
Information-Driven Interaction-Oriented Programming:
BSPL, the Blindingly Simple Protocol Language

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
We present a novel approach to interaction-oriented pro-
gramming based on declaratively representing communica-
tion protocols. Our approach exhibits the following distin-
guishing features. First, it treats a protocol as an engi-
neering abstraction in its own right. Second, it models a
protocol in terms of the information that the protocol needs
to proceed (so agents enact it properly) and the information
the protocol would produce (when it is enacted). Third, it
naturally maps traditional operational constraints to the in-
formation needs of protocols, thereby obtaining the desired
interactions without additional effort or reasoning. Fourth,
our approach naturally supports shared nothing enactments:
everything of relevance is included in the communications
and no separate global state need be maintained. Fifth, our
approach accommodates, but does not require, formal rep-
resentations of the meanings of the protocols. We evaluate
this approach via examples from the literature.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; D.2.1 [Software Engineer-
ing]: Requirements Specifications—Methodologies; H.1.0 [In-
formation Systems]: Models and Principles—General

General Terms
Theory, Design

Keywords
Business process modeling, business protocols

1. INTRODUCTION
Interaction-oriented programming or IOP is concerned with

the engineering of systems comprising two or more autonomous
and heterogeneous components or agents. Such systems
arise commonly in IT applications such as cross-organizational
business processes and scientific collaboration. The key idea
of IOP is that treating interactions as first-class concepts

Cite as: Information-Driven Interaction-Oriented Programming: BSPL,
the Blindingly Simple Protocol Language, Munindar P. Singh, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 491-498.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

helps create systems whose participating agents can be in-
dependently designed and operated, with correctness judged
largely based on their effective participation in the speci-
fied interactions. We model interactions as communications
(messages sent by one agent to another), even though in
some cases they may involve physical actions such as deliv-
ering a package or controlling an ocean glider. We specify
interactions abstractly as arising between roles, each role a
discrete conceptual party instantiated by one or more agents.

A protocol is a specification of (presumably, conceptually
cohesive and suitably structured) communications among
two or more agents that neglects the internal reasoning of the
agents involved [3]. Two aspects of a protocol are relevant:
(i) operations, to do with message occurrence and order; and,
(ii) meaning, to do with the (business) import of the mes-
sages. Traditional approaches capture the operations proce-
durally but disregard the meaning. Procedural approaches
are generally over-specified, rigid, and difficult to maintain,
but yield obvious directives for agents and, hence, can be
easy to realize. The declarative operational approaches sup-
port asserting operational constraints in logic, and offer in-
creased clarity and flexibility. However, neither kind of ap-
proach handles the challenges of distributed computing well,
especially to determine correct local enactments.

In contrast, a business protocol is one where we primarily
or exclusively state the meanings of its messages and only
indirectly any operational constraints on them [12]. Em-
phasizing meaning improves flexibility and maintainability.
However, the meaning-based approaches rely upon a suitable
characterization of the operations to unambiguously assign
meanings to communications. Thus, existing approaches,
whether procedural or declarative, end up specifying inter-
actions in terms of the allowed orderings of messages.

Contributions. Our main motivation is to provide a simple
declarative foundation for the operational underpinnings of
IOP. We propose a novel declarative approach that (i) sim-
plifies the operational details and (ii) cleanly separates op-
erations from meanings, yet supports specifying meanings
overlaid on operations. We claim that our approach is ex-
tremely simple: it has only two main constructs: (i) defining
a message schema and (ii) composing existing protocols. Ac-
cordingly, we have dubbed it BSPL, the Blindingly Simple
Protocol Language. BSPL states no constraints on the order-
ing or occurrence of messages, deriving any such constraints
from the information specifications of message schemas. It
treats interaction as first class and supports protocol compo-

491

sition at its core. BSPL forces specifiers to be clear about the
essential constraints, thereby helping them exclude spurious
constraints that plague traditional approaches. It supports
clear well-formedness conditions under which the specified
protocols can be shown to be enactable. We show how BSPL
captures a variety of common and subtle protocols.

Organization. Section 2 identifies some of the key princi-
ples that guide our approach. Section 3 introduces BSPL, in-
cluding its motivation, syntax, intended semantics and sev-
eral examples illustrating specification and composition of
protocols. Section 4 suggests how a suitable semantics of
BSPL may be formalized. Section 5 compares BSPL with
two existing approaches based on protocols from the finan-
cial domain, demonstrating its advantages. Section 6 dis-
cusses related work and some directions for future research.

2. PRINCIPLES OF BSPL
The following principles distinguish our approach to IOP.

Information orientation. In information systems, agents
interact with each other because they wish to obtain
or convey information. Thus we specify each proto-
col as involving not only two or more roles but also
one or more parameters, which stand in for the actual
information items to be exchanged among the agents
playing the roles during enactment.

Explicit causality. The flow of causality is reflected in the
flow of information: there are no hidden flows of causal-
ity because there are no hidden flows of information.
Indeed, if there were any hidden flows, then the very
idea of protocols as a basis for IOP would be called
into question.

