finally,
we are working on a community website where generated sce-
narios may be stored and searched for according to their pa-
rameters, and where users of the framework can contribute
to its ongoing development both with scenarios to add to
the library and with extensions to the framework code.
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ABSTRACT

Most real-world negotiation involves multiple interdepen-
dent issues, which makes an agent’s utility functions com-
plex. Traditional negotiation mechanisms, which were de-
signed for linear utilities, do not fare well in nonlinear con-
texts. One of the main challenges in developing effective
nonlinear negotiation protocols is scalability; it can be ex-
tremely difficult to find high-quality solutions when there
are many issues, due to computational intractability. One
reasonable approach to reducing computational cost, while
maintaining good quality outcomes, is to decompose the con-
tract space into several largely independent sub-spaces. In
this paper, we propose a method for decomposing a contract
space into sub-spaces based on the agent’s utility functions.
A mediator finds sub-contracts in each sub-space based on
votes from the agents, and combines the sub-contracts to
produce the final agreement. We demonstrate, experimen-
tally, that our protocol allows high-optimality outcomes with
greater scalability than previous efforts.

Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the method of decomposing the contract space into

several largely independent sub-spaces. We investigate whether

and how this approach can be applied to the method of de-
composing a contract space.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Multi-agent System

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-Issue Negotiation, Interdependent Issues, Multi-agent
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1. INTRODUCTION

Negotiation is an important aspect of daily life and repre-
sents an important topic in the field of multi-agent system
research. There has been extensive work in the area of au-
tomated negotiation; that is, where automated agents nego-
tiate with other agents in such contexts as e-commerce[13],
large-scale deliberation[20], collaborative design, and so on.
Many real-world negotiations are complex and involve inter-
dependent issues. When designers work together to design
a car, for example, the utility of a given carburetor choice is
highly dependent on which engine is chosen. The key impact
of such issue dependencies is that they create qualitatively
more complex utility functions, with multiple optima. There
has been an increasing interest in negotiation with multiple
interdependent issues. [9, 17, 21, 22, 24]. To date, however,
achieving high scalability in negotiations with multiple in-
terdependent issues remains an open problem.

We propose a new protocol in which a mediator tries to
reorganize a highly complex utility space with issue inter-
dependencies into several tractable subspaces, in order to
reduce the computational cost. We call these utility sub-
spaces “Issue groups.” First, the agents generate interdepen-
dency graphs which capture the relationships between the
issues in their individual utility functions, and derive issue
clusters from that. While others have discussed issue in-
terdependency in utility theory[26, 2], these efforts weren’t
aimed at efficiently decomposing the contract space. Sec-
ond, the mediator combines these issue clusters to identify
aggregate issue groups. Finally, the mediator uses a non-
linear optimization protocol to find sub-agreements for each
issue group based on votes from the agents, and combines
them to produce the final agreement.

We also address a negotiation between Exaggerator Agents.
Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the issue-grouping method. We investigate whether
this approach can be applied to the method of decomposing
a contract space.



The remainder of this paper is organized as follows. We de-
scribe a model of multiple interdependent issues negotiation
and the strength of interdependency between issues, and
the structure of interdependency graph. Next, we present a
clustering technique for finding issue sub-groups. We then
propose a protocol that uses this issue group information to
enable more scalable negotiations. We also describe the ef-
fect of Exaggerator Agents in multi-agent situations. We
present the experimental results, demonstrating that our
protocol produces more optimal outcomes than previous ef-
forts. Finally, we describe related work and present our
overall conclusions.

2. NEGOTIATION WITH NONLINEAR UTIL-

ITY FUNCTIONS
2.1 Multi-issue Negotiation Model
We consider the situation where N agents (a1,...,an) want

to reach an agreement with a mediator who manages the
negotiation from a man-in-the-middle position. There are M
issues (i1,...,im) to be negotiated. The number of issues
represents the number of dimensions in the utility space.
The issues are shared: all agents are potentially interested
in the values for all M issues. A contract is represented
by a vector of values § = (s1,...,$m). Each issue s; has a
value drawn from the domain of integers [0, X], i.e., s; €
{0,1,,.., XHI <j < M). 1.

An agent’s utility function, in our formulation, is described
in terms of constraints. There are [ constraints, ¢, € C.
Each constraint represents a volume in the contract space
with one or more dimensions and an associated utility value.
¢k has value wq (cx, §) if and only if it is satisfied by contract
8. Function d,(ck, ;) is a region of i; in ¢k, and dq(ck, ;) is
(0 if ¢ doesn’t have any relationship to ;. Every agent has
its own, typically unique, set of constraints.

An agent’s utility for contract § is defined as the sum of the
utility for all the constraints the contract satisfies, i.e., as
ua(8) = 3., cosea(e,) WalCr, §), where z(ck) is a set of pos-
sible contracts (solutions) of ¢;. This formulation produces
complex utility functions with high points where many con-
straints are satisfied and lower regions where few or no con-
straints are satisfied. Many real-world utility functions are
quite complex in this way, involving many issues as well as
higher-order (e.g. trinary and quaternary) constraints. This
represents a crucial departure from most previous efforts on
multi-issue negotiation, where contract utility has been cal-
culated as the weighted sum of the utilities for individual
issues, producing utility functions shaped like hyper-planes,
with a single optimum.

Figure 1 shows an example of a utility space generated via a
collection of binary constraints involving Issues 1 and 2. In
addition, the number of terms is two. The example, which
has a value of 55, holds if the value for Issue 1 is in the range
[3, 7] and the value for Issue 2 is in the range [4, 6]. The util-
ity function is highly nonlinear with many hills and valleys.
This constraint-based utility function representation allows

LA discrete domain can come arbitrarily close to a ‘real’ do-
main by increasing its size. As a practical matter, many
real-world issues that are theoretically 'real’ numbers (de-
livery date, cost) are discretized during negotiations.
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Utility Space

Utility Function Utility
Utility
55,
4 6
3/ 1.7 | | Issue2
T/
Issue 1 Issue 1

Issue 2

Figure 1: Example of a nonlinear utility space

us to capture the issue interdependencies common in real-
world negotiations. The constraint in Figure 1, for example,
captures the fact that a value of 4 is desirable for issue 1 if
issue 2 has the value 4, 5 or 6. Note, however, that this repre-
sentation is also capable of capturing linear utility functions
as a special case (they can be captured as a series of unary
constraints). A negotiation protocol for complex contracts
can, therefore, handle linear contract negotiations.

This formulation was described in [9]. In [17, 21, 22|, a
similar formulation is presented that supports a wider range
of constraint types.

The objective function for our protocol can be described as
follows:

argrn?xZua(é'). (1)

aceN

argm?xua(é'), (a=1,...,N). (2)

Our protocol, in other words, tries to find contracts that
maximize social welfare, i.e., the summed utilities for all
agents. Such contracts, by definition, will also be Pareto-
optimal. At the same time, all the agent try to find contracts
that maximize their own welfare.

3. OUR NEGOTIATION PROTOCOL.:

DECOMPOSING THE CONTRACT SPACE

It is of course theoretically possible to gather all of the indi-
vidual agents’ utility functions in one central place and then
find all optimal contracts using such well-known nonlinear
optimization techniques as simulated annealing or evolution-
ary algorithms. However, we do not employ such centralized
methods for negotiation purposes because we assume, as is
common in negotiation contexts, that agents prefer not to
share their utility functions with each other, in order to pre-
serve a competitive edge.

Our approach is described in the following sections.

3.1 Analyzing issue interdependency
The first step is for each agent to generate an interdepen-
dency graph by analyzing the issue interdependencies in its
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Interdependent relation
between issues

Issue 1

Figure 2: Interdependency Graph (50 issues)

own utility space. We define issue interdependency as fol-
lows. If there is a constraint between issue X (ix) and issue
Y (iy), then we assume ix and iy are interdependent. If,
for example, an agent has a binary constraint between issue
1 and issue 3, those issues are interdependent for that agent.

The strength of an issue interdependency is captured by the
interdependency rate. We define the interdependency rate
between two issues as the number of constraints that inter-
relate them. The interdependency rate between issue i; and
issue ij; for agent a is thus Dq(i5,15;) = #{ck|da(cr,i;) #

O A daler,ijs) # 0}

Agents capture their issue interdependency information in
the form of interdependency graphs i.e. weighted non-directed
graphs where a node represents an issue, an edge represents
the interdependency between issues, and the weight of an
edge represents the interdependency rate between those is-
sues. An interdependency graph is thus formally defined as:
G(P,E,w): P={1,2,...,|I|}(finite set),E C {{z,y}|z,y €
P} w:FE— R.

Figure 2 shows an example of an interdependency graph.

3.2 Grouping issues

In this step, the mediator employs breadth-first search to
combine the issue clusters submitted by each agent into a
consolidated set of issue groups. For example, if agent 1 sub-
mits the clusters {i1,i2}, {is, %4, %5}, {i0, %6} and agent 2 sub-
mits the clusters {i1,142,46}, {3,714}, {0}, {i5}, the mediator
combines them to produce the issue groups {io,%1,%2,%6},
{is,44,15}. In the worst case, if all the issue clusters sub-
mitted by the agents have overlapping issues, the mediator
generates the union of the clusters from all the agents. The
details of this algorithm are given in Algorithml.

It is possible to gather all of the agents’ interdependency
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Algorithm 1 Combine_IssueGroups(G)
Ag: A set of agents, G: A set of issue-groups of each agent

(G ={Go,G1,...,Gn}, a set of issue-groups from agent ¢ is G; =
{9i,019i,15 -+ Gi,m; })

1. SG:=Go,i:=1

2: while i < |Ag| do

3: SG =10

4 for s € SG do

5 for ¢;; € G; do

6: s i=sNgi;

7 if s’ # ¢ then

8: SG' :=sU Gi,j

9: end if

10: SG:=8G,i:=i+1
11: end for

12: end for

13: end while

graphs in one central place and then find the issue groups
using standard clustering techniques. However, it is hard to
determine the optimal number of issue groups or the cluster-
ing parameters in central clustering algorithms, because the
basis of clustering for every agent can be different. Our ap-
proach avoids these weaknesses by requiring that each agent
generates its own issue clusters. In our experiments, agents
did so using the well-known Girvan-Newman algorithm[18],
which computes clusters in weighted non-direct graphs. The
algorithm’s output can be controlled by changing the “num-
ber of edges to remove” parameter. Increasing the value of
this parameter increases the number of issue dependencies
ignored when calculating the issue clusters, thereby result-
ing in a larger number of smaller clusters. The running time
of this algorithm is O(kmn), where k is the number of edges
to remove, m is the total number of edges, and n is the total
number of vertices.

3.3 Finding Agreements

We use a distributed variant of simulated annealing (SA)[11]
to find optimal contracts in each issue group. In each round,
the mediator proposes a contract that is a random single-
issue mutation of the most recently accepted contract (the
accepted contract is initially generated randomly). Each
agent then votes to accept(+42), weakly accept(+1), weakly
reject(-1) or reject(-2) the new contract, based on whether
it is better or worse than the last accepted contract for that
issue group. When the mediator receives these votes, it adds
them together. If the sum of the vote values from the agents
is positive or zero, the proposed contract becomes the cur-
rently accepted one for that issue group. If the vote sum is
negative, the mediator will accept the contract with proba-
bility P(accept) = e2U/T | where T is the mediator’s virtual
temperature (which declines over time) and AU is the util-
ity change between the contracts. In other words, the higher
the virtual temperature, and the smaller the utility decre-
ment, the greater the probability that the inferior contract
will be accepted. If the proposed contract is not accepted, a
mutation of the most recently accepted contract is proposed
in the next round. This continues over many rounds. This
technique allows the mediator to skip past local optima in
the utility functions, especially earlier on in the search pro-
cess, in the pursuit of global optima.



Algorithm 2 Simulated Annealing()

Value(N): the sum of the numeric values mapped from votes to

N from all agents

1: S := initial solution (set randomly)
2: for t =1 to oo do

3: T := schedule(t)

4: if T =0 then

5: return current

6: end if

7: next := arandomly selected successor of current
8: if next.Value > 0 then

9: AFE := next.Value — current.Value

10: if AE > 0 then

11: current := next

12: else

13: current :=next only with probability e*#/7
14: end if

15: end if

16: end for

3.4 Exaggerator Agents

Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare [12]. What we need is an enhancement
of our negotiation protocol that preventing the exaggerator
votes and maximizing social welfare.

We guess that simply placing a limit on the number of
“strong” votes each agent can work well. If the limit is too
low, we effectively lose the benefit of vote weight informa-
tion and get the lower social welfare values that result. If
the strong vote limit is high enough to avoid this, then all an
exaggerator has to do is save all of its strong votes until the
end of the negotiation, at which point it can drag the media-
tor towards making a series of proposals that are inequitably
favorable to it. In the experiments, we demonstrate that the
limit of the number of “strong” voting is efficient of finding
high solutions.

4. EXPERIMENTAL RESULTS
4.1 Setting

We conducted several experiments to evaluate our approach.
In each experiment, we ran 100 negotiations. The follow-
ing parameters were used. The domain for the issue values
was [0,9]. Each agent had 10 unary constraints, 5 binary
constraints, 5 trinary constraints, and so on. (a unary con-
straint relates to one issue, a binary constraint relates to two
issues, etc). The maximum weight for a constraint was 100
X (Number of Issues).

In our experiments, each agents’ issues were organized into
ten small clusters with strong dependencies between the is-
sues within each cluster. We ran two conditions: “1) Sparse
Connection” and “2) Dense Connection”. Figure 3 gives ex-
amples, for these two cases, of interdependency graphs and
the relationship between the number of issues and the sum
of the connection weights between issues. As these graphs
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Figure 3: Issue Interdependencies

show, the “1) Sparse Connection” case is closer to a scale-free
distribution, with power-law statistics, while the “2) Dense
connection” is closer to a random graph.

We compared the following negotiation methods:

“(A) Issue-Grouping (True Voting)” applies the simulated
annealing protocol based on the agents’ votes, and performs
the negotiation separately for each one of the issue groups,
and combines the resulting sub-agreements to produce the
final agreement. All agents tell the truth votes. “(B) Issue-
Grouping (Exaggerator Agents)” applies the simulated an-

nealing protocol based on the agents’ votes with issue-grouping.

“All agent” tell the exaggerator votes. “(C) Issue-Grouping
(limitation)” is same situation with (B). However, the limi-
tation of ‘strong’ votes is applied. The number of limitation
of ‘strong’ votes is 250 which is the optimal number of lim-
itations in this experiments. “(D) Without Issue-Grouping”
is the method presented in Klein et.al[12], using a simulated
annealing protocol based on the agents’ votes without gen-
erating issue-groups.

In all these cases, the search began with a randomly gener-
ated contract, and the SA initial temperature for all these
cases was 50.0 and decreased linearly to 0 over the course
the negotiation. In case (D), the search process involved
500 iterations. In case (A)-(C), the search process involved
50 iterations for each issue group. Cases (A),(B),(C) and
(D) thus used the same amount of computation time, and
are thus directly comparable. The number of edges removed
from the issue interdependency graph, when the agents were
calculating their issue groups, was 6 in all cases.

We applied a centralized simulated annealing to the sum of
the individual agents’ utility functions to approximate the
optimal social welfare for each negotiation test run. Ex-
haustive search was not a viable option because it becomes
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computationally intractable as the number of issues grows.
The SA initial temperature was 50.0 and decreases linearly
to 0 over the course of 2,500 iterations. The initial contract
for each SA run is randomly selected. We calculated a nor-
malized “optimality rate” for each negotiation run, defined
as (social welfare achieved by each protocol) / (optimal social
welfare calculated by SA).

Our code was implemented in Java 2 (1.6) and was run on
a core 2-duo CPU with 2.0 GB memory under Mac OS X
(10.6).

4.2 Method of determining interdependency
graph

Figure 4 shows what the interdependency graph consists of

in an agent.

The method of determining the interdependency between
issues in the experiment is as follows.

(Step 1) Small issue-groups are generated by connecting a
part of the issues randomly.

(Step 2) The interface issues are decided randomly among
issues in each issue-group. The interface issues are for
connecting other small issue-groups. In small issue-
groups, only the interface issues can connect to other
issue-groups.

(Step 3) Each issue-group connects to other small issue-
groups. Specifically, all combinations of each issue-
group are searched for, and it is decided whether con-
nection or disconnection according to the possibility of
generating connections.
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4.3 Experimental Results

Figure 5 and 6 compare the optimality rate in the sparse
connection and dense connection cases. “(A) Issue-Grouping
(True Voting)” achieved a higher optimality rate than “(D)
Without Issue-Grouping” which means that the issue-grouping
method produces better results for the same amount of com-
putational effort. The optimality rate of the “(A) Issue-
Grouping (True Voting)” condition decreased as the num-
ber of issues (and therefore the size of the search space)
increased. “(B) Issue-Grouping (Exaggerator Agents)” is
worse than “(A) Issue-Grouping (True Voting)” because the
exaggerator agents generate reduced social welfares in multi-
agents situations. However, “(C) Issue-Grouping (limita-
tion)” outperforms “(B) Issue-Grouping (Exaggerator Agents)”,
therefore, the limitation of ‘strong’ votes is effective of im-
proving the social welfare reduced by the Exaggerator Agents.

The optimality rates for all methods are almost unaffected
by the number of agents, as Figure 6 shows. The optimality
rate for (A) is higher than (D) in the “1) Sparse Connec-
tions” case than the “2) Dense Connections” case. This is
because the issue grouping method proposed in this paper
can achieve high optimality if the number of ignored interde-
pendencies is low, which is more likely to be true in the “1)
Sparse Connections” case. Many real-world negotiations are,
we believe, characterized by sparse issue inter-dependencies.

We also assessed a quality factor measure QF = (Sum of
internal weights of edges in each issue-group) / (Sum of ex-
ternal weights of edges in each issue-group) to assess the
quality of the issue groups, i.e. the extent to which issue
dependencies occurred only between issues in the same clus-
ters, rather than between issues in different groups. Higher
quality factors should, we predict, increase the advantage of
the issue grouping protocols, because that means fewer de-
pendencies are ignored when negotiation is done separately
for each issue group. Figure 7 shows the quality factors
when the number of agents is 3 and 20, as a function of
the number of edges to be removed (which is the key pa-
rameter in the clustering algorithm we used).The number
of issues is 50 in the “1) sparse connection” case. “(a) Cen-
tral Method” is to gather all of the agents’ interdependency
graphs in one central place and then find the issue groups



1) Sparse Connections 2) Dense Connections

1
! —#—(A) Issue-Grouping (True Voting) —#—(A) Issue-Grouping (True Voting)
09 —#-(B) Issue-Grouping (Exaggerator Agents) 0.9 -#-(B) Issue-Grouping (Exaggerator Agents)
% (C) Issue-Grouping (limitation of straong vote) (C) Issue-Grouping (limitation of straong vote)
& os 77 = (D) Without Issue-Grouping % 0.8 —¢(D) Without Issue-Grouping
2 & \
s 0.7 N 2
j=3 Balohi e E
M o
0.5 R
0.4 04 b
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Number of Issues Number of Issues
Figure 5: Comparison of optimality when the number of issues changes
1) Sparse Connections 2) Dense Connections
1
~#=(A) Issue-Grouping (True Voting) 1 - -
0.9 —#-(B) Issue-Grouping (Exaggerator Agents) Y Issue-Group!ng (True Voting)
’ (C) Issue-Grouping (limitation of straong vote) o 0.9 ~#-(B) Issue-Grouping (Exaggerator Agents)
% s —(D) Without Issue-Grouping w® (C) Issue-Grouping (limitation of straong vote)
Y x o8 -*(D) Without Issue-Grouping
> — < - — o ° é‘
E o7 —— § 07 T —— —
© E b - e T
g e, = £
o W ___x o :"*:!q L
0.5 0.5
0.4 . : : . . . . ‘ 0.4 : . .
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Number of agents Number of agents
Figure 6: Comparison of optimality when the number of agents changes
using the well-known Girvan-Newman algorithm[18]. “(b) Even though negotiation seems to involve a straightforward
Our method” employs breadth-first search to combine the distributed constraint optimization problem [7, 19], we have
issue clusters submitted by each agent into a consolidated been unable to exploit existing work on high-efficiency con-
set of issue groups. straint optimizers. Such solvers attempt to find the solu-
tions that maximize the weights of the satisfied constraints,
Comparing (a) with (b) in Figure 7, (b) proposed in this but do not account for the fact that the final solution must
paper outperforms (a). This is because that our method satisfy at least one constraint from every agent.
is reflected by the idea of all agents to final issue-grouping
without fixing the clustering parameter as Figure8 showing. Lin et al.[16] explored a range of protocols based on mu-
QF becomes smaller when the number of edges to be pro- tation and selection on binary contracts. This paper does
gressively removed is larger. This is because the number of not describe what kind of utility function is used, nor does
issue-groups generated by each agent is higher as the num- it present any experimental analyses, so it remains unclear
ber of edges to be progressively removed becomes larger. whether this strategy enables sufficient exploration of utility
The rapid decrease sometimes happens as the number of space.
edges to be progressively removed increases. These points
are good parameters for decomposing the issue-groups. In Klein et al.[12] presented a protocol applied with near opti-
real life, the utility of agents contains an adequate idea of mal results to medium-sized bilateral negotiations with bi-
issue-groups, and agents can determine the optimal idea of nary dependencies, but was not applied to multilateral ne-
issue-groups by analyzing the utility spaces. gotiations and higher order dependencies.
5. RELATED WORK A bidding-based protocol was proposed by Ito et al.[9]. Agents
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generate bids by finding high regions in their own utility
functions, and the mediator finds the optimum combination
of submitted bids from the agents. However, the scalability
of this protocol is limited, and the failure rate of making
agreements is too high. By Fujita et al.[5], a representative-
based protocol for reducing the computational cost was pro-
posed based on the bidding-based protocol. In this method,
the scalability of agents was improved; however, the scala-
bility of issues was not sufficient. Fujita et.al[6] also focused
on the decomposing the contract space for highly scalable
negotiation, but the negotiation protocol and experimental
results are completely different.

Hindriks et al.[8] proposed an approach based on a weighted
approximation technique to simplify the utility space. The
resulting approximated utility function without dependen-
cies can be handled by negotiation algorithms that can ef-
ficiently deal with independent multiple issues, and has a
polynomial time complexity. Our protocol can find an op-
timal agreement point if agents don’t have in common the
expected negotiation outcome.

Fatima et al.[3, 4] proposed bilateral multi-issue negotiations
with time constraints. This method can find approximate
equilibrium in polynomial time where the utility function is
nonlinear. However, this paper focused on bilateral multi-
issue negotiations. Our protocol focuses on multilateral ne-
gotiations.

Zhang[27] presents an axiomatic analysis of negotiation prob-
lems within task-oriented domains (T'OD). In this paper,
three classical bargaining solutions (Nash solution, Egali-
tarian solution, Kalai-Smorodinsky solution) coincide when
they are applied to a TOD with mixed deals but diverge if
their outcomes are restricted to pure deals.

Maestre et al.[21, 22, 23] proposed an auction-based pro-
tocol for nonlinear utility spaces generated using weighted
constraints, and proposed a set of decision mechanisms for
the bidding and deal identification steps of the protocol.
They proposed the use of a quality factor to balance utility
and deal probability in the negotiation process. This quality
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factor is used to bias bid generation and deal identification,
taking into account the agents’ attitudes toward risk. The
scalability of the number of issues is still a problem in these
works.

Jonker et al.[10] proposed a negotiation model called ABMP
that can be characterized as cooperative one-to-one multi-
criteria negotiation in which the privacy of both parties is
protected as much as desired.

By Robu et al.[24], utility graphs were used to model issue
dependencies for binary-valued issues. Our utility model is
more general.

Bo et al.[1] proposed the design and implementation of a ne-
gotiation mechanism for dynamic resource allocation prob-
lem in cloud computing. Multiple buyers and sellers are
allowed to negotiate with each other concurrently and an
agent is allowed to decommitment from an agreement at the
cost of paying a penalty.

Lin et al. [14, 15] focus on the Expert Designed Negotia-
tors (EDN) which is the negotiations between humans and
automated agents in real-life. In addition, the tools for eval-
uating automatic agents that negotiate with people were
proposed. These studies include some efficient results from
extensive experiments involving many human subjects and
PDAs.

6. CONCLUSION

In this paper, we proposed a new negotiation protocol, based
on grouping issues, which can find high-quality agreements
in interdependent issue negotiation. In this protocol, agents
generate their private issue interdependency graphs and use
these to generate issue clusters. The mediator consolidates
these clusters to define aggregate issue groups, and inde-
pendent negotiations proceed for each group. We analyzed
the negotiation that one of agents may always vote truth-
fully, while the other exaggerates so that its votes are always
“strong.” We demonstrated that our proposed protocol re-
sults in a higher optimality rate than methods that don’t use
issue grouping, especially when the issue interdependencies
are relatively sparse. In addition, the limitation of “strong”
votes is effective of improving the reduced social welfare in
multi-agent negotiations between exaggerators.

In future work, we will conduct additional negotiation, af-
ter the concurrent sub-contract negotiations, to try to in-
crease the satisfaction of constraints that crossed issue group
boundaries and were thus ignored in our issue grouping ap-
proach. In the bilateral case, we found this can be done
using a kind of Clarke tax [25], wherein each agent has a
limited budget from which it has to pay other agents before
the mediator will accept a contract that favors that agent
but reduces utility for the others. We investigate whether
and how this approach can be applied to the multilateral
case.
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ABSTRACT

We propose correct and efficient algorithms for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model.
It is argued that the agents that use the model can be classi-
fied in to two extreme kinds: sensitive and insensitive. When
the negotiation is between a sensitive agent and many in-
sensitive agents, the optimal contract can be computed cor-
rectly and efficiently by avoiding Exhaustive Matching.

General Terms
Automated Negotiations

Keywords
Utility models, Multi-Issue Negotiations

1. INTRODUCTION

Automating negotiations over multiple and interdependent
issues is potentially an important line of research since most
negotiations in the real world have interdependent issues.
When a service provider negotiates on “When”to provide its
service, its utility for a certain time period (e.g. T1=8a.m-
10a.m) is dependent on the day of the week (Monday-Sunday).
It might have high utility for T1 on Mondays, but low utility
for T1 on Sundays. The issues, time of the meeting and day
of the meeting cannot be negotiated independently.

We propose correct and efficient algorithm for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model
proposed in [4]. The model is used to represent utility space
of agents negotiating over multiple and interdependent is-
sues. Some researchers [1, 2, 3, 5] have proposed algo-
rithms(protocols) for locating the optimal contract. The
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proposed algorithms have their own merits, but they all fall
under the classification of heuristic algorithms when evalu-
ated solely from the view point of locating the optimal con-
tract correctly. The optimal contract is the contract that
has the maximum total utility. Total utility for a contract
is the sum of the utility of each agent for the contract.

Exhaustively Matching (EM) the entire utility space of the
agents is the only correct method of searching the optimal
contract. If the utility space of agents is assumed to be
generated randomly, then there is no method of making EM
efficient (faster) and still guarantee correctness. Therefore
we make intuitive assumptions about utility space of agents
that can be readily implemented by the basic building block
of the model - integer interval.

1.1 Constraints Based Utility Space Model

In the model, for agents negotiating on I number of issues,
an I dimensional coordinate system is created. An axis is
assigned to each issue. Each issue will have up to V number
of issue values. We represent these values by integers ranging
from 0 to V-1. Since the issues are interdependent, we will
have VT number of possible issue value combinations which
are called contracts. An example of a contract is [0,2,4]. 0
is the issue value for I1(Issue 1) , 2 is the issue value for 12
etc.

The utility of a contract is the sum of the weights of all
constraints satisfied at it. The constraint in Figure 1 has
a weight of 55. Contracts that have the values 4 and 5 for
issue 1, and the values 3, 4, 5 and 6 for issue 2 satisfy this
constraint. An agent creates its utility space by defining
multiple such constraints. Figure 2 shows a utility space
created by using more than 100 constraints.

2. BIDDING BASED ALGORITHM

Most previous works that used the constraints based util-
ity space model use the bidding based deal identification
method. Bids are high utility regions of the utility space of
an agent. In a nutshell, bidding is the process of identifying
and then submitting these high utility regions to a mediator
agent. The mediator agent matches the bids to find those
that have intersections and maximize the total utility. It
was first proposed in [4]. Since then, some researchers have



s

Weieht
55 |

G 9
," Issue 1

Issue 2

Figure 1: A 2 issue Constraint

Figure 2: 2 issue utility space

improved the method to address various concerns.