No state. We need no global repository of state. All the
relevant information affecting the notional social state
of an interaction is explicit within the protocol—in the
values of the parameters of the messages exchanged.
No agent’s private business logic is relevant, which is
a key motivation for IOP.

Separating structure from meaning. The structure of
a protocol is completely characterized by the names
of the entities in its specification; the meaning relies
upon the values exchanged during enactment. A pro-
tocol ought not to constrain the values directly since
realizing such constraints would depend upon the im-
plementations of agents. Instead, we would place any
relevant constraints in the meaning layer, usually in
terms of the commitments of the participants [12].

Putting the above observations together leads us to an
extensive treatment of parameters. Parameters on messages
are obvious, but we expand them to apply on protocols gen-
erally. Crucially, we adorn each parameter of a protocol
with a specification of whether the parameter must be an
input or an output of the protocol. Importantly, the adorn-
ments of the parameters are interpreted with respect to the
protocol itself, not with respect to any role of the protocol.
Thus, the adornment pinq means that the associated param-
eter must be instantiated so as to enact the protocol, i.e.,
“exogenously” or “externally” to the protocol. And, poutq
means that the associated parameter must be instantiated

in the course of enacting the protocol—i.e., it is instantiated
“endogenously” or “internally” to the protocol. Consider a
quote message as part of a price discovery protocol that in-
cludes an item description and a price, and may be sent
in response to a request for quotes for a particular item.
Clearly, for the quote message to be sent, its sender must
instantiate all of its parameters. However, from the stand-
point of the protocol, the item description is provided from
outside the protocol and the price is provided by the proto-
col to the outside. Thus we would adorn the item description
with pinq and the price with poutq.

As indicated above, parameters and their adornments ap-
ply not only to individual messages but to entire protocols.
For example, we might model Shipping as involving a pa-
rameter address with adornment pinq. This indicates that
Shipping does not determine the address, but must be“told”
it. Conversely, the Window Shopping protocol (involving
roles shopper and storefront) would have parameters
what and howmuch, each with an adornment poutq. This
indicates that Window Shopping would yield information
about what the storefront is selling for how much.

Sometimes, the interaction explicitly demands a flow of
information. For example, it is not possible for a bank
to transfer funds without knowing how much and to what
account. Therefore, a transfer message must follow a re-
quest that specifies the amount and the account. At other
times, we may impose an ordering for “conventional” rea-
sons. For example, although payment and delivery may oc-
cur concurrently once the item and price are determined, we
may impose an ordering arbitrarily. For example, in a fast-
food restaurant the customer pays first and in a traditional
restaurant the customer pays at the end. We capture such
conventions in our causal ordering by explicitly introducing
suitable parameters, e.g., we may model the payment mes-
sage as having a token adorned poutq that is adorned pinq on
delivery. Another example of a convention is where a buyer
must show a proof of age before buying an alcoholic drink.
We can introduce a parameter ageProof to handle this case.

Our information orientation leads us to make three crucial
assumptions, all based on treating a protocol as a concep-
tual entity or relation [5] whose instances or tuples are its
enactments. Protocols are meant to be instantiated multiple
times. For example, many agents would use Purchase to buy
and sell many items, yielding a distinct instance (tuple) for
each enactment. (In passing, we note that although we talk
of relations here, practical BSPL settings would often use
XML and parameters might be bound to XML documents.)

Uniqueness. We introduce the notion that some or all of a
protocol’s parameters define a key, which characterizes
the expected uniqueness of the enactment: at most one
enactment instance may occur one per key binding.

Integrity. Analogous to NOT NULL constraints on rela-
tions, each required public parameter in a complete
protocol enactment must be bound. Otherwise, that
means the enactment viewed as a tuple is incomplete.

Immutability. Each enactment viewed as an entity instance
is immutable. That is, the parameters can be bound
multiply often, but the different bindings arise in dif-
ferent enactments. Immutability provides robustness
against asynchrony, because it ensures bindings are
never ambiguous or out of date.

492

Together, the above assumptions delimit an enactment: it
must proceed sufficiently to generate at least one tuple of
parameter bindings; any additional duplication of parame-
ter values is superfluous. This provides a general, princi-
pled basis for termination that contrasts both with proce-
dural approaches (explicit enumeration of terminal states)
and meaning-based approaches (termination as achieving a
requisite meaning state, such as having no pending uncon-
ditional commitments). The latter treats termination the
same as never beginning, which is operationally false. Fur-
ther, it rejects protocols whose main purpose is to create
unconditional commitments: thus it would formulate a ne-
gotiation protocol as producing conditional commitments,
but then all or nearly all of its states would be terminal.

Protocols may be composed [3]. For example, we may
define Purchase as a composition of Order, Payment, and
Shipping. A fundamental tenet of our approach is that we
make no distinction between individual or composite proto-
cols. A composite protocol is expressed, assigned a formal
semantics, and enacted the same way as any other protocol.
The only difference might be that the constituent protocols
generally exist before the design episode and the composite
protocols are created during the design episode. As we re-
marked above, a message is the unit of interaction. Thus a
single message is an atomic protocol.