The threshold adjusting algorithm [1] makes agents bid in
multiple rounds rather than once. In each round the thresh-
old value is lowered. The threshold value is the minimum
allowable utility value of a bid. The bidding is stopped at
the round a deal is found. This has the advantage of limiting
the amount private information revealed to a third party.

The representative based algorithm [2] improves scalability
of the bidding based algorithm by making only few agents
called representatives participate in the bidding process. Scal-
ability refers to the number agents that can be supported
by the negotiation system. When the number of issues in-
creases, the number of bids each agent has to make in order
to effectively sample its utility space also increases. This in
turn increases the time taken by the mediator to search an
intersection of the bids that maximizes the total utility. If
only the representatives are allowed to participate in the bid-
ding process, then negotiations with large number of agents
can be supported.

When the contract space is large, the failure rate (when
no bids from agents intersect) of a negotiation increases.
The iterative narrowing protocol [3] reduces failure rates by
narrowing down the region of the contract space that the
agents generate their bids from. It is especially effective
when the constraints of each agent are found being clustered
in some of regions of the contract space, rather than being
scattered all over the contract space.
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Measures that reduce high failure rates that arise when agents
use narrow constraints was discussed in [5]. The product of
a bid’s utility and its volume was used as a criteria to se-
lect it to be submitted to the mediator or not. Usually high
utility valued bids tend to be small in volume and therefore
the chance that they will intersect with other agents’bids
is minimal. Adding the volume criteria for selecting a bid
for submission makes the deal identification process more
effective.

The problem is that the bid that contains the optimal con-
tract may not be submitted by at least one of the agents.
This might be because either that bid has low utility for that
agent, or the bid generation mechanism “missed”it. Hence,
there is always the chance that the optimal contract is not
found.

3. EXHAUSTIVE MATCHING

The only way we can guarantee that the optimal contract
is computed correctly is by making the agents submit their
entire utility space to the mediator. Then the mediator Ex-
haustively Matches(EM) the utility spaces. The problem is
that the computational time cost of this algorithm grows ex-
ponentially. If the number of issues of a negotiation grows

from I to I + 1, then the contract space grows from V7 to
1+1
Vv .

To reduce the time required to search for the optimal con-
tract, we have to look for patterns in the utility space of
agents that could be exploited to avoid EM. But observing
Figure 1 and Figure 2 reveals that based on the number
of constraints, their positioning and weight, utility spaces
can be of various types and very unpredictable. The only
predictable nature of them is that they are all based on con-
straints. Not just any constraint but integer interval based
constraints.

3.1 Single Issue Version of The Model

The constraint in Figure 1 is a two dimensional integer in-
terval of [4..5]x[3..6]. An example of a constraint in a nego-
tiation over three issues would be [2..5]x[1..3]x[6..9]. If we
were to define a single issue version of the model , then an
example of a constraint would be [1..3].

Since the single issue version is easy to understand we will
use it for analysis and experiments from here on wards. Since
integer intervals are the basic building unit of the model we
expect lessons learned from studying the single issue version
of the model will be applicable for the multi issue version of
it.

Figure 3 shows an agent that has 3 constraints :( C1, C2,
C3). Its utility for the issue value 5 is: Weight (C2) +
Weight (C3) = 10420 = 30. Figure 4 is Figure 3 redrawn
by summing the weights of each constraint. S0, S1...,S6
are called Steps of the utility function. Notice that Steps
are also integer intervals. Also notice that, in a one issue
utility space the issue values themselves are contracts of the
negotiation. For example, in Figure 4, Step 4(S4) contains
the contracts 4 and 5.

To avoid EM, we have to make assumptions about utility



space of agents. To do that we still focus on integer intervals.
This time the Steps are considered.

Figure 3: Many single issue constraints

Figure 4: Single issue utility space

3.2 Sensitive and Insensitive Agents

By focusing on the width of the Steps in the utility space
of an agent, we can ask some interesting questions. If an
agent’s utility space is dominated by Steps that are wide,
what does that say about the agent? What about when an
agent’s utility space is dominated by Steps that are narrow?

A Step contains consecutive contracts that the agent has
equal utility for. Let’s assume that consecutive contracts
are more similar to one other than contracts that are far
apart. Then, the fact that the agent has equal utility for
some consecutive contracts indicates that, the agent neglects
the small difference between the contracts. Based on this,
we can classify agents to two extreme kinds: sensitive and
insensitive. Here, the word, sensitive is used as it would be
used for a sensor. A sensitive sensor is capable of registering
small differences of the sensed signal.

Let’s define a branch to be a portion of the contract space
. For example, part of the contract space in Figure 4 con-
taining the contracts 0 to 3 ( [0..3]). In a branch, a sensi-
tive agent will have four Steps. One for each contract. An
insensitive agent will have one Step that contains all the
contracts.(Currently we assume that the end points of the
branches of all agents are the same and known).

Consider negotiation for scheduling a meeting of 30 minutes
duration. A busy person is sensitive about every 30 minute
interval. While he is relatively free at 10:30 a.m., he might
have very important meeting at 11:00 a.m.. Therefore, he
would not like to have the meeting at 11:00 a.m. (Figure 5).
Hence, a busy person’s utility space will be made of narrow
width Steps. A free (not busy) person groups his time with
large intervals (Figure 6). Hence, his utility space will be
made up of wide Steps.
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Figure 5: A busy person

Figure 6: A free(not busy) person

4. COPE ALGORITHM

The COPE algorithm can locate the optimal contract more
efficiently than EM when the COPE condition is satisfied.
In Figure 7, a branch of a utility space is shown for four
agents (Ag. h, i ,j and k). The optimal contract could be
found by taking Step C of Ag. h (the Step with the highest
utility) and matching it with the steps of Agents i,j and
k. We call this method of computing the optimal contract
COPE. Since the agents i,j and k have just one Step in the
branch, just using the maximum Step of Ag. h is sufficient
to correctly compute the optimal contract. For a branch the
COPE condition is satisfied if,

1. Only The first agent in the matching lineup is sensitive;
that is, it has many narrow width Steps.

2. The rest agents in the matching lineup have one wide
Step which contains all the contracts in the branch.

Figure 7: COPE Algorithm



S. FASTCOPE ALGORITHM

The COPE condition imposes stringent requirements on util-
ity spaces of agents. One that could be relaxed is the require-
ment that the sensitive agent has to be the first in the match-
ing line up. FASTCOPE algorithm is designed to compute
the optimal contract efficiently even when the position of
the sensitive agent is not known before hand. FASTCOPE
algorithm extends COPE by rearranging the agents so that
COPE condition is created before matching. The steps in
the algorithm are:

e Step 1: Identify the sensitive agent.

e Step 2: Rearrange the agents. That is, place the sensi-
tive agent in the first position of the matching lineup.

e Step 3: Execute COPE on the rearranged agents.

To identify the sensitive agent, FASTCOPE samples the first
Step of each agent for the branch and reads its width. The
Step from the sensitive agent will have narrower width than
the insensitive agents.

6. EM VS COPE VS FASTCOPE

We compared the efficiency of EM, COPE and FASTCOPE
experimentally. The result is shown in Figure 8. As ex-
pected COPE and FASTCOPE have higher efficiency than
EM. COPE (20%) means, 20% percent of the branches sat-
isfy the COPE condition. The rest violate it by not having
the first agent as the sensitive one. When COPE is applied
on branches that do not satisfy the condition, it makes no
efficiency improvement. FASTCOPE rearranges the agents
and applies COPE to compute the optimal contract for the
branch.

The experiments were done at sensitivity ratios of 1:1000,
1:100, 1:10 and 1:5. For example sensitivity ratio of 1:5
means, the entire contract space is divided into branches
that contain 5 contracts each. In a branch only one agent
is sensitive and it will have 5 narrow width Steps. Each of
the remaining agents will have one wide Step. When the
total number of the contracts in the negotiation is 10000,
there will be 10000/5 , 2000 branches. In figure Figure 8,
for each algorithm, the average of the running time costs of
the algorithm at the four sensitivity ratios is shown. The
number of agents in the negotiation was 4.

08 Tl
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Figure 8: EMvsCOPEvsFASTCOPE
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7. CONCLUSION AND FUTURE WORKS

This paper reports a preliminary work for designing efficient
algorithm that compute the optimal contract correctly for
agents that use the constraints based utility space model.
The integer interval was identified to be the basic building
unit of the model, and it was used to define the single is-
sue version of it. It was argued that , the agents that use
this model can be classified to two extreme kinds:sensitive
and insensitive. COPE; an algorithm that computes the op-
timal contract for a branch correctly and efficiently when
the first agent is sensitive and the others are insensitive is
proposed. FASTCOPE extends COPE by relaxing the re-
quirement that the sensitive agent has to be the first agent
in the matching lineup.

Although FASTCOPE is efficient it imposes stringent re-
quirements on the utility of space of agents. We aim to re-
lax these requirements and increase the applicability of the
algorithm. These include:In a branch, allowing more than
one agent to be sensitive. Allowing some insensitive agents
to have exceptional narrow width Steps. Allowing agents to
independently branch their utility space. That is handling
the case where the end points of the branches from each
agent are not exactly the same (overlap).

Another future work is to extend the algorithm developed
for the single issue version of the model to work for multiple
issue version of it.
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ABSTRACT

Automated Trust Negotiation (ATN) is a mechanism to es-
tablish mutual trust between service providers and users in
an open network environment like the Internet. In this pa-
per, we propose Bidirectional Private Policy Matching based
on Additively Homomorphic Encryption Systems
(BPPM/AHES) as an ATN negotiation protocol where uni-
directional private policy matching based on additively ho-
momorphic encryption systems is repeated. In this protocol,
the problems of existing ATN protocols such as unnecessary
disclosure of credentials or that of policies before the nego-
tiation succeeds are solved.

Keywords
trust, Automated Trust Negotiation (ATN), additively ho-
momorphic encryption, private policy matching

1. INTRODUCTION

In an open network environment like the Internet, service
users and providers are unknown to each other. Before us-
ing or providing services, the users will determine whether
the providers are trustworthy, and the providers also wish
to restrict their services only to trustworthy users. In this
case, it is not easy for the users and the providers to negoti-
ate for establishing mutual trust, because both of them want
to disclose their own information only to the trust parties.
Thus, the negotiations may fail unless they communicate
successfully. Also, since the number of services has become
enormous, it is very costly to establish mutual trust every
time they encounter. To tackle this issue, Automated Trust
Negotiation (ATN) [4] has been proposed to establish mu-
tual trust between strangers. ATN is a process to automat-
ically obtain the sequence to exchange credentials without
violating disclosure policies that each party has. In existing
ATN protocols [4], there is some problem such as unneces-
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sary disclosure of credentials or that of policies before the
negotiation succeeds.

2. ATNBASED ON ENCRYPTION SYSTEMS
2.1 Automated Trust Negotiation

We consider a situation where a user is trying to use a ser-
vice, where we have two parties, a service user and a service
provider. We refer them as a client and a server respec-
tively in this paper. Both of them have their own digital
credentials and policies. Credentials are digital data that
contain such information as identi ers, names, contacts, af-

liations, etc., and that are certi ed by trusted third par-
ties. Policies are rules that de ne the condition on which the
client and the server disclose their credentials to the counter-
part. The server also has service-governing policies (SGP’s)
which gives on what condition the client is allowed to use
the service. We use the same notation presented in [5] to
describe these policies. We denote the service by R, creden-
tials of the client by Ci,...,Cy,., credentials of the server
by Si,...,Sn,, where n. and ns are the numbers of creden-
tials possessed by the client and the server respectively. The
policy for disclosing the client’s credential C' is denoted by
C «— Fc(S1,...,5n,), where Fc(S1,...,Sn,) is a Boolean
expression with the server’s credentials Si,...,Sn,. Simi-
larly, SGP is denoted by R «— Fs(Ci,...,Cy.). The policy
for disclosing the server’s credential S is denoted by S «—
Fs(Ch,...,Cy,), where Fs(Ci,...,Cy,) is a Boolean ex-
pression with the client’s credentials C1,...,Cy,.. The pol-
icy of credential C' will be satis fied, if the logical expression
Fc(S1,...,5n,) evaluates to true, after substituting propo-
sitional symbols of already disclosed credentials by the other
party with ¢rue in the logical expression Fo(S1,...,S,,). If
the policy of credential C' is satis ed, it can be disclosed to
the other party. Table 1 is an example of policies. If cre-
dential C' can be disclosed without any credentials from the
other party, such a policy is denoted by C «— true, and C'
is called an unprotected credential. On the other hand, if
credential C cannot be disclosed under any circumstances,
such a policy is denoted by C «— false. If SGP is satis ed
as the result of negotiation, the service becomes available to
the client.

The aim to perform ATN is to automatically obtain the se-
quence to exchange credentials without violating the policies
in order to establish mutual trust between the client and the



Table 1: Example of Policies

client’s policies | server’s policies

C1 « true R +— (Cg/\C4)VC@
Cy « true Sy« true

C3 +— S1 N Ss SQH(CH/\CQ)\/C?,
Cy — S3V Sy Sz «— C3Vv Oy

Cs «— Sy VvV S3 Sy — Cy

Ce — false Ss «— C1 NCs

server. Various protocols and strategies have been proposed
to achieve this [3, 4, 5]. Below, we brie y describe two basic
strategies presented in [4], i.e., Eager Strategy and Parsimo-
nious Strategy.

2.1.1 Eager Strategy

In Eager Strategy [4], the client and the server in turns ex-
change all the currently unlocked credentials. As credentials
are exchanged in the negotiation, more credentials become
unlocked. The negotiation succeeds when SGP is satis ed
by the credentials disclosed by the client, and fails when the
client terminates the negotiation because either of the ne-
gotiating parties has no credential to newly disclose. The
negotiation process of Eager Strategy is very simple, and
none of the server’s and the client’s policies is directly dis-
closed. The weakness of Eager Strategy is in that credentials
are disclosed regardless of their contribution to the success
of the negotiation, i.e., some of them may be unnecessarily
disclosed. They are disclosed even if the negotiation fails.

2.1.2  Parsimonious Strategy

Eager Strategy is an approach to disclose all the creden-
tials that can be disclosed, and no party sends requests for
credentials to the other. In contrast, in Parsimonious Strat-
egy [4], each party rst repeats sending requests for cre-
dentials to the counterpart, and discloses their credentials
only after nding the sequence to exchange them for satisfy-
ing SGP. There is no disclosure of unnecessary credentials,
but the existence of some policies that are not related to
the sequence to exchange credential may be known to the
counterpart. Most of protocols in the studies of ATN are
extensions of Parsimonious Strategy, and su ers from the
same weakness.

2.2 Private Policy Matching

Our goal is to create a new protocol that discloses neither
credentials nor policies that do not contribute to the suc-
cessful trust negotiation. In this section, we explain pri-
vate policy matching [2] which is used in the process of
BPPM/AHES. Kursawe et al. [2] proposed private policy
matching based on the ElGamal cryptosystem [1]. It is a
process to nd out whether a match exists between the cre-
dentials that a client can disclose (client’s preference) and
those requested by a server (server’s preference). A set of
matching credentials is called a matching policy. In pri-
vate policy matching, both of parties encrypts their prefer-
ences, and from it they calculate a matching policy using
the additively homomorphic property of the ElGamal cryp-
tosystem. Because of this, they cannot acquire additional
knowledge about the preference of the counterpart. Private
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Table 2: Example of Negotiation Table

client’s policy DF | MP
Cy1 | « | true 0 | true
Coy | «— | true 0 true
Cs | «— | S1ASs 0
Cy | «— | S3V S, 0
Cs | «— | S2VvSs 0
Cs | < | false 0

policy matching enables us to derive a minimal set of cre-
dentials for the client to disclose, when only the server has
policies and the client’s credentials are unprotected. In the
following section, we extend this to be applied in such bidi-
rectional scenarious as in ATN, where both of the server and
the client have policies.

3. BIDIRECTIONAL PRIVATE POLICY
MATCHING

Our new protocol is derived by repeating private policy
matching described in the previous section. Below, we call
the original private policy matching as the server-side policy
matching, where the server’s policies are tested against the
client’s credentials. On the other hand, we call the oppo-
site where the client’s policies are examined as the client-
side policy matching. By repeating the server-side and the
client-side policy matchings alternately, the information ex-
change needed in ATN is achieved. We call our new proto-
col as Bidirectional Private Policy Matching based on Addi-
tively Homomorphic Encryption Systems (BPPM/AHES).

3.1 Negotiation Tables

This protocol takes the policies of the client and the server
as its input, and outputs the sequence to exchange creden-
tials. The process fails when no sequence is feasible. Both
the client and the server maintain negotiation tables as ex-
empli ed in Tables 2. These tables are updated through the
negotiation process. A negotiation table has three columns,
Policy, DF and MP. DF and MP stand for disclosing ag
(DF) and matching policy (MP) respectively. A value in
DF means whether the credential is disclosed (DF= 1) or
not (DF= 0) in the negotiation process. The values in DF
are initialized to 0, which means that all credentials are not
disclosed before the negotiation. MP is for storing encrypted
matching policies found in the negotiation. For a policy the
right-hand side of which is ¢true, its MP column is initialized
to “unprotected.”

3.2 Protocol

The BPPM/AHES protocol consists of two stages, policy
negotiation and credential exchange. Below, we explain each
of them.

3.2.1 Policy Negotiation

In policy negotiation, the client and the server repeat the
server-side and the client-side policy matchings alternately
until they know that whether there is a sequence to exchange
credentials which satis es SGP. If there is such a sequence,
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Figure 1: Policy Negotiation

they move to credential exchange. If there is not, the nego-
tiation process is terminated. The owchart of policy nego-
tiation is depicted in Figure 1.

(1)

(2)

(3)

(4)

(5)

(6)

First, the client requests a service to the server. The
server sends a message that indicates the start of the
server-side policy matching as reply.

The client sets the value in DF of the credential that
can be disclosed at that time to 1. The client and
the server perform the server-side policy matchings in
parallel for each of the server’s policies. If a matching
policy exists, the server sets the policy of the credential
to true, and writes the matching policy in the column
of MP of the credential.

The server determines if SGP is satis ed. If it is
satis ed, which means that the negotiation succeeds,
the negotiating party move to credential exchange de-
scribed in the next section. If it is not satis ed, move
to (4).

The server determines if there is any credential which
can be disclosed and whose DF is 0. If there is such a
credential, move to (5). If there is no such a credential,
the negotiation fails and is terminated.

The server sets the value in DF of the credential that
can be disclosed at that time to 1. The client and
the server perform the client-side policy matchings in
parallel for each of the client’s policies. If a matching
policy exists, the client sets the policy of the credential
to true, and writes the matching policy in the column
of MP of the credential.

The client determines if there is any credential which
can be disclosed and whose DF is 0. If there is such a
credential, move to (2). If there is no such a credential,
the negotiation fails and is terminated.
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3.2.2 Credential Exchange

After policy negotiation, the client and the server

rst nd

the sequence to exchange credentials and then exchange cre-

dentials according to it.

The owchart of credential ex-

change is given in Figure 2.

(1)

(2)

(3)

(4)

(5)

(6)

3.3

The server generates a request for credentials which
must be disclosed by the client, for the server to sat-
isfy the client’s request for the server’s credentials or
service, and sends it to the client. A request for cre-
dentials is generated by matching policies stored in the
columns of MP in the negotiation table. The matching
policies are decrypted by the client and the server if
needed to generate a request for credentials.

The client determines if the request from the server
is satis ed by the client’s unprotected credentials. If
it is satis ed, move to (5). If it is not satis ed, move
to (3).

The client generates a request for credentials which
must be disclosed by the server, for the client to sat-
isfy the server’s request for the client’s credentials, and
sends it to the server.

The server determines if the request from the client
is satis ed by the server’s unprotected credentials. If
it is satis ed, move to (5). If it is not satis ed, move
to (1).

The client and the server nd the sequence to ex-
change credentials by reversing previous requests for
credentials and exchange credentials according to it.

When SGP is satis ed by the credentials which is dis-
closed last, the negotiation nishes in success.

Example of the Negotiation

In this section, we explain an example of negotiation in
BPPM/AHES by showing the changes of the negotiation
tables using the policies given in Table 1. The negotiation



Table 3: The Negotiation Table of the Client after
the First Server-side and Client-side Policy Match-
ings

client’s policy DF | MP
Cy | « | true 1 true
Cy | «— | true 1 true
Cs | «— | S+AS> true 0 Ec,
Cy | « | S3V Sy 0
Cs | «— | S9-S5 true 0 Ec,
Cs | — | false 0

Table 4: The Negotiation Table of the Server after
the First Sever-side and Client-side Policy Match-
ings

server’s policy DF | MP
R | «— (03 A\ 04) V Cg
S1 | «— | true 1 true
So | — | E-AEV-ECs true 1 Es,
S3 | «— | C3V Oy 0
Sy | — | Cy 0
Ss | — | Cit ANCs 0

tables of the client and the server after the rst server-side
and client-side policy matchings are shown in Table 3 and 4.

At the rst server-side policy matchings, since the client
can disclose the credentials C7 and Cs, the values in DF of
credentials C7 and Cy in Table 3 are set to 1. When the

rst server-side policy matchings are performed, the server
knows that there is a matching policy that satis ed the pol-
icy of server’s credential S2. The server sets the policy of
the credential S> to true, and writes a matching policy Es,
in the column of MP of the credential S2. After that, the
server starts the rst client-side policy matchings with the
client, because SGP is not satis ed and there are creden-
tials S1 and Sz which can be disclosed newly. At the rst
client-side policy matchings, since the server can disclose
the credentials S1 and Ss, the values in DF of credentials
S1 and S in Table 4 are set to 1. When the rst client-side
policy matchings are performed, the client know that there
are matching policies that satis ed the policy of client’s cre-
dentials C3 and C's respectively. The client sets the policies
of the credentials C3 and C5 to true, and writes matching
policies Ec,; and Ec;, in the columns of MP of the creden-
tials Cs and Cs respectively. After that, the client starts
the second server-side policy matchings with the server, be-
cause there are credentials C3 and C5 which can be disclosed
newly. Similarly, the second server-side and client-side pol-
icy matchings are performed. The negotiation tables of the
server after the third server-side policy matchings are given
in Table 5. Since SGP is satis ed at the third server-side
policy matchings, they move to credential exchange.

In credential exchange, the server rst decrypts Er coop-
erating with the client, and obtains Er = {C3,C4}. After
that, the server generates a request for credentials C's A Cly,
and sends it to the client. Since the request is not satis-
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Table 5: The Negotiation Table of the Server after
Third Server-side Policy Matchings

[DF [ MP |

| server’s policy

R | « | {E5AEVEs true Er
S1 | « | true 1 true
So | — | E+-AEC-Cs true 1 Es,
S3 | — | €5Cx true 1 Es,
Sy | «— | Extrue 0 Es,
S5 | «— | E+AECs true 1 Es;

ed by the client’s unprotected credentials, the client de-
crypts Ec, and Ec, cooperating with the server, and ob-
tains Ec, = {S1,S2} and Ec, = {S3} respectively. Then,
the client generates a request for credentials S1 A S2 A S3,
and sends it to the server. Similarly, the server and the
client repeat requests for credentials each other. When the
client received a request for credentials C1 A Cs, the client
terminates a request because the server’s request is satis-

ed by the client’s unprotected credentials. The client and
the server nd the sequence to exchange credentials C1,
Cy — S1, S2 — C3 — S3 — C4 — R by reversing previous
requests for credentials and exchange credentials according
to it. When SGP is satis ed by the exchanged credentials,
the negotiation nishes in success.

4. CONCLUSION

In this paper, we proposed BPPM/AHES as an ATN nego-
tiation protocol. We extended private policy matching pro-
posed in a preceding work, and de ned the server-side policy
matching and the client-side policy matching. In each policy
matching, calculations are performed using additively homo-
morphic properties of the ElGamal cryptosystem. The nego-
tiation process proceeds by repeating the server-side and the
client-side policy matchings alternately, until the sequence
to exchange credentials without violating policies is found.
In this protocol, the problems of existing ATN protocols are
solved, and there is no disclosure of credentials and policies
before the negotiation succeeds.
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ABSTRACT

There has been an increased interest in automated negotiation sys-
tems for their capabilities in reaching an agreement through negoti-
ation among autonomous software agents. In real life problems, the
negotiated contracts consist of multiple and interdependent issues
which tend to make the negotiation more complex. In this paper, we
propose to define a set of similarity measures used to compare the
agents’ constraints, their utilities as well as their certainties over
their possible outcomes. Precisely, we define a decision value-
structure which gives a reasonable condition under which agents
having similar decision structures can form a group. We think
that a collaborative approach is an efficient way to reason about
agents having complex decisional settings, but show similarities in
their constraints, preferences or beliefs. Agents will tend to col-
laborate with agents having the same decisional settings instead of
acting selfishly in a highly complex and competitive environment.
Therefore, formed groups will benefit from the cooperation of its
members by satisfying their constraints as well as maximizing their
payoffs. Under such criterion, the agents can reach an agreement
point more optimally and in a collaborative way. Experiments have
been performed to test the existence of the decision value-structure
as well as its capability to describe an agent’s decision structure.
Moreover, the decision value-structure was used for group forma-
tion based on measuring the agents similarities.

Keywords
Multi-attribute Utility, Decision Theory, Multi Objective Optimiza-
tion, Uncertainty, Group Formation, Collaboration.

1. INTRODUCTION

Automated negotiation is a process by which a group of autonomous
agents interact to achieve their design objectives. The agents will
attempt to reach an agreement and satisfy their contradictory de-
mands through a bargaining process. In an agent-mediated sys-
tem, an important aspect of the solution is the way in which the
agents negotiate to propose contracts to each other, under specific
requirements and constraints. In real life situations, agents have
to take into consideration multiple attributes simultaneously dur-
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ing the bargaining process, such as the quality, quantity, delivery
time, etc. ([7]). In this paper, we propose to define a new approach
to tackle the complexity of utilities with interdependent attributes
by providing a new model for multi-attribute utility representation,
which takes into consideration the possible interdependencies be-
tween attributes. In the real world, we believe that people who
have similar decisional structures could reach an agreement more
smoothly. In this paper, we propose also a new criterion for po-
tential consensus under a number of assumptions, related to the
decisional structure of the agent, defined as a Constraint-Utility-
Belief space. In fact, adopting a cooperative behavior during the
negotiation process may improve the performance of the individ-
ual agents, as well as the overall behavior of the system they form,
by achieving their own goals as a joint decision [6]. To put this
straightforward, we assume that our model is based on the follow-
ing assumptions. In real life, we believe that people who have simi-
lar beliefs (certainties) relative to a specific situation, as well as the
same preferences (utilities) over the same common outcomes (at-
tributes), could reach a reasonable agreement more optimally and
smoothly, than if they had different certainties or preferences over
different outcomes. To support this claim, we first describe the dif-
ferent aspects of the decisional structure of an agent as a Constraint-
Utility-Belief space. Most importantly, we define a unique decision
value-structure for each agent, which gives a reasonable criterion,
under which agents’ decisional structures can be compared. We
point out that in the case of similar decision value-structures, the
agents can form groups, as an initial step before making coalitions
which satisfy their constraints and maximizes their payoffs. There-
fore, the agents can reach an agreement point more efficiently and
in a collaborative way. We argue that the advantage of such ap-
proach is that the agents having strongly different decisional struc-
tures i.e. different decisional value-structures, do not need to co-
operate. Instead, they can find agents having similar settings, and
form groups.

At this end, in the case of multi-attribute negotiation we must de-
fine the main components needed by an agent to make decisions.
There have been several works in the context of multi-attribute ne-
gotiation for its importance in commerce as well as in social inter-
actions. Different approaches and methods were proposed to an-
alyze multi-attribute utilities for contracts construction. [12] pre-
sented the notion of convex dependence between the attributes as
a way to decompose utility functions. [9] proposed an approach
based on utility graphs for negotiation with multiple binary issues.
[2] proposed also a model inspired from Bayesian and Markov
models, through a probabilistic analogy while representing multi-
attribute utilities. The same idea was firstly introduced by [11]
through the notion of utility distribution, in which utilities have
the structure of probabilities. Most importantly, a symmetric struc-



ture that includes both probability distributions and utility distribu-
tions was developed. In another work by [8], a similar concept was
introduced by the notion of Expected Utility Networks which in-
cludes both utilities and probabilities. [3] proposed a model which
takes into consideration the uncertainties over the utility functions
by considering a person’s utility function as a random variable, with
a density function over the possible outcomes.