The main benefit of composing protocols is to facilitate the
reuse of designs and implementations by supporting multi-
ple ways to compose the same protocols. Further, proto-
col composition offers a principled basis for adapting cross-
organizational process models to capture evolving require-
ments, as in Desai et al.’s [2] approach.

Each protocol name is unique within our universe of dis-
course. Each protocol defines a scope (a unique namespace)
within which its roles, parameters, and messages are also
uniquely named. The roles and parameters of a protocol
identify its public interface. In logical terms, a role acts as
a kind of parameter, but semantically, they are quite dif-
ferent: a role corresponds to an executing agent whereas a
parameter corresponds to a data item.

3. BSPL: LANGUAGE AND PATTERNS
Based on the foregoing, we define a protocol as consisting

of exactly one message schema (template) or of the compo-
sition of two or more protocols. Although this is mathemat-
ically satisfactory, for practical convenience, we define the
syntax of BSPL in a somewhat more conventional manner.
The following is the syntax along with brief explanations.
Superscripts of + and ∗ indicate one or more and zero or
more repetitions, respectively. Below, b and c delimit ex-
pressions, considered optional if without a superscript. For
simplicity, we state cardinality restrictions informally.

For readability, we include some syntactic sugar tokens.
In listings, we write reserved keywords in small sans serif,
capitalize role names, and write parameters in camel case.
In the text, we write message and protocol names Slanted,
roles in small caps, and parameters in sans serif. We insert
p and q as delimiters, as in pSelf 7→ Other: hello[ID, name]q.

L1. A protocol declaration consists of exactly one name,
two or more roles, one or more parameters, and one or
more references to constituent protocols or messages. A
nilable parameter, ignored here for brevity, can remain
unbound. All the parameters marked key (cannot be

nilable) together form the key of this declaration.

Protocol −→ Name { role Role+

parameter bParameterbkey|bnilablecc+ Reference∗ }
L2. A reference consists of the name of a protocol ap-

pended by the same number of roles and parameters
as in its declaration. At least one of the parameters of
the reference must be a key parameter of the declara-
tion in which it occurs: this ensures the enactments of
the reference relate to those of the current declaration.

Reference −→ Name (Role+ Parameter+)

L3. Alternatively, a reference is a message schema, and
consists of exactly one name along with exactly two
roles, one or more parameters (at least one a key pa-
rameter of the declaration), and optionally a meaning.

Reference −→ Role 7→ Role : Name [Parameter+]
bmeans Expressionc

L4. Each parameter consists of a name and an optional
adornment.

Parameter −→ bAdornmentc Name

L5. An adornment is generally either pinq or poutq. It may
be pnilq in a reference to indicate that the adorned pa-
rameter is unknown, which can be crucial in some cases.

Adornment −→ in | out | nil

Now, we introduce a series of examples of BSPL as a way
to informally describe its semantics. We omit the means
clauses in our development but revisit them in Section 6.

3.1 Simple Protocol Declarations
Listing 1 demonstrates BSPL to define the simple Pay

protocol. Pay consists of two roles and one message con-
sisting of two parameters, ID and amount. We adorn both
parameters pinq to indicate that they must be known (sup-
plied) to enact Pay. In other words, a multiagent system
must enact Pay in combination with some one or more other
protocols that determine ID and amount. Because ID is the
key, at most one payment may be made for a given ID value.

Listing 1: The Pay protocol.
Pay {
role Payer , Payee
parameter in ID key , in amount

Payer 7→ Payee : payM[in ID , in amount]
}

Listing 2 shows Offer, which serves as a way to generate
a price offer. Notice that both item and price are adorned
poutq, indicating that Offer would compute these parame-
ters endogenously. Here, the buyer generates item and the
seller generates price, since these parameters are adorned
poutq in messages to be sent by these roles. Thus, Offer can
generate the amount (if identified with price) needed to enact
Pay. Conversely, ID is adorned pinq, meaning that Offer can
only be used in combination with another protocol in which
ID (suitably renamed if necessary) is adorned poutq.

Listing 2: The Offer protocol.
Of fe r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e

493

Buyer 7→ S e l l e r : r f q [in ID , out item]
S e l l e r 7→ Buyer : quote [in ID , in item , out

p r i c e]
}

Listing 3 shows Order, which as formalized here repeats
the entire Offer. Section 3.2 shows how to avoid such redun-
dancy through composition. Notice that Listing 3 includes
a parameter rID, which is adorned poutq in the protocol’s
interface as well as in the accept and reject messages. Each
of these placements has an important ramification. First, if
we were to omit rID from Order’s interface, its enactments
would complete as soon as quote was sent, because all its
parameters would then be bound. In other words, the enact-
ment would complete prematurely. BSPL does not support
separately requiring accept or reject, because doing so would
violate the principle of explicit causality. Second, the pres-
ence of rID in both accept and reject indicates mutual ex-
clusion of those two messages: simply because a parameter
cannot be bound more than once in any enactment.