The remainder of the paper is structured as follows. Section 2 pro-
vides a formal definition of our model based on the notion of De-
cisional Structure of an agent with all its components. Section 3
describes a method used by the agent to construct his proposals
or contracts, based on his decisional structure. In section 4, we
elaborate a possible usage of the decisional structure as a group
formation criterion through a set of similarity metrics. In section
5, we generalize the use of those metrics by the Decisional Value-
Structure function as a method to compare agents’ decisional struc-
tures. The experiment and the analysis of the model are described
in section 6. In section 7 we present the conclusions and outline the
future work.

2. DECISIONAL STRUCTURE

In the following section we will provide an overview of our theo-
retical model used for the representation of an agent’s decisional
structure. In fact, by decisional structure, we refer to the overall
settings or information used by the decision maker i.e. the agent, to
elaborate his strategies and make his decisions. In other words, the
decisional structure of an agent can be considered as the decision
space of the agent representing all his possibilities. Therefore, we
will initially focus on a microscopic representation of an agent ¢
regardless from his environment or the other agents. The macro-
scopic view will be developed in the next sections in the case of
group formation. An agent ¢ will define a unique tuple (1) repre-
senting his decisional structure.

Agent i — (Gy,U;, By) (1

This tuple will be characterized by the attributes and constraints of
the agent 4, represented by a Directed Acyclic Graph G; [2] . The
preferences of the agents will be represented by the utilities U; of
the agent. The agent’s beliefs or certainties will be represented by
the probability distributions B;. The tuple can be described in the
equations (2).

G = Vi, Ey) (22)
Vi= {0} ~ Y, 0 = (@1, m,) b)
By =Vi x V; = {d;}"4 (20)
Ui = {ul}i—, (2d)
B =t; = {65}, (2e)

= {0 [pij1:@ija, - -Digom : Tigm,] Yimr (2D

The static structure of the agent in (2a), defines the attributes (2b)
and the dependencies (2c) between them, represented as a Directed
Acyclic Graph G;. In (2b), each vertexv} of the graph corresponds
to an attribute a§ i.e. an outcome or a prospect. An attribute a§
is defined as a vector of the possible values that can be taken by
a;v. In the discrete case aé (2b) and in the continuous case a; S
[21, Zm;]. In(2c), constraints are represented by the arcs {d; } ;. C
G, and connect the vertices representing dependent attributes. But,
it can be used to compute the utilities by mirroring the same de-
pendence structure as a conditional dependence between the util-
ities [11]. This dependence structure could be updated dynami-
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cally during a negotiation process when the agents are collabora-
tive. In (2d), utility functions U; of the agent ¢ represented as a
function-vector {u; }7=1. In our model, we assume that the deci-
sion maker i.e. the agent follows the axioms of normative utility
functions (3 j u;~ = 1) [13]. Furthermore, we assume that the used
utility functions have the properties of non-satiation (u'j(x) > 0)
and risk aversion (v (z) < 0) [5]. Each utility function u} is de-
fined over a domain D; related to the possible values taken by the
attribute a; as in (3).

uj : Dy — [0,1] 3)

Another important aspect of our utility functions is that they are de-
fined in term of dependencies as conditional utilities, and therefore
embody the notions of conditional probabilities and probability in-
dependence [11]. In our model, we use this representation for the
computation of the utilities in respect to the functional dependen-
cies. We refer the reader to the work proposed in [2] and related to
conditional utilities and the conditional independence. In (2e), the
belief or the certainty structure B; of an agent ¢ characterized by
all the lotteries {¢;}7_, (2f) where each lottery ¢ is associated to
the attribute a;, according to the probability distribution p; ; over
the outcomes z; ;1 € a;» with ZZ]: 1 Di,j,k = 1. The lotteries of
an agent ¢ over the set of attributes aj- can be represented by the
lottery (4).

7
05 [P Tig1, oo Piin & Tijm) “

The probabilities p; ; are the subjective probabilities [1] of the
agent ¢ and represent his certainties about the possible outcomes.
Each probability associated to an attribute, can be seen as a random
variable over the possible values of an attribute [3].

3. UTILITY MAXIMIZATION

3.1 Contract Representation

An agent ¢ will represent a contract C as a vector of attributes
Ci = (di,..., aj,...,al ), where each attribute corresponds to
a vertex v; € V; as we mentioned in (2b). Therefore, finding the
optimal contract Ccx having the highest utility among the contracts
C_"ie N, corresponds to solving the objective function (5) [4].

— —

* = i(C 5
arg max }_ ui(C5) ©)

However, we assume the existence of a number of constraints, de-
scribing the relations or interdependencies (2c) between the at-
tributes [2] . In other words, to compute the utility of a single at-
tribute, we must take into consideration the other attributes. Mean-
while, we will associate a specific utility function u; to each at-
tribute a;, with ¢ as an attribute index. The overall utility of a con-
tract C can be represented in the equation (6).

w(@) = > wilai/{az}) (6)

aiEC-"

It is obvious that none of the overall attributes are needed to com-
pute the utility of a single attribute. It means that based on a graph-
ical representation of the interdependencies (2¢), we will only use
the connected attributes. The edges d; representing the constraints
or dependencies between attributes. Since the dependencies will
exist only between the connected vertices, each vertex a; will de-



Table 1: Conditional Utility functions

Utility u; | Conditional Utility w;/{u;}" =1
U1 Ui

u u

us3 u3 / {U1 ) uz}

U4 U4

us us /{us, ua}

Ue

uz uz/{ua}

pend on its parent vertices giving the equation (7).

w(@) = Y wilai/m(as)) )

a;eC

Where 7(a;) is the set of all the parents of the vertex a;. This repre-
sentation means that in order to compute the utility of the attribute
a; we need to use the attributes 7(a;) and their corresponding util-
ity functions. Therefore, the objective function (5) can be written

as C* = arg maxgs u(C). The final equation is described as in
(3
cr = argmax Z u;i(a; /7(as)) 8)
a1€C

3.2 Example of Contract Construction

Suppose we are dealing with contracts with a number of attributes
equal to 7. The goal is to find the optimal contract C* satisfying
the interdependencies between the attributes. Each agents will or-
ganize his attributes and constraints in a specific way defined by the
Directed Acyclic Graph in Figure 1.

ul us us ue

©LEID ©
ol a9

Figure 1: Constrained attributes

As we can see in Figure 1, the DAG will represent the contract
from a statical viewpoint i.e. the structure and the interdependen-
cies between the attributes. Moreover, a utility function w; has to
be associated to each vertex v;, in order to compute the utility of the
corresponding attribute a;. Based on the graph in Figure 1, the
interdependency relations between attributes will yield the same
dependencies among the utility functions as shown in Table 1.
In the concrete case, an attribute a; can have different values and
therefore will be represented by a vector a; = {x; € Di};n:jl
Maximizing an utility function w; is finding the value z* € D;
representing the maximal extrema of u; such as in (9).

Thus, we are interested in maximizing the sum of the increasing
functions U;. Therefore, the optimal contract can be written as

a vector C* = ( aj,...,aj,...,ay, ), where aj is the maxima
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of u;. The optimal contract’s utility is computed according to the
equation (10).

) = ui(ai/n(a})) (10)

€N

3.3 Agent’s Optimal Contract

The algorithm Optimal_ Contract is used to find the optimal
contract based on the attributes (2b), the utilities (2d), and the in-
terdependencies among the attributes (2c).

Algorithm: Optimal_Contract

Input: DAG G; of the Agent ¢
Output: Optimal Contract C*
1 begin
2 Topologic ordering of a; according to 7(a;) ;
3 for k < |7(ai)|min to |7(a;)|maz do
4 foreach a; sarisfying |7(a;)| = k do
5 Find a; satisfying
ui(a;) > ui(z;), j € [1,ms], ©j € D;;
6 end
7 end
8 C* « (ai,as,a3,...,ai,...,an);
9
0

return C*
end
Algorithm 1: Optimal contracts finding

Based on our example in Figure 1, the vertices a; will be sorted
according to the number of parents i.e. the in-degree deg™ (a;),
which will describe the number of constraints of the related at-
tribute.

An attribute a; with deg™ (a;) = 0 is called a free attribute, as the
corresponding utility is computed only by using the attribute a;’s
utility function u; without any reference to other utility functions
or other attributes. Similarly, an attribute with deg™ (a;) > 0 is
a non-free attribute or dependent and is subject to deg™ (a;) con-
straints. The topological sort of the attributes a; within G; is based
on the deg™ (a;).

4. GROUP FORMATION

4.1 Group formation metrics

The nonlinearity and the complexity of the agents preferences is ba-
sically due to the different constraints they are trying to satisfy, as
well as their utilities and the way probabilities are affected. Gen-
erally, our approach tends to capture and analyze the similarities
between the agents constraints, utilities and beliefs. Being part of
the same group means that all its members have close constraints,
utilities and certainties. Therefore, it is important to define the sim-
ilarity functions, to be able to compare between two agents’ de-
cisional spaces and decide whether they can be part of the same
group or not.

4.2 Maetric related to the Graph

We define the measure sim as the degree of similarity between two
graphs G1 and G>. In other words, how much the agents whose
graphs GG1 and G share constraints and how close they are in term
of vertices and edges. The similarity measure is calculated by mul-
tiplying the Jaccard indexes relative to the vertices and the edges
sets.



This similarity measure can be definied by (11).

sim: G x G —[0,1] (11a)

S’im(Gth) = Jv(Vh‘/z) X JE(El,Ez) (11b)
|V1QV2| ‘E10E2|

= llc

|V1UV2| ‘E1UE2| ( )

The extreme value sim(G1,G2) = 0 means that the agent 1 and
the agent 2 do not have the same attributes nor share common
constraints, whereas sim(G1,G2) = 1 means that they have ex-
actly the same attributes and the same constraints. Therefore, it
might be interesting to consider these similarities’ measures be-
tween agents’ DAGs as a way to form groups and maybe think of
potential coalitions. Under these hypothesis, each agent ¢ has a vec-
tor SG; = {sim(G;, Gy)}r=: containing all the similarity values
between his graph G; and the other agents’ graphs G,. Using this
vector, the agent can selected the set of agents having similar struc-
tures (attributes, constraints). This can be a first step for a future
collaboration between the agents being part of the same group.

4.3 Metric related to the Utilities

As mentioned in 2., the utility functions have the properties of non-
satiation and are risk aversion . Under these hypothesis, we assume
that the behavior of these functions can be used to compare the
utilities of two agents. Let’s consider two utility functions wu; :
D; — [0,1], uj : D;j — [0, 1] and the domain D = D; N D;. If
we suppose that u; and u; are similar (u; ~ u;), then (12) holds.

u; ~uj = Vo € D, Je, |ui(z) —uj(z)| <e (12)

The main purpose of comparing utility functions is finding a simi-
larity measure enabling us to say whether two agents have the same
preferences over the same outcome (attribute) or not. We can pro-
pose a way to compare two agents’ utilities by comparing their ac-
cumulated wealth for the same outcome z. In this case, we have
to consider the utility value as if it was a cumulative distribution
function. Comparing two agents’ utilities u; and u; is comparing
their integrations from the last preferred outcome x.,i» up to the
outcome x. Therefore (13) holds.
x
Ui ~ U = (ui(z) —uj(x))dz ~ 0 (13)
Tmin

The comparison measure of two utility functions u; and u; up to
an outcome x will be defined as in (14).

sim(ug, uj) = / (ui(x) — uj(z)) dz (14)
We notice that both utilities have the same type i.e. correspond to
the same outcome (domain). Therefore comparing the overall n
utilities U; and U; of two agents 7 and j can be determined as in
(15).

sim(U;, Uj) Hszm uk,uk (15)

4.4 Metric related to Beliefs

The agents have different certainties when it comes to decide about
the outcomes and their related preferences. Therefore, we think
about a way to compare these certainties defined as lotteries. Two
agent 4 and j will share the same certainties (beliefs) for an outcome
ar, if their respective probability distributions p¢ and p). over aj
are close or similar. A possible way to consider this similarity is to

use the cross entropy. Assuming that for a certain attribute ay =
(1, ...Tm, ) and for two lotteries £}, and £, relative to two agents
i and j, each lottery will correspond respectlvely to a probability
distributions pk and pk over ai. Therefore, we can define the cross

entropy of py, and pj, as in (16).

mp

=" pi(@r) log[p}, (x)] (16)

=1

sim(pk,, p},)

Generally, each agents ¢ has a vector of lotteries ¢; over the n at-
tributes and defined as his certainty structure B; as in (2e) and (2f).
We can define a similarity measure comparing two agent’s certainty
structures B; and B; as in (17).

sim(B;, Bj) Zszm pk,pk a7

S. DECISIONAL STRUCTURE VALUE FUNC-

TION

After defining the agent’s metrics we will focus on how to ex-
ploit them in order to satisfy the common constraints as well as
the possible similarities between the agents’s belief and utilities.
For example, the agents sharing the same constraints (same graphs
structure) and having the same beliefs (same probability distribu-
tions over the outcomes) could form groups by opening and shar-
ing their utility functions according to a specific strategy. As in
(1), the tuple (G, Us;, B;) of an agent ¢ describes his constraints,
preferences and beliefs in a way that identifies the agent from the
other agents’ configurations. However, if the values G;, U, and
B; represent in a unique way their corresponding agent, it is pos-
sible to construct a bijective function f which maps each agents
tuple (Gs, U;, B;) to a unique real value dsv; € [0, 1] identifying
the agent in a unique way. This function can be assimilated to an
Hilbert Space Filling Curve [10] or can be constructed by a bi-
nary expansion of real numbers. This function can be described by
the definition (18).

f:DJ x Dy ><Dp—>[07 1] (183)
f(gi, us, pi) = dsv; (18b)

The domains Dy, Dy and Dp of f are equal to [0,1]. We will
develop in the next section the proper use of this function f in the
context of group formation and agents clustering. The function
f must be injective i.e. for two agents ¢ and j having different
settings (g:,us, b;) and (g;,uj, b;) we will have (19).

(givuizbi) 7é (g.i7u.j7b,7) - f(giﬂh, ) 7é f(gjzuﬂ ) (19)

It is possible to prove not only the existence of an injection from
[0,1]° to [0, 1] but also a bijection. In fact, that bijection exists and
it can be proven using the Cantor-Bernstein-Schroeder theorem as
following :

i. There is an injection g satisfying (20).
g:[0,1] —[0,1]? (20a)
g(z) = (z,0,0) (20b)

ii. Itis possible to define an injection k : [0,1]* — [0, 1] given
by representing the tuple (z,y, z) in binary and then inter-
lacing the digits before interpreting the result in base 10,
yielding the image of (x,y, z). Using binary for the rep-
resentation of the strings is a way to avoid the 9’s with the



dual representation in base 10 and therefore, preserving the
injection.

iii. Based on 4. and 4. , we can apply the Cantor-Bernstein-
Schroeder theorem, which states that if there are two injec-
tions g and A as in (21a) and (21b),

g:A— B (21a)
h:B— A (21b)

Then there is a bijection f between A and B. Hence, it is
possible to find f satisfying the condition (19).

An interesting usage of the function f is in a mediated negotiation
where a mediator is gathering bids from the agents and trying to
find the optimal contract. In fact, f provides to the mediator a way
to group the agents based on their similarities without the need for
the agents to open their utility spaces or their constraints. In this
situation, the mediator can establish a feedback mechanism to up-
date his constraints according to the settings of the agents. The
convergence to the optimal solutions, ensuring social welfare, will
be based upon the agents’ feedback as well as the initially estab-
lished mediator’s constraints. Each agent ¢ has only to provide the
decisional structure value (dsv) which can be seen as a fuzzy in-
dicator about the agent’s Constraint-Utility-Belief Space ([0, 1]%).
Once these values are collected, the mediator can analyze and pre-
dict the possibilities of consensus reaching and the convergence to
final contract. This is done before starting any utility space sam-
pling or any computationally consuming task, used for example in
[4].

The main advantage of using the dsv is to avoid bidding when the
bids are likely to yield a complex and nonlinear utility space. Fur-
thermore, having nonlinear space tends to make the consensus find-
ing process complex, especially when there is a mediator. In fact,
the mediator has to collect the bids and explore a highly nonlin-
ear utility space in order to find the Pareto optimal contracts [4].
Instead, we can find an appropriate grouping of the bids based on
certain criteria (including similarity measures) defined by the deci-
sional structure values of the agents.

As we mentioned above, f is bijective, as the agents do not need
to open their utilities nor their belief nor their constrains. Instead,
they can know exactly how close and how similar their decision
structures are and hence to decide whether to go for a collaborative
strategy or act regardless from the others. The closeness degree be-
tween two agents stands upon the monotonicity of f when mapping
to [0,1]. The function f can capture enough information that allows
a meaningful clustering of agents based on their common interests
: Constraints, Attributes, Utilities, Belief, Certainty, etc.

6. EXPERIMENTAL ANALYSIS

In the following experiments, we provide a method for group for-
mation based on the similarity between the decisional values of the
agents. We also provide an application of the decisional structure
in the design of vectors called vectorial design.

Given the set C = {d;}_; of all the decisional structure values
(dsv) of the agents, we propose to partition C into k disjoint clus-
ters using the K-Means algorithm. Finding the optimal partitioning
of C corresponds to finding the & clusters as in (22).

k
. . a2
Ccr = argménz Z ld; — &:l| (22)

i=1d;€C;
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Each cluster or group Cj; is centered around a specific structure
value §; which refers to the agent having the decisional structure
that is more likely to describe the common features of the group
Ci.
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0.49606
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Decisional Structure Values

0.03126

1 4 7 10 14 18 22 26 30 34 38 42
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Figure 2: Agents’ dsv values

Figure 2 illustrates a process of grouping of 45 agents, based on
their decisional structure values i.e. d;. We propose to partition
these agents into 6 groups each of which is characterized by a group
centroid J;. The resulting groups can be described by their corre-
sponding centroids which are represented in Figure 2 in blue, on
the right axis.

The decisional structure values §; were generated based on the
function f defined in 5., which was applied on the G, U; and
B; variables of the 45 agents. The corresponding DSVs must be
unique for each agent. Under such hypothesis, the injectivity of
the function f will stand and there will be no risk for collisions i.e.
two different agents, having different decisional structures but hav-
ing the same DSV. Based on the original tuples G;, U; and B;, we
found that the agents being part of a group (C}, d;) had close con-
straints, utilities and probabilities. This result was evaluated firstly
by comparing the similarities between two agents decisional struc-
ture values dsv; and dsv; based on the distance d = |dsv; — dsvj|.
Secondly, we measured the distances dg = sim(G;, G;), du =
sim(U;, Uj) and dy, = sim(B;, Bj), defined in 4. We found that
the distance d is related to the distances dg, d,, and dp. The result
confirms the characteristics of the bijective function f defined in
5., and its ability to describe uniquely an agent’s decisional struc-
ture.

In Figure 3, we can see that there is a number of agents grouped
around the same dsv value. In this case, the agents 2, 3,4, 5 and 9
can be grouped into a cluster GG based on the assumption that they
have common decisional structures. According to this information,
and whenever its shared to the overall agents (1 to 10), the agents
not being part of GG can choose to join this group or not. In case
they accept to join, it is probable that they should start adapting
and updating their constraints, preferences and beliefs similarity to
the initial agents of G.

Generally, The decisional value structures are constructed based on
the graphical constraints, utilities and beliefs. As we can see in
Figure 4, the red curve represents the graphical constraints val-
ues, the utilities are represented by the green curve, and the blue
values represent the beliefs. The overall similarity is represented
by the black curve. For example, we can see that the agent 1 and
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Table 2: Agents’ vectors values

Agents | 1 T2 Values
Al 0.12 | 0.96 | 0.05683
Ao 1.87 | 1.83 | 0.68083
As 1.34 | 1.45 | 0.38637
Ay 1.41 | 1.57 | 0.44097
As 2.32 | 2.92 | 1.36735
As 2.39 | 3.01 | 1.4523

the agent 6 have close DSVs, and this can be seen based on the
closeness in the red, green and blue curves i.e. the graphical con-
straints points, utilities and belief points.

A concrete application of such method of comparison is the case
of vectorial design, where a user designs graphically a vector. A
vector can represent an object, a product, or more generally a multi-
attribute contract. As an example, 6 agents are designing 6 different
vectors. For the sake of simplicity, we can think about the vector
as a 2-points vector with components z; and x2. In Table 2 we
can see that for each two values z; and x2 we can represent the
design vector by a unique value, locating the agents design in the
overall designed vectors. This will give an idea about the degree of
closeness between the designed vectors. The degree of closeness of
the agents’s vectors can be provided as a shared information to the
overall agents while they are designing their vector. In fact, sharing
such information dynamically and in real time can give the agents
an idea on how their vectors are located in the group, and how
to change their vector accordingly. This information can be rep-
resented as in Figure 5, and is available to each agent. On the x
axis, we have the agents’s indexes from 1 to 6 represented by 6 bars,
and on the y axis we represent their corresponding values. When-

Figure 4: DSVs comparison

ever an agent changes his vector, the representation in Figure 5
will change accordingly. Such method of collaborative design will
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Figure 5: Proximity of the designed vectors

give the agents the possibility to orient their design based on the
overall group’s preferences, ensuring social welfare. It is possi-
ble to extend the simple vector represented by z1 and x2 to a more
complex vector. Another example of vectorial design is represented
in Figure 6 where 7 agents are designing 7 vectors. At differ-
ent times, each agent A; will provide a vector V4, = (X1, Xi2),
where X;; are real values. During the design process, each agent
Aj can visualize the similarities between his design and the other
agents Ar; as in Figure 7. Therefore A; can update his vector
according to the evolution of the other agents’ designs.

The represented values in Figure 7 correspond to the designed
vectors represented in Figure 6. We can can see that the vectors
Vs and Va, are graphically close in Figure 6, therefore their
corresponding values in Figure 7 will be also close (1.30555 and
1.4523). The same comparisons can be done to the other vectors,

b 02174933
#--L0.0000001



Figure 6: Vectors representation

Figure 7: Decisional Values representation

allowing the agents to see the likelihood and the convergences of
the global design.

7.

CONCLUSION

The contributions of this paper are two-fold. On the one hand, we
proposed a theoretical model to reason about multi-attribute con-
tracts representation taking into consideration the attributes’ inter-
dependencies. On the other hand, we provided the notion of de-
cisional structure value as a main criterion for agents’ decisional
settings comparison. The defined structure-value captures the main
similarities between the agents’ decisional settings. We have shown
that it is possible to represent such decisional setting as a Constraints-
Utilities-Belief space. Furthermore, we provided an example of
usage of such value in the case of group formation based on the
degree of similarity between the agent’s decisional spaces.

As a future work, we would like to consider the performances of
the method used to generate the decisional structure value. More-
over, we would like to elaborate a complete negotiation process, by
defining a concrete protocol based on the formed groups. For ex-
ample, we can develop the case where the agents being part of the
same group can open and share their utility functions.

8.
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ABSTRACT

Endowing the negotiation agent with a learning ability such
that a more beneficial agreement might be obtained is in-
creasingly gaining emphasis in agent negotiation. In this pa-
per, we present a novel bilateral negotiation model based on
Bayesian learning to enable self-interested agents to adapt
negotiation strategies dynamically during the negotiation
process. Specifically, we assume that two agents negotiate
over a single issue based on time-dependent tactic. The ne-
gotiation agent has a belief about the probability distribu-
tion of its opponent’s negotiation parameters (i.e., the dead-
line and reservation offer). By observing the historical offers
of the opponent and comparing them with the fitted offers
derived from a regression analysis, the agent can revise its
belief using the Bayesian updating rule and can correspond-
ingly adapt its concession strategy to benefit itself. By being
evaluated empirically, this model shows its effectiveness for
the agent to learn the possible range of its opponent’s private
information and alter its concession strategy adaptively.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multi-agent
systems

General Terms
Learning, Algorithm

Keywords

Agent negotiation, Bayesian learning, Concession strategy

1. INTRODUCTION

In recent years, researchers in multiagent systems have
paid their increasing attentions to the integration of learn-
ing techniques into agent negotiation [2] [1] [8] [5] [11]. In
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this type of learning circumstances, agents need adapt them-
selves to the changes of opponents and/or the environment
through learning in order to achieve a satisfactory result.
However, due to the essence of competition, privacy and un-
certainty in real life negotiation [3], negotiators are always
unwilling to reveal their private information (e.g., param-
eters such as the deadline, reserve price, or strategy pro-
files) to their opponents in case of being forced to a worse
outcome, thus making learning in negotiation a challenging
problem.

In current literature, a number of approaches have been
developed by employing agents learning methods into ne-
gotiation process. Zeng and Sycara proposed an approach
based on Bayesian learning to learn the opponent’s reserve
price [12]. Their approach assumed that agents have priori
knowledge about the opponent’s bidding strategy. This as-
sumption may not always be true in real-world negotiation.
Hindriks and Tykhonov also proposed an approach to dis-
cover opponent’s information [5] by using Bayesian learning
based on the assumptions that 1) agents know about the
opponent’s weights ranking on negotiation issues and 2) all
agents’ preferences can be modelled by three proposed func-
tions, which may impact the use of this approach in a wide
range when these assumptions conflict with the real world
situations. Ren and Zhang introduced a regression analysis
approach to predict the opponent’s concession strategy by
using the historical offers only [9]. However, their approach
did not give further advice on how to adapt agent self’s con-
cession strategy based on the learning results. Brzostowski
and Kowalczyk also presented a way to estimate partners’
behaviors in different types of agents, based only on the his-
torical offers in the current negotiation [3]. However, the
accuracy of classification on partners’ types may impact the
accuracy of prediction results. The current challenging is-
sues in agent learning during negotiation include (1) how to
design a learning method without priori knowledge of the
opponent’s private information, (2) how to develop an effec-
tive learning strategy only based on the historical offers of
current negotiation, and (3) how to produce a constructive
guidance from learning to adapt agent’s negotiation behav-
iors so as to achieve a better negotiation outcome.

This research attempts to solve the above three changing
issues. In this paper, we propose a novel model by combin-
ing Bayesian learning and a regression analysis approach
to dynamically learn the opponent’s negotiation deadline
and reservation offer. Firstly, a negotiation agent defines
some regions and evenly initialize the probability of each



region. The probability here indicates how likely that the
opponent’s deadline and reservation offer are located in the
corresponding region. By using the predefined regions, the
agent can have some estimations on the opponent’s negoti-
ation behaviors. Secondly, by using the regression analysis,
the differences between the opponent’s real negotiation be-
havior and the agent’s estimation results are calculated. The
more similar between the opponent’s real behavior and an
estimated behavior, the more likely that the opponent’s real
deadline and reservation offer will be located in the corre-
sponding region. Thirdly, based on the similarities between
the opponent’s real behavior and the estimated behaviors,
the probabilities assigned to each region will be updated dy-
namically through Bayesian learning. Lastly, the agent will
propose a countermeasure for each estimated behavior of the
opponent, and all countermeasures will be combined based
on the likelihood of each estimated behavior. The combined
result will be employed by the agent to perform a reasonable
reaction. During the negotiation, each region’s probability
will be dynamically updated and gradually close to the real
situation. Thus, the agent will also gradually adapt its nego-
tiation strategy to reach a better negotiation outcome. Our
model only use historical offers in the current negotiation,
without requesting prior knowledge about the environment
and the opponent.

The remainder of this paper is organized as follows. In
Section 2, we recap the general negotiation model, espe-
cially the basic principles of the time dependent tactic. The
proposed learning model is introduced in detail in Section 3,
and in Section 4 empirical evaluation and analysis are pre-
sented. The discussion and related work are given in Section
5. Finally the paper is concluded and future work is outlined
in Section 6.

2. A GENERAL NEGOTIATION MODEL

Before laying out our learning model, we give a brief de-
scription of a time dependent, bilateral single-issue negotia-
tion model, which is widely used in many applications. Let
i (i € {b, s}) represent a negotiator, i.e., b for a buyer agent
and s for a seller agent. Both agents have an initial price I P;
and reserve price RP; for the negotiating issue. The interval
[IP;, RP;] indicates the range of all the possible agreements,
and can be normalized in-between [0, 1] using a utility func-
tion. In this paper, we choose the widely accepted linear
utility function [4] shown in Equation 1:

pi — RP;, .
Ui(pi) = m 1€ {b,s} (1)

where p; is the value of an offer in the range of [IP;, RF;].
In time dependent tactic, agent i concedes its utility w;(t)
under the time constraint. At the beginning of negotiation,
agent i has its highest utility of 1 for the initial price. As the
negotiation proceeds on, the utility u;(t) decreases according
to a family of polynomial functions [4] given by Equation 2.

wilt) =1 ()" i€ {bs} @)
where T; is the deadline of agent ¢ and [ is the conces-
sion parameter. 5 > 1,0 < 8 < 1 and 8 = 1 represent
three concession strategies called Conceder, Boulware, Lin-
ear, respectively, signifying different concession rates in a
negotiation process.
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When £ is settled, the utility u;(t) can be computed dur-
ing the negotiation. As a result, the agent can give a counter
offer at time ¢ according to the following offer generating
equation [4].