Listing 3: The Order protocol.
Order {
role B, S
parameter in ID key , out item , out pr i ce , out rID

B 7→ S : r f q [in ID , out item]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accept [in ID , in item , in pr i ce , out rID]
B 7→ S : r e j e c t [in ID , in item , in pr i ce , out rID]
}

3.2 Composing a Protocol
The power of protocols in modeling arises from the fact

that they can be readily composed [3]. BSPL makes no
distinction between a protocol that happens to be composed
and one that is not. Indeed, each message can be viewed as
a protocol in its own right. Listing 4 expresses the message
pFrom 7→ To: aMessage[in one, out two]q as a protocol.

Listing 4: A message viewed as a protocol.
Message−as−Protoco l {
role From , To
parameter in one key , out two key

From 7→ To : aMessage [in one , out two]
}

Taking the same idea further, Listing 5 expresses Order as
a composition of Offer and two protocols corresponding to
the other messages defined in Listing 3. Even if we changed
the role and parameter names, Listings 3 and 5 would remain
semantically identical.

Listing 5: Order expressed as a composition.
Order {
role B, S
parameter in ID key , out item , out pr i ce , out rID

Of f e r (S , B, in ID , out item out p r i c e)
acceptProt (B, S , in ID , in item , in pr i ce , out

rID)
r e j e c tP r o t (B, S , in ID , in item , in pr i ce , out

rID)
}

3.3 More on Parameters in Protocols
Parameters are crucial to BSPL. We adorn the parameters

not only in a declaration but also in each reference, including
the individual messages. In general, such adornments are
essential for capturing any constraints on what parameter
bindings to propagate in what direction.

Listing 2 demonstrates two important well-formedness re-
quirements on protocols. One, a parameter that is adorned
pinq in a declaration must be pinq throughout its body. For
brevity, we may sometimes omit such pinq adornments, but
such parameters can take no adornment other than pinq.
Two, a parameter that is adorned poutq in the declaration
must be poutq in at least one reference. At run time, at most
one reference with an poutq adornment for a parameter may
be enacted: thus such references are mutually exclusive.

If a parameter is adorned in a protocol declaration P, then
any reference to P must apply the same adornment to that
parameter. Otherwise, it would not be clear what propaga-
tion was appropriate. But we can leave some or all of P’s
parameters unadorned in a declaration or reference, thus
signifying that propagation in both directions is permissible
for that declaration or reference. We can think of this as the
in–out adornment. When we refer to P from another proto-
col declaration, we may choose adornments for any of such
unadorned parameters of P as a simple way to disambiguate
the direction of information propagation.

Importantly, a top-level protocol declaration—one that
stands alone and is ready to be enacted—must adorn all
its parameters poutq. Another way to think of this is as
follows. For enactment, every parameter adorned pinq must
have its value supplied through some other protocol, such as
a message to one of the enacting agents, which would indi-
cate that the given protocol omits relevant communications
and therefore is not enactable in itself.

3.4 Common Specification Patterns
We now present some examples demonstrating the main

concepts and typical usage of BSPL.

3.4.1 Duplicating a Parameter
Sometimes a role that needs to obtain a parameter binding

might not be receiving it. Listing 6 shows how the originator
of the binding can send a duplicate copy to another role. Be-
cause Duplicating has an pinq parameter, it is not enactable
by itself. Here, we presume the originator produces a prior
message in which aParameter is adorned poutq.

Listing 6: Duplicating a parameter.
Dupl icate−Parameter {
role Orig inator , Consumer
parameter in aParameter key

Or ig ina to r 7→ Consumer : share [in aParameter]
}

3.4.2 Generating an Identifier
A consequence of the information basis of BSPL is that

the correctness of a protocol depends upon its keys. To
facilitate composition in multiple contexts, it is convenient
to define protocols that adorn an identifying parameter as
pinq, which means that such protocols cannot be enacted
standalone. Listing 7 shows a simple protocol that generates
an identifier, which can thus drive other protocols.

494

Listing 7: Generating an identifier.
Generate−I d e n t i f i e r {
role Authority , Subject
parameter out ID key

Authority 7→ Subject : announce [out ID]
}

3.4.3 Local Parameters
A local parameter occurs within a protocol declaration

but is not exposed in its public interface. Often, such a pa-
rameter may be essential for carrying out the desired inter-
action and thus would be included in underlying messages,
but may not feature as an essential public interface of a pro-
tocol. Listing 8 shows a variant of Purchase in which the
destination address is computed and used, but not deemed
relevant for exposing from the overall interaction. Hence,
if we were to refer to this Purchase variant from another
declaration, we would not be able to refer to address.

Listing 8: Variant of Purchase with hidden address.
Purchase {
role B, S , Shipper
parameter in ID key , out what , out howmuch

Order (B, S , in ID , out what , out howmuch)
Decide−Address (B, S , in ID , out address)
Ship (S , Shipper , in ID , in what , in address)
}

A local parameter must be adorned poutq in exactly one
reference and pinq in all the rest. Hiding a parameter has
consequences on the semantics. Because only the public pa-
rameters become part of the public interface, uniqueness ap-
plies only to tuples constructed from the public parameters.
Thus, although the local parameters may take on multiple
values, they would have no direct effect on the outcome as
defined by the protocol. Consequently, a designer should
hide only the parameters that are irrelevant to the intended
outcome of the interaction, and should expose all the others.