Offer;(t) = RP; + uw;(t)(IP; — RP;) i€ {bs} (3)

Combining Equation 2 and 3, the offer generating Equation
3 is rewritten as Equation 4.

Offer,(t) = IP; + (RP; — IP)(=)" (4)

In a non-learning negotiation setting, once an agent sets
the value of B, the agent will keep this value unchange
through the negotiation process, without any adaptation to
the dynamic environment or the revelation of opponent’s
private information. However, if the agent can learn some
useful information from the opponent during the negotia-
tion, it will be able to adapt its original concession strategies
and gain more benefits to produce good outcomes for nego-
tiation. In the following section, we will present an adaptive
negotiation model using regression analysis and Bayesian
learning to enable agents to alter their concession strategies,
thereby a better outcome will be obtained.

3. AN ADAPTIVE NEGOTIATION MODEL

In this section, an adaptive negotiation model is proposed.
This model includes two parts which are a learning mech-
anism and an adaptive concession strategy. Each part will
be introduced in detail by Subsections 3.2 and 3.3, respec-
tively. In this paper hereinafter, the discussion is taken from
the perspective of the buyer agent unless otherwise specified.
However, such a discussion will not lose the generality of our
model, i.e. a seller agent can also use our model to learn its
opponent’s behaviors.

3.1 Model Description

As we can see from Equations 4, the parameters of dead-
line and reserve price are two main factors dominating the
negotiation process and outcomes. If agents can obtain the
information about these two parameters from the opponent,
a better strategy can be employed to increase agents’ bene-
fits and/or the negotiation efficiency.

Definition 1. Let x-axis represent negotiation time and
y-axis represent the negotiation price. A detecting region
DetReg is a rectangle in this two-dimensional area to present
an estimation of the opponent’s deadline and reserve price.
This area is defined by a 4-tuple DetReg = (T',T", P!, P"),
where T, T" are the estimated lower and upper boundary
of the opponent’s deadline, and P!, P" are the estimated
lower and upper boundary of the opponent’s reserve price.

As shown in Figure 1, the shadowy area indicates the
detecting region for a buyer agent during a learning pro-
cess based on Definition 1. T} is buyer’s deadline and ¢ is
the current time in negotiation. I P, and RP; represent the
buyer’s initial price and reserve price, respectively, and I Ps
is the seller’s initial price. Points appeared in the detection
region of the figure will be explained in Definition 3. The
lines shown in the figure will be explained in Subsection 3.2
during introducing the learning mechanism.

A buyer agent can initialize the value of each component
of DetReg according to its estimation about seller’s private



Figure 1: An example of demonstrating our learning
process

information. The more precise the estimation is, the smaller
the detecting region will be and the buyer can strive for
a better result because more errors can be avoided when
the buyer agent adapts its concession strategy based on this
estimation.

After confirming the detecting region by the buyer agent,
this region will be further divided into smaller areas accord-
ingto N = (N*, N?) in which N* denotes that the detecting
region is evenly divided into N* columns on the x-axis (i.e.
time values), and N? stands for the row number on the y-
axis (i.e. price values) in the detecting region. In this way,
the detecting region can be divided into a number of smaller
blocks, called detecting cells. The total number of detecting
cells in a detecting region is represented by N, and can be
calculated by the formula No;y=N* x NP. Fig. 1 exemplifies
a scenario with N = (3,4) and there are totally 12 detecting
cells in the whole region.

Definition 2. A detecting cell C; (i € 1,2,...,Ngy) is a
divided block in the detecting region, which can be denoted
by a 4-tuple C; = (tﬁ,t?,php?) where ¢!, t are the lower
and higher boundaries of time in the cell and p!, p? are the
lower and higher boundaries of price in the cell, respectively.

Definition 3. A random reservation point X;(t§,p7) is a
randomly selected point in each cell C;, where ¢\ < t& < ¢!
and pt < p? < pl.

In Figure 1, points X, X2, X3, X4 are several random
reservation points in the detecting region and point X is
the real reservation point of the opponent. The detecting
cell is a region where seller’s real reservation point X might
be located. That means the real reservation point X might
be out of the detecting region in real case. The buyer agent
has some belief about the probability distribution of all the
detecting cells. The probability of each cell signifies the like-
lihood that the opponent’s real reservation point X might
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be located in this cell. This belief can be revised more pre-
cisely through learning from opponent’s historical offers (see
Subsection 3.2). Based on this learning result, the agent can
adjust its concession strategy adaptively (see Subsection 3.3)
to gain more profit over its opponent.

3.2 The Learning Mechanism

The purpose of this leaning mechanism is to let the agent
revise its belief about the probability distribution of the cells
in the detecting region. Because the agent has no knowl-
edge about the opponent, it is hard to determine the precise
location of the real reservation point. However the agent
can observe its opponent’s historical offers to renew the be-
lief about the approximate range of the reservation point.
This mechanism consists of two parts, a regress analysis and
a Bayesian learning. In regression analysis, (1) an agent
chooses a random reservation point in every detecting cell
first, based on the belief that this point is the reservation
point of the opponent; (2) the agent conducts the regression
analysis for all random reservation points corresponding to
all detecting cells, respectively; (3) the agent compares the
fitted offers on each regression line with opponent’s histor-
ical offers by the non-linear correlation. By this way, re-
semblance between the selected random reservation point
and the opponent’s real reservation point can be calculated.
The bigger the non-linear correlation between two lines is,
the more alike they will be. That also means that the ran-
domly chosen reservation point has a bigger possibility to
be the real reservation point. Then by using Bayesian learn-
ing, the agent’s belief on the probability distribution will be
dynamically updated at every step of the negotiation. The
regression analysis and our Bayesian learning method are
introduced in the following two subsections, respectively.

3.2.1 Regression Analysis

Before the leaning process, the buyer should initialize DetReg,

N as well as the probability distribution in each detecting
cell, which presents the likelihood that the seller’s reserva-
tion point is in this cell. When the learning begins, the buyer
can do the following steps sequentially.

Step 1: At round ¢, the buyer selects a random reservation
point X, (¢7,py) in each cell C; of the detecting region;

Step 2: Using each point X;(t7,pf) chosen in Step 1, the
buyer calculates the regression line [; based on the
seller’s historical offers O, = {po, p1, ..., pt, } until round
t,. Based on Equation 4, the following power regres-
sion function is generated to calculate the regression
curve.

Of feri(t) = po+ (b7 = po) ()"

()

where po is the initial price of seller. The regression
coefficients b is the concession parameter 5 in the util-
ity function in Equation 4. Then we can calculate
coefficient b based on seller’s historical offers O;, by
Equation 6 as proposed in [9].
ty * sk
b= Zztzl tl Di (6)
Zibzl t;,k2

where p; = In 53:;’; ,t"=1In t% In Figure 1, the solid

line is the curve of the seller’s historical offers while




the dashed line is the regression curve based on each
random reservation point.

Step 3: Based on the calculated regression line /; given by
Equation 5 and 6, the buyer can calculate the fitted
offers Oy, = {po, p1, ..., Pt, } at each round.

Step 4: The buyer calculates the non-linear correlation be-
tween seller’s historical offers O;, and the fitted offers
Oy,. The coefficient of nonlinear correlation ~ can be
calculated by Equation 7.

St (pi — P)(Bi — P)

’y =
VI - )2 S (i - B)?

(7)

where p is the average value of all the fitted offers till
time ¢, and p represents the average value of all the
historical offers of the seller. The non-linear correla-
tion «y, where (0 < v < 1), is a parameter reflecting
the non-linear similarity between the fitted offers and
the historical offers, which can be used as a criterion
to evaluate the resemblance between the random reser-
vation point X; and seller’s real reservation point X.
This is an important parameter to be used in Bayesian
learning for the belief updating as described in the fol-
lowing section.

3.2.2 Bayesian Learning

In general, Bayesian learning can be used when an agent
has a set of hypotheses about its opponent’s information.
The belief about the probability distribution of these hy-
potheses can be revised through a posterior probability by
observing the outcome of its opponent. In our model, we de-
fine the hypothesis space as H;, (i € 1,2,3, ..., Nqu), where
Ngy is the total cell number in the detecting region. Each
hypothesis H; stands for the assumption that seller’s reser-
vation point X is in cell C;. The prior probability distri-
bution, denoted by P(H;),(i € 1,2,3...Nqy), signifies the
agent’s belief about the hypothesis, that is, how likely the
hypothesis fits the real situation. At first, the agent can ini-
tialize the probability distribution of the hypotheses based
on some public information if available, otherwise a uniform
distribution P(H;) = 1/Ngy is assigned.

During each round of negotiation ¢, the probability of
each hypothesis can be altered by the Bayesian updating
rule given in Equation 8.

P(H;)P(O|H;)

P(H;|0) = ZgialP(OlHk)P(Hk)

(8)

where the conditional probability P(O|H;) represents the
likelihood that outcome O might happen based on hypothe-
sis H;. In our learning model, the agent has no information
about its opponent, thus the observed outcome O is op-
ponent’s historical offers O, = {po,p1,...,pt, }. The condi-
tional probability P(O|H;) thereby means how likely seller’s
historical offer Oy, can happen based on the hypothesis H;
that seller’s real reservation point X is in cell C;. The poste-
rior probability P(H;|O) is a renewed belief based on the ob-
served outcome O and at next round, the agent will update
the prior probability P(H;) using the posterior probability
P(H;|0O), thus a more precise estimation is achieved.
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To let the Bayesian learning rule work, the most crit-
ical problem is how to obtain the conditional probability
P(O|H;). Most approaches using Bayesian learning method
usually require a priori knowledge as the conditional prob-
ability, such as [12]. However, our learning model does not
require any priori knowledge about the opponent and works
based only on the historical offers received until ¢, from the
opponent. By comparing the fitted points Otb on the regres-
sion line based on each random reservation point X; with the
historical offers Oy,, the conditional probability P(O|H;) is
obtained. The more consistent the fitted offers are with op-
ponent’s historical offers, the higher the conditional proba-
bility P(O|H;) it will be. As showed at Step 3 in Subsection
3.2.1, the difference between the regression curve and oppo-
nent’s bidding sequence can be indicated by the non-linear
correlation coefficient . Thus, we can use the value of v as
the conditional probability.

The learning approach will increase the probability of a
hypothesis when the random reservation point selected in
the detecting cell is most consistent with the real reservation
point of the opponent. However, in some cases, it is possi-
ble that the learning may have errors. As seen in Figure 1,
compared with point X5, point X4 has a higher non-linear
correlation with the real reservation point X, but point X4
and X are not in the same detecting cell. As a result, the
hypothesis that the real reservation point X belongs to the
cell, where point X4 is located, has a higher probability.
Nevertheless, we claim that this situation does not affect
the learning effectiveness based on the following two consid-
erations. Firstly, although in certain circumstances, using
the non-linear correlation to calculate the difference between
the regression line and the real bidding sequence does not
necessarily reveal the real situation, the error will be eased
through Bayesian learning from a probabilistic point of view.
Secondly, even the error exists, the learning approach still
works because we only need to find an approximate range
of the reservation point, not the precise value of opponent’s
reservation point. In some cases, the real reservation point
X might not be located in the whole detecting region, but
those cells which are closer to point X will still have a higher
probability compared with other cells.

Another issue that should be taken into account is the
learning rate and efficiency. At the early stage of lean-
ing, the hypotheses space can be quite large depending on
the value of DetReg and N (recall Subsection 3.1). It is
time consuming to keep all the hypotheses in the search-
ing space. Some hypotheses can be precluded from the hy-
potheses space when the current time and opponent’s bid-
ding value have surpassed the detecting cell boundary. For
example, for a cell C; = [t}, ¢, p!, p?], if current negotiation
time ¢, > t?, the hypothesis based on this cell is meaningless
because the negotiation process has already proved it false.

3.3 The Adaptive Concession Strategy

Through regression analysis and Bayesian learning stated
above, a more precise estimation of the opponent’s reserva-
tion point is derived, represented by the renewed belief of
the probability distribution of the hypothesis H;. Now, the
agent needs to take an action to give a counter offer based
on this new belief, i.e. which concession strategy to take and
how strong it should be in terms of a value of the concession
parameter (.



Figure 2: Four Scenarios of Concession Strategy

3.3.1 The Optimal Concession strategy

There are four scenarios according to different location of
the random reservation point. As we believe that the agent
is rational, it always strives for a highest utility of its own
regardless of its opponent fully. Therefore, in each scenario,
the buyer needs to adopt different concession strategies to
maximize its expected utility as depicted in Figure 2. In
Figure 2, point bo (o, po) is buyer’s current offer at time o,
point br (T, RPs) is the buyer’s reservation offer at deadline
Ty, and point X, (tf,pf) is the random reservation point of
seller. Then the buyer needs to find another point P(¢,, pp),
which is called a concession point, in its negotiation region
to set the concession strategy and the value of 3.

e Scenario 1: (t§ < Tp) and (pf > po).

In this scenario, the random reservation point X, is
in the buyer’s negotiation region. Because the buyer
agent is rational, it will always try to gain the maxi-
mal utility itself. If the buyer knows that the seller will
quit the negotiation at point X; (i.e., the deadline of
the seller ¢ is shorter than its deadline T3), the optimal
concession strategy for the buyer is to set his bidding
price to pj at time tf. Otherwise, if the buyer gives
more concession, it cannot achieve the maximal util-
ity after finishing negotiation. On the contrary, a less
concession may result in a failure of the negotiation.
As illustrated in Figure 2(a), the random reservation
point X is set to be the concession point P in this case
and the dashed line crossing point X; is the concession
line of the buyer.

e Scenario 2: (tf >=T;) and (p§ >= po).
In this scenario, random reservation point X; is out
of the buyer’s negotiation region. There are two cases
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in this scenario according to the different regression
lines of the seller. As can be seen in Figure 2(b), in
the first case, regression line l; traverses the buyer’s
negotiation region while > does not. In the same way
of analyzing in Scenario 1, buyer’s optimal concession
line for I; is to pass through the intersection point of
the line [; and the right boundary of the buyer’s ne-
gotiation region. Considering that the buyer should
give out its reserve price at deadline T}, for simplicity,
we let the buyer’s concession line cross the concession
point P; on the regression line one step ahead of the
deadline T} (i.e., T, — 1) such that a concrete value of
the concession parameter 8 can be computed. As for
the second case, the regression curve [z has no intersec-
tion with the buyer’s negotiation region, which means
even the buyer concedes, the negotiation based on this
random reservation point is doomed to fail. Never-
theless, the buyer will spare no efforts to reverse this
unfavorable situation. So, it will give the reserve price
at next round (to + 1). To compute a value of 8, we
choose a variable ¢raz(0 < Gmaz < 1) which is quite
close to 1. The concession point P» in this case is set
to be P2(bo + 1, dmaa - RPs) so as to make the price at
next round close to the reserve price of RP, and finally
to give out the reserve price RP, at the deadline.

e Scenario 3: (tf <Tj) and (pf < po).

There are also two cases in this scenario, which can
be signified by {1 and I shown in Figure 2(c). As for
case 1, the optimal strategy of the buyer is to cross the
intersection of /; and bottom line of the buyer’s nego-
tiation region. To compute a value of 3, we set the
concession point P; be the point one step earlier than
the intersection point on the regression line [;. As for
case 2, the line [z does not go through the buyer’s ne-
gotiation region. In this case, the optimal strategy for
the buyer is to keep its price unchanged until 7 — 1
and then gives its reserve price at the deadline. To
compute the value of 3, we can set the price at conces-
sion point P> very close to current price po. Similarly,
a variable ¢min(0 < @min < 1), which is quite close
to 0, can be chosen to set the price at next round to
(14 ¢min) - po such that this price will keep almost the
same as the current price po.

e Scenario 4: (t7 >=T) and (p; >= po).
This scenario, a combination of the former Scenarios 2
and 3, is the most complicated case of all. Each line of
l1, 12, I3 and l4 can be analyzed in the same way stated
before. In Figure 2(d), we depict the concession line
based on [; as an example.

3.3.2 The Combined Mechanism

We have given out all possible situations of the random
reservation points and the corresponding optimal concession
strategies that the buyer can adopt to increase its utility as
well as to avoid the failure of negotiation to its best. Be-
cause the buyer still uses the family of polynomial functions
to concede, the counteroffer from point bg (¢o, po) can be gen-
erated by Equation 9 based on Equation 4.

t—to
Ty — to

B
Oﬁerb(t)=po+(Rbepo)( ) (t>t) ()



Figure 3: Combination of the parameter S

Using this equation, we can guarantee that at its deadline
Ty, the buyer will give the reserve price RP,. At current time
to, the buyer’s offer is pp and the buyer concedes in the form
of polynomial function. Then given the concession point
P(tp, pp) in its negotiation region, a new value of parameter

/3 can be calculated as follows.

POZDPe gy < t, < Th) (10)

We have calculated all the concession values B for each
valid random reservation point in the detecting region, with
a probability distribution P(H;) = {p(H1),p(Hz2),...p(Hn)}
over these values deprived from the regression analysis and
Bayesian learning. Now comes to the problem of how to
combine all the estimated value of 8 to an overall value.
Let 8; (i € {1,2,...n}) be the estimated concession value
calculated from the concession point based on the random
reservation point in cell C;. P(H;) is the probability of the
B:“ presenting the weighting proportion of the corresponding
B; in all the concession values. The value of (; signifies the
concession degree of the agent, which can be represented
by the area between the concession line and the time axis,
which is called concession area. As can be seen from Figure
3, the concession area of 31 is S1, which can be denoted by
Sbogleb. Let S; be the concession area of 3; and let the

concession area of the overall concession parameter § be S.
Based on Equation 9, we can have the following equation.

S= /t b[po + (RP, — PO)(;bitEO)B]dt (1)
R / oo+ (R = Po) (=)
(12)

because,
§=>"P(H)S; (13)

we can get the overall concession parameter 8 as follows:

2 1
B= = pmy ! (14)

2izt 1+6;
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Then the buyer can set its concession parameter as 8 to
give counter offer based on Equation 9 at every step of the
negotiation. Each §; is changing at each step according to
the randomly selected reservation point and the correspond-
ing P(H;) is revised by Bayesian learning throughout the
negotiation process. So the concession parameter 3 adopted
by the buyer at each step is totally different, making the ne-
gotiation an adaptive process in the point view of the buyer.

4. EXPERIMENT

In this section, the empirical experimental results are dis-
played to demonstrated the good performance of our model.

4.1 Experimental Setting

In the experiment, a buyer and a seller negotiate over the
price ranged in-between $0 ~ $100. In order to simplify the
comparison process, we set the buyer agent’s initial price to
$0 and the seller agent’s initial price to $100. The buyer’s
reserve price is randomly selected in-between $50 ~ $100
and seller’s reserve price is randomly selected in-between
$0 ~ $50. Such a setting will ensure the agreement zone
between the two agents always exists. Our agents’ deadlines
are randomly selected in-between [20, 40], and the concession
strategies are randomly selected in-between [0.5,2]. The ne-
gotiation parameter initialization is showed in Table 1.

Table 1: Parameter initialization
Agent 1P RP; T; Bi

Buyer (i=b)  $0  [$50,$100] [20,40] [0.5,2]
Seller (i=s) $100  [$0,$50]  [20,40] [0.5,2]

To provide a benchmark we compare our negotiation model
with the NDF model. In the NDF model, both agents ran-
domly initialize their negotiation parameters according to
Table 1, and keep these parameters unchanged during the
negotiation process. On the contrary, in our model, the
buyer agent will learn how to adjust its concession strat-
egy adaptively to reach a better negotiation outcome. To
use the learning mechanism, the buyer initializes the de-
tecting region as DetReg = (0,1.5Ty,0, RP}), ¢min = 0.01,
Omaz = 0.99. We outline four cases according to the differ-
ent numbers of detecting cells (see Table 2).

Table 2: Four scenarios of different detecting cell
numbers

Case | N* [ NP | Ny
1 4 4 16

2 8 8 48
3 16 | 16 | 256
4 20 | 20 | 400

4.2 Results And Analysis

As our model depends on the regression analysis which
may yield errors as stated before, we do not expect the learn-
ing result to be completely precise. Further more, many
variables affect the learning process such as the number of
detecting cells. The objective of this experiment is there-
fore carried out to analyze the overall performance of this
learning approach considering this uncertainty and error.

We run 100 episodes for each case to show the generality
and robustness of our model. The results of this experiment
are presented in Figure 4. The x-axis indicates the four cases
and the y-axis indicates the average utility of the buyer in



Figure 4: The average utility in different cases
each case. We use solid bars to represent the buyer’s average
utility gained by using our model while the empty bars to
represent the buyer’s average utility gained by NDF model.
We can see from Figure 4, the solid bars are higher than
the empty bars in all cases, and gradually increase as the
number of the detecting cells increase. Such experimental
results indicate that: (1)using our learning mechanism and
the adaptive concession strategy will result in a higher util-
ity than the static concession strategy; and (2) as the total
number of detecting cells increases, the agent has a more
precise estimation of the opponent’s reservation point, thus
can result in a higher utility.

In order to illustrate the dynamic adaptation of the con-
cession parameter 3, we give out the whole negotiation pro-
cess to show how the buyer agent changes its concession
strategy adaptively. We select three scenarios with the ne-
gotiation parameters as follows:

e Scenario 1 (1 < 8 < 2): RP, = $69.58, RP, =
$11.38,T, = 32, Ts = 36, By = Bs = 2.0

e Scenario 2 (8 =1): RP, = $81.04, RP, = $17.82,T} =
35, Ts =36, By =3s =1.0

e Scenario 3 (0 < 8 < 1):RP, = $50.34, RP, = $11.38,T}
30, T, = 22, By = B = 0.5

Figures in 5(a) give the negotiation process between both
agents before & after learning. Figures in 5(b) show the
adaption of the the buyer’s concession parameter 5. In Sce-
nario 1, the seller adopts the Boulware concession strategy.
Before learning, the negotiation ends at $49.53 and both
agents’ concession strategies keep unchanged through the
negotiation process. After learning, the buyer agent adjusts
its concession strategy adaptively in terms of parameter 8
and the agreement price is reduced to $38.46, which is a bet-
ter result than that of before learning for the buyer agent.
In Scenario 2, the seller uses the Linear concession strat-
egy. Before learning, the negotiation ends at $48.57 and
after learning, the buyer can have a better agreement at
$22.34. In Scenario 3, the seller uses the Conceder conces-
sion strategy. Before learning, the final agreement is $33.38
and after learning this value decreases to $20.58. According
to these experimental results from the three scenarios, we
can conclude that, through learning of the opponent’s his-
torical offers, the agent employing our negotiation model can
effectively adapt its concession strategy so as to increase its
negotiation outcome. Our negotiation model is robust when
the opponent employs different concession strategies.

In this section, we illustrate the experimental results of
our negotiation model and compare the results with the
NDF’s. The experimental results indicate that our nego-
tiation model can dynamically adapt a negotiation agent’s
concession strategy and significantly increase a negotiation
agent’s utility through the learning of the opponent’s histor-
ical offers.

5. RELATED WORK

Although incorporating learning in agent negotiation is a
relatively new research topic, many approaches, models and
mechanisms have been developed in recent years to solve
different issues in this topic [6] [10] [5] [11]. In this section,
we discuss several related works and compare them with our
model proposed in this paper.

Zeng and Sycara proposed a Bayesian approach to learn
the reserve price of an opponent under negotiation setting
[12]. In their approach, a sequential decision making model
called Bazaar was proposed to model beliefs of the oppo-
nent’s reservation point. Our model differs from their ap-
proach in two ways. (1) Bazaar can only learn the reserve
price of the opponent while our model can learn both op-
ponent’s price and deadline, and (2) Bazzar requests priori
knowledge about the potential distribution of of the oppo-
nent’s reserve price while our model has no this request.

Bzostowski and Kowalczyk [3] presented an approach for
modeling behaviors of negotiators and predictive decision-
making. Both their approach and our work used the similar
method in term of adaptive concession strategy based only
on the historical offers in the current negotiation. However,
their approach focuses more on the analysis of the differences
between adjacent offers from the opponents, and will become
ineffective when these differences are not significant. Our
approach employs the regression analysis and will not be
affected by the variance of adjacent offers.

Narayanan and Jennings proposed a novel adaptive ne-
gotiation model considering the dynamism in E-commerce
settings [7]. Their model manages negotiation process as
a Markov Decision Process(MDP) and uses a value itera-
tion algorithm to acquire optimal policies to adopt different
concession strategies. However, their method can only deter-
mine the adaptive action to choose a concession strategy and
cannot produce a precise concession value while our model
can provide constructive guidance to the agent to dynam-
ically adaptive its behaviors including both strategies and
concession values.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed an adaptive bilateral negotia-
tion model based on Bayesian learning. This model includes
a learning mechanism and an adaptive concession strategy.
Through Bayesian learning, an agent’s belief about the op-
ponent’s reserve price can be revised dynamically during ne-
gotiation by comparing the fitted offers based on regression
analysis. The proposed model can enable an agent to adapt
its concession strategies according to the updated probabil-
ity distribution in a predicting region. The experimental
results demonstrate the good performance of our model by
comparison with NDF model.

The future works are to test our model in more complex
scenarios and extend it to a multi-issue negotiation environ-
ment by considering more factor which can affect negotiation



Figure 5: The adaptive concession process

process so as to produce win-win outcomes for both negoti-
ation parties.
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ABSTRACT

In every negotiation with a deadline, one of the negotiat-
ing parties has to accept an offer to avoid a break off. A
break off is usually an undesirable outcome for both par-
ties, therefore it is important that a negotiator employs a
proficient mechanism to decide under which conditions to
accept. When designing such conditions one is faced with
the acceptance dilemma: accepting the current offer may be
suboptimal, as better offers may still be presented. On the
other hand, accepting too late may prevent an agreement
from being reached, resulting in a break off with no gain for
either party.

Motivated by the challenges of bilateral negotiations be-
tween automated agents and by the results and insights of
the automated negotiating agents competition (ANAC), we
classify and compare state-of-the-art generic acceptance con-
ditions. We focus on decoupled acceptance conditions, i.e.
conditions that do not depend on the bidding strategy that
is used. We performed extensive experiments to compare the
performance of acceptance conditions in combination with a
broad range of bidding strategies and negotiation domains.
Furthermore we propose new acceptance conditions and we
demonstrate that they outperform the other conditions that
we study. In particular, it is shown that they outperform
the standard acceptance condition of comparing the current
offer with the offer the agent is ready to send out. We also
provide insight in to why some conditions work better than
others and investigate correlations between the properties of
the negotiation environment and the efficacy of acceptance
conditions.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multi-agent systems

General Terms

Algorithms, Bargaining, Experimentation, Negotiation

Keywords

Automated bilateral negotiation, acceptance criteria, accep-
tance conditions

1. INTRODUCTION

Negotiation is an important process to reach trade agree-
ments, and to form alliances or resolve conflicts. The field
of negotiation originates from various disciplines including
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artificial intelligence, economics, social science, and game
theory (e.g., [2, 16, 20]). The strategic-negotiation model
has a wide range of applications, such as resource and task
allocation mechanisms, conflict resolution mechanisms, and
decentralized information services [16].

A number of successful negotiation strategies have already
been established both in literature and in implementations
[6, 7, 12, 13, 19]. And more recently, in 2010 seven new
negotiation strategies were created to participate in the first
automated negotiating agents competition (ANAC 2010) [3]
in conjunction with the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-10).
During post tournament analysis of the results, it became
apparent that different agent implementations use various
conditions to decide when to accept an offer. In every ne-
gotiation with a deadline, one of the negotiating parties has
to accept an offer to avoid a break off. Therefore, it is im-
portant for every negotiator to employ a mechanism to de-
cide under which conditions to accept. However, designing
a proper acceptance condition is a difficult task: accepting
too late may result in the break off of a negotiation, while
accepting too early may result in suboptimal agreements.

The importance of choosing an appropriate acceptance
condition is confirmed by the results of ANAC 2010 (see Ta-
ble 1). Agents with simple acceptance criteria were ranked
at the bottom, while the more sophisticated time- and utility-
based criteria obtained a higher score. For instance, the low
ranking of Agent Smith was due to a mistake in the imple-
mentation of the acceptance condition [27].

Despite its importance, the theory and practice of accep-
tance conditions has not yet received much attention. The
goal of this paper is to classify current approaches and to
compare acceptance conditions in an experimental setting.
Thus in this 