3.4.4 Standing Offer
This is a common business situation where we need to

generate multiple messages tied to the same standing offer.
Desai et al. [2] describe such a situation in the insurance do-
main but, lacking a proper treatment of parameters, cannot
formalize it. Once an insurance policy is created, it forms
a standing offer: the insurance vendor would process how-
soever many claims the subscriber makes. Listing 9 shows
how BSPL can naturally accommodate such a protocol.

Listing 9: The Insurance Claims protocol (from [2]).
Insurance−Claims {
role Vendor , Subsc r ibe r
parameter out policyNO key , out reqForClaim key ,

out claimResponse

Vendor 7→ Subsc r ibe r : c r e a t ePo l i c y [out
policyNO , out d e t a i l s]

Subsc r ibe r 7→ Vendor : s e rv i ceReq [in policyNO ,
out reqForClaim]

Vendor 7→ Subsc r ibe r : c l a imSe rv i c e [in
policyNO , in reqForClaim , out
claimResponse]

}
Each claim refers to a unique policy and has a unique

response; one policy may lead to multiple claims. Hence, we

make policyNO and reqForClaim jointly the key. If necessary,
we can include additional parameters to describe the policy,
including its termination, in greater detail. The remaining
protocols given by Desai et al. [2] involve simpler structures,
such those demonstrated in the preceding sections.

3.5 Subtle Specification Patterns
The following patterns demonstrate the power of BSPL.

3.5.1 Flexible Sourcing of out Parameters
Listing 10 shows Buyer or Seller Offer, in which either

the buyer or the seller may generate the price. This pro-
tocol illustrates the distinction between a parameter being
endogenous to a protocol versus being generated by one or
another of the agents playing its roles. Buyer or Seller Offer
involves two variants of rfq and quote, with differences in
adornments of their parameters. We overload the message
names since informally the names relate to meaning: the
same commitment would be associated with a quote whether
the price was pinq or poutq in it. We could equally well use
different names. Notice that the interface of Buyer or Seller
Offer is the same as that of Offer (Listing 2) since it has the
same roles and parameters (with the same adornments).

Listing 10: The Buyer or Seller Offer protocol.
Buyer−or−S e l l e r−Of fe r {
role Buyer , S e l l e r
parameter in ID key , out item , out p r i c e

Buyer 7→ S e l l e r : r f q [in ID , out item , nil p r i c e]
Buyer 7→ S e l l e r : r f q [in ID , out item , out p r i c e]

S e l l e r 7→ Buyer : quote [in ID , in item , out
p r i c e]

S e l l e r 7→ Buyer : quote [in ID , in item , in p r i c e]
}

In Listing 10, both quote variants rely upon the buyer
having provided item. As a result, the buyer speaks first.
The buyer may announce the price or not, by choosing the
appropriate variant of rfq. The two variants of rfq are mu-
tually exclusive because they have incompatible adornments
for price: thus at most one of them can be sent. Likewise,
the two variants of quote are mutually exclusive. In essence,
the choice is the buyer’s and the seller follows along. This
is the reason we introduce the pnilq adornment on price in
rfq. Upon receiving a pnilq price, the seller would not be
able to send quote without generating the price locally.

3.5.2 in-out Polymorphism
Let us consider Flexible Offer, which can apply both where

the price is exogenous (supplied) and where it is endoge-
nous (computed by the protocol). We do so by omitting the
adornment on price. Then, as Listing 11 shows, we need to
provide alternatives so that each of the possible adornments
of price is enactable.

If a reference to Flexible Offer adorns price pinq, the only
possible enactment is when b sends an rfq specifying the
price to s, who responds with a quote. Alternatively, if a
reference adorns price poutq, b must send an rfq without
specifying the price to s, who responds with a quote that
specifies the price. That is, price is determined either from
the reference (when it is referenced as pinq) or by s (when
it is referenced as poutq). And, qID helps ensure that the
enactment remains incomplete until quote occurs.

495

Listing 11: Flexible Offer: price as in or out.
Flex ib l e−Of fe r {
role B, S
parameter in ID key , out item , pr i ce , out qID

B 7→ S : r f q [ID , out item , nil p r i c e]
B 7→ S : r f q [ID , out item , in p r i c e]

S 7→ B: quote [ID , in item , out pr i ce , out qID]
S 7→ B: quote [ID , in item , in pr i ce , out qID]
}

Listing 12 defines Offer as a simple variant of Flexible
Offer. It illustrates a way to restrict the adornments of pa-
rameters without changing the logical structure of protocols.
Even if we do not adorn the parameters of Flexible Offer as
referenced from within Offer, there is no ambiguity, because
those parameters are adorned in the declaration of Offer.
Thus, when Flexible Offer is enacted, the parameters would
be treated as in the declaration of Offer (qID is not used).

Listing 12: Offer as a restriction on Flexible Offer.
Of fe r {
role Buyer , S e l l e r
parameter in ID key , out what , out howmuch

F l ex ib l e−Of fe r (Buyer , S e l l e r , in ID , out what ,
out howmuch , out qID)

}

3.6 Specification Patterns Hinting at Meaning
These patterns demonstrate connections with meaning.

3.6.1 Forwarding a Copy
Listing 13 shows a simple protocol that can be used to for-

ward a parameter from one role to another. This protocol
is often needed to help make a protocol enactable where a
necessary parameter binding would not otherwise be known
to a specified role. Notice that the functioning of this pro-
tocol relies upon meaning, namely, to ensure that the value
of copy equals the value of original.

Listing 13: Forwarding a parameter value.
Forward {
role From , To
parameter in o r i g i n a l key , out copy

From 7→ To : forward [in o r i g i n a l , out copy]
}

3.6.2 Mixed Initiative
Listing 14 shows a protocol that supports either role tak-

ing the initiative. This protocol is inspired by the formal-
ization of the Enhanced NetBill by Yolum and Singh [12].
In this protocol, the buyer and the seller can exchange
as many messages as they like with the seller repeatedly
sending quote messages and the buyer accept messages.
Each of them has the initiative and can work independently
of the other. If necessary, we can combine mixed initiative
with polymorphism, as introduced in Section 3.5.2.

Listing 14: The Mixed Initiative Offer protocol.
Mixed−I n i t i a t i v e −Of fe r {
role B, S
parameter in ID key , out qID key , out aID key

out qItem , out qPrice , out aItem , out aPr ice

S 7→ B: quote [in ID , out qID , out qItem , out
qPr ice]

B 7→ S : accept [in ID , out aID , out aItem , out
aPr ice]

}
The meaning layer would capture that the quoted and

accepted items and prices are equal. Each message would
correspond to the creation of a suitable commitment to pro-
vide a specified item if paid a specified amount and to pay
a specified amount if provided a specified item. Assuming
each party needs a commitment from the other in order to
proceed, progress will occur only when they produce their
respective commitments for the same item and price. This
example shows that though BSPL captures the operational
aspects in a declarative manner, it seeks neither to obstruct
appropriate meaning nor to substitute for meaning.

3.6.3 Digressions
Yolum and Singh [12] introduced the idea of a digression

where an agent may interact differently from a protocol for
some steps but later resynchronize with it. Digression ap-
plies primarily to enactments rather than to protocols, al-
though it facilitates the refinement of protocols. BSPL nat-
urally supports digression. As long as the parameter adorn-
ments are satisfied, a digression has no impact on the enact-
ment of a protocol. Digressions in the sense of Yolum and
Singh depend upon a notion of meaning.

4. SKETCH OF A SEMANTICS FOR BSPL
We give an account of how BSPL protocols may be en-

acted and how to determine their distributed enactability
using some mathematical concepts but, for brevity, without
any mathematical notation.

A protocol describes an interaction by specifying messages
to be exchanged between specific roles, and by imposing a
partial order on the messages. An enactment of a protocol
involves each of its roles being adopted by an agent, and
the agents exchanging messages that the protocol specifies.
Therefore, we capture the semantics of a protocol in terms
of the enactments it allows. A message instantiates a mes-
sage schema and is precisely described by its name, sender,
receiver, and bindings for each of its parameters.

We define a history of a role as a sequence of messages,
in each of which the role is either the sender or the receiver.
Thus the history captures the local view of an agent who
might adopt the role during the enactment of a protocol.

We define a history vector for a protocol as a vector each of
whose elements is the history of a role mentioned in the pro-
tocol. A history vector is quiescent provided every message
present in a sender’s history is also present in its receiver’s
history. The fundamental causality constraint of distributed
computing applies: a (receiving) role’s history may contain
a message reception only if the (sending) role’s history con-
tains the corresponding message emission [8]. However, we
need a more sophisticated treatment of causality that cap-
tures the nature of parameters in BSPL.

The history of a role maps naturally to its local state.
Notice we are interested in the local view of the public in-
teractions, not in the internal state of an agent playing this
role. Each message sent or received progresses the local state
of the role, expressed in terms of the bindings of the param-
eters that the role knows. Specifically, a message emission
is viable for a role if the role knows the bindings of all pinq

496

parameters in that message and does not know the bindings
of the poutq and pnilq parameters. In essence, it must pro-
duce the bindings for the poutq parameters, which it then
knows (for future messages). A message reception is always
viable and changes the state of the knowledge of the role,
affecting the viability of future messages. A history vector is
viable provided it arises from viable message emissions and
receptions by the roles, i.e., by growing their local histories.

Informally, the intension of a protocol is given by the set of
quiescent viable history vectors that enact it. The intension
for a message is the set of quiescent viable history vectors
in which it occurs. The intension of a composite protocol is
the set of all viable interleavings of the history vectors in the
intensions of its references. Only a protocol with an empty
set of public pinq parameters may be enacted.

To understand when an enactment is correct, consider two
references that occur within the same declaration and in-
volve one or more common parameters, and consider their
respective adornments of such a common parameter.

out–in indicates an ordering conflict: a message with poutq
(even if nested in a reference) must precede, and the
binding must propagate, to a message with pinq.

nil–in or nil-out indicate a knowledge conflict and as such
only apply to the same role: once a role sends or re-
ceives a message with poutq or pinq, it cannot send a
message with pnilq.

out–out indicates an occurrence conflict: at most one of the
references may occur anywhere in the system.

Our semantics addresses ordering conflicts through causal-
ity and knowledge conflicts through each role’s view. For
occurrence conflicts, there is no general solution, but we can
analyze a BSPL specification to make sure that the same
role controls which of the conflicting references occurs.

5. EVALUATION: CASE STUDY
We consider foreign exchange transactions, as formalized

by Desai et al. [1]. Bilateral Price Discovery or BPD involves
a taker sending a priceRequest to a maker, who responds
with a priceResponse. Each message specifies a number of
parameters, which for clarity we reduce to two parameters:
query and result. Listing 15 shows the strikingly simple BSPL
formalization of BPD.

Listing 15: The Bilateral Price Discovery protocol.
BPD {

role Taker , Maker
parameter out reqID key , out query , out r e s u l t

Taker 7→ Maker : pr i ceRequest [out reqID , out
query]

Maker 7→ Taker : pr iceResponse [in reqID , in
query , out r e s u l t]

}
Desai et al. identify constraints under which a priceRes-

ponse message may not occur. These complicate Desai et
al.’s specification, but Listing 15 captures them naturally:
(1) “No priceRequest with a matching reqID has happened”
(BSPL: adorn reqID (and query) as pinq on priceResponse
and as poutq on priceRequest); (2) “A priceResponse with
identical parameters has happened” (BSPL: automatic since
repetitions are superfluous); (3) “A priceResponse with the

same ID but a different result . . . is happening simultane-
ously” (BSPL: mark reqID as a key); and (4) like #3 above
but for other messages (BSPL: handle as above).

Consider Desai et al.’s [1] discussion of multilateral price
discovery (MPD), in which a taker interacts with a maker
via an intermediary exchange. Intuitively, it makes sense
that MPD is a composition of BPD with itself. Odell et
al. [10] informally discuss the concept of nesting in AUML,
wherein an agent playing a role in one protocol may par-
ticipate in additional protocols in the middle. In Odell et
al.’s terms, the exchange would be a maker in one copy of
BPD and nest the second copy of BPD. There are two short-
comings with Odell et al.’s nesting. First, it draws a false
hierarchy between two protocols, placing one as subservient
to the other, whereas the interactions are conceptually peers.
Two, and more fundamentally, nesting is a matter of how
an agent is implemented. For all that anyone knows, even
in the plain BPD, a maker might be shopping for deals in
the background, possibly acting as a taker in another copy
of BPD. But such internally driven behaviors are not public
interactions and thus are not part of the given protocol.

Desai et al. [1] offer a better solution than nesting by ex-
plicitly composing BPD with itself to produce MPD. They
assert data flow axioms whereby a query parameter in one
copy of priceRequest is passed to the second copy, and like-
wise in the reverse direction for the result from priceRes-
ponse. However, Desai et al.’s approach violates encapsula-
tion: it opens up each copy of BPD so as to enable stating
constraints on the constituent messages of each copy in order
to compose them as desired.

In BSPL, MPD can be expressed in a remarkably simple
manner. Listing 16 uses in-out polymorphism (Section 3.5.2)
to define a Generalized BPD or GBPD, in which query and
res are not adorned. We can produce a specification of BPD
equivalent to Listing 15 exactly as Listing 12 defines Offer.

Listing 16: Generalized Bilateral Price Discovery.
GBPD {

role T, M
parameter reqID key , query , r e s

T 7→ M: pr iceRequest [out reqID , out query]
T 7→ M: pr iceRequest [in reqID , in query]

M 7→ T: pr iceResponse [in reqID , in query , out
r e s]

M 7→ T: pr iceResponse [in reqID , in query , in
r e s]

}
Next, Listing 17 specifies MPD as an almost trivial com-

position of GBPD with itself. The adornments of the param-
eters in the two references to GBPD are different, and ensure
that the composition is correct. Notice that the encapsula-
tion is not broken (the GBPD declaration is not revealed
here) and we are not specifying the internals of any role.

Listing 17: Multilateral Price Discovery.
MPD {

role Taker , Exchange , Maker
parameter out reqID key , out query , out r e s

GBPD(Taker , Exchange , out reqID , out query , in
r e s)

GBPD(Exchange , Maker , in reqID , in query , out
r e s)

}

497

6. DISCUSSION
What do we gain from an interaction-oriented approach

wherein protocols are first-class entities? Although an agent-
oriented approach, which focuses on the roles, is more fa-
miliar, it limits the modeling unnecessarily. By focusing on
interactions, we can capture constraints from a public, as
opposed to a role, perspective. In particular, when roles are
introduced during composition, such new roles would auto-
matically view any relevant constraint as satisfied.

Although we suppress the means clauses above, BSPL is
geared toward providing the undergirding for any effective
treatment of meanings. Listing 18 shows an example based
on Listing 9 to give the reader a flavor of a means clause.
Here C indicates a commitment [2, 12], and the expression
states that the vendor commits to providing claim service
to the subscriber whenever the subscriber sends a request
under the specified claim. The benefit of BSPL here is that
the operational basis for the meanings in terms of causality
and information is taken care of automatically.

Listing 18: Meaning for Insurance Claims.
Insurance−Claims { . . .

Vendor 7→ Subsc r ibe r : c r e a t ePo l i c y [out
policyNO] means C(Vendor , Subscr iber ,
s e rv i ceReq [policyNO , reqForClaim] ,
c l a imSe rv i c e [policyNO , reqForClaim ,
claimResponse])

}

6.1 Literature
Increasing recognition of the importance of interaction has

led to work on choreographies [11], which too capture the
operational aspects of protocols as studied here. However, a
choreography is typically specified procedurally, usually in a
language such as message-sequence charts (MSCs) [6] or an
analogous notation, such as WS-CDL [11].

AUML [10] is an important notation for protocols (many
of its features were assimilated into UML 2.0). AUML’s
sequence diagram notation takes a strong procedural stance
for describing interactions. Thus, it emphasizes explicit con-
straints on how messages are ordered. In contrast, our pa-
rameter adornments force clarification of the arrow of causal-
ity, making it correspond to the flow of information.

Recently, Miller and McGinnis [9] proposedRASA, a lan-
guage for protocols based on the proposition dynamic logic.
Some of this language refers to agent reasoning and some to
interaction. BSPL can capture the latter parts of it. In par-
ticular, in BSPL, iteration arises from the possible bindings
of a protocol’s parameters, and is limited only by the size
of the cross-product of the domains of the key parameters.
And, our semantics limits choice to guarded choice. RASA
describes first-class protocols, i.e., those that an agent can
inspect and reason about. BSPL, in addition, treats proto-
cols as a first-class modeling concept for ready composition.

Desai and Singh [4] identify several challenges to the en-
actability of a protocol. BSPL avoids all the ordering prob-
lems they identify as varieties of blindness, because the only
way to capture an ordering constraint in BSPL is to do so in
a causally sound way: from a reference with an poutq adorn-
ment of a parameter to a reference with an pinq adornment
of the same parameter. The problematic enactments can-
not arise. The well-known problem of nonlocal choice [7]
arises when correct behavior by a role depends on actions of

another role. BSPL does not automatically avoid nonlocal
choice. However, we can analyze a BSPL specification to
determine that it is not at risk of nonlocal choice.

Traditional work on service composition primarily consid-
ers orchestrations where a conceptually central party con-
trols two or more services. A strength of this work lies
in its formalization of service behaviors and in its use of
planning and constraint reasoning to construct appropriate
service compositions. Although our present setting is quite
different, we imagine that many of the techniques of service
composition may be expanded and applied in our setting.

6.2 Future Work
A useful direction would be enhancing the treatment of

the information model. For instance, it might be appro-
priate to entertain multiple keys for a protocol. Further,
it would be useful to understand how important proper-
ties such as enactability may be verified in a compositional
manner. Some natural extensions to BSPL that we will be
considering include (1) a principled treatment of multicast,
where multiple agents playing the same role receive a mes-
sage and (2) accommodating discovery protocols, where the
roles are bound late during enactment.

Acknowledgments
This work was partially supported by the OOI Cyberinfras-
tructure program, which is funded by NSF contract OCE-
0418967 with the Consortium for Ocean Leadership via the
Joint Oceanographic Institutions. Thanks to Matthew Ar-
rott, Amit Chopra, and Kohei Honda for helpful discussions.

7. REFERENCES
[1] N. Desai, A. K. Chopra, M. Arrott, B. Specht, and

M. P. Singh. Engineering foreign exchange processes
via commitment protocols. In SCC, pp. 514–521, 2007.

[2] N. Desai, A. K. Chopra, and M. P. Singh. Amoeba: A
methodology for modeling and evolution of cross-
organizational business processes. ACM TOSEM,
19(2):6:1–6:45, Oct. 2009.

[3] N. Desai, A. U. Mallya, A. K. Chopra, and M. P.
Singh. Interaction protocols as design abstractions for
business processes. IEEE TSE, 31(12):1015–27, 2005.

[4] N. Desai and M. P. Singh. On the enactability of
business protocols. In AAAI, pp. 1126–1131, 2008.

[5] R. Elmasri and S. Navathe. Fundamental of Database
Systems. Benjamin Cummings, second edition, 1994.

[6] ITU. Formal description techniques (FDT)—Message
Sequence Chart (MSC). Document Z.120, Apr. 2004.

[7] P. B. Ladkin and S. Leue. Interpreting message flow
graphs. Formal Aspects Comput., 7(5):473–509, 1995.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. CACM, 21(7):558–565, 1978.

[9] T. Miller and J. McGinnis. Amongst first-class
protocols. In ESAW 2007, LNCS 4995, pp. 208–223.
Springer, 2008.

[10] J. Odell, H. V. D. Parunak, and B. Bauer.
Representing agent interaction protocols in UML. In
AOSE 2000, LNCS 1957, pp. 121–140. Springer, 2001.

[11] WS-CDL. Web Services Choreography Description
Language. www.w3.org/TR/ws-cdl-10/, Nov. 2005.

[12] P. Yolum and M. P. Singh. Commitment machines. In
ATAL 2001, LNAI 2333, pp. 235–247. Springer, 2002.

498

