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ABSTRACT
We present a methodology to identify refactoring operations that
reduce the bug rate in the code. The methodology is based on com-
paring the bug fixing rate in certain time windows before and after
the refactoring. We analyzed 61,331 refactor commits from 1,531
large active GitHub projects. When comparing three-month win-
dows, the bug rate is substantially reduced in 17% of the files of
analyzed refactors, compared to 12% of the files in random com-
mits. Within this group, implementing ‘todo’s provides the most
benefits. Certain operations like reuse, upgrade, and using enum
and namespaces are also especially beneficial.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques.
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1 INTRODUCTION
Our goal is to find actionable recommendations for software quality
improvement. Refactoring is an established approach to improving
code quality and promoting maintainability and continued develop-
ment [6]. Many different refactoring operations have been proposed.
But which ones provide the best benefits?

Refactors are change operations intended to improve code qual-
ity without changing functionality. We use a methodology that
analyzes changes over time. The metric we use is bug fixing rate:
Out of all the commits in a given period, what fraction are bug fixes.
We identify corrective and refactor commits using linguistic models
applied to the commit message. Once we identify the refactors, we
compare the bug-fix rate as reflected by corrective commits before
and after the refactor.
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Note that even when we see an improvement around a change,
it still doesn’t imply causality, and we cannot be sure that the
operation is recommended. The change might be accidental, or due
to other reasons. However, this methodology enables us to explore,
identify candidates, and follow up with focused experiments.

Refactors are 12% of the commits in large active GitHub projects,
but not all of them are equally suitable for analysis. Some don’t have
enough other commits around them, some involve a huge number
of files, and some are not done on identified source code. In order to
explore and identify effective refactors, we built a dataset of ‘clean’
refactors—commits of one non-test file with enough context—and
their messages. These commits were labeled as positive if they
reduced the bug-fix rate substantially. This reduces the problem
to supervised learning, where we can explore the attributes that
characterize commits that reduce the bug rate.

1.1 Related Work
Refactoring, first suggested by Opdyke [15], is “improving the de-
sign of existing code” [6]. Prior work investigated the influence
of refactoring on quality [1, 3, 4, 8, 14, 17, 19]. In general, this re-
search showed mixed results of positive and negative influence, of
small size. While prior work asks “Does refactoring have a posi-
tive influence?”, we ask “Which refactor operations have a positive
influence?”, enabling us to identify such operations.

To check the influence of refactoring one has to identify refac-
toring. Most work focused on the refactor technique. Tsantalis et al.
[18] developed RMiner for Java which has very high performance:
98% precision and 87% recall. However, they built an Abstract Syn-
tax Tree of the code in order to identify changes. We did the analysis
in Google’s BigQuery GitHub schema where the code per commit
is not available. Other approaches are manual labeling, which is
limited in scope, or Ref-Finder [9] with precision of only 35% [16].
We identify refactors and corrective commits using linguistic anal-
ysis of commit messages, an idea that is commonly used for defect
prediction [7].

1.2 Our Contribution
We present a way to find bug-rate reducing operations. We provide
scalable (analyzing millions of commits) accurate models to identify
corrective and refactor commits, based only on their messages.
We are agnostic to the refactor technique used and therefore can
explore and identify new efficient operations. We provide empirical
evidence for code rot [5, 10], and show that refactoring slows the
decay rate. This is a demonstration of Lehman’s 7th law of software
evolution, which states that software quality will appear to decline
unless it is rigorously maintained [11]. Our conclusions recommend
on refactor operations that improve quality.
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2 CHANGE IDENTIFICATION AND SCOPE
2.1 Linguistic Models for Commit Types
There are 10,845 open source projects in GitHub with 500+ commits
in 2018. We analyzed the 1,531 non-fork projects [2], since forks are
very close to their origin, are redundant, and distort the distribution.

We sampled uniformly random commits from the large active
projects. We labeled the commits following the taxonomy of Lientz
et al. [13] into corrective, adaptive, and perfective. We also labeled
refactor as a sub type of perfective. We then built a linguistic model
for commit messages, identifying positive occurrences and remov-
ing invalid ones (e.g., due to negative context, modals, or being part
of a different unrelated term). We used a test set of 1,100 samples
on which we evaluated the classifiers. The corrective model has
accuracy of 89%, precision of 84%, and recall of 69%. For the refactor
model, the accuracy is 93%, precision is 80%, and recall is 61%. For
our refactor use-case we need high precision. Moreover, knowing
the precision value enables us to estimate the real influence, con-
sidering that 20% of the hits are not refactors. Our analysis doesn’t
depend directly on the recall, yet the higher the recall, the more
cases we will have. See supplementary materials for more details.

2.2 Building a Refactors Dataset
Using the models we identified 749,603 commits as refactors. The
commits differ by their suitability to change analysis. A refactor
might be subject to noise due to few commits in context and appli-
cation to many files. We look for clean, less noisy, commits. Yet, the
more restrictive the definition of a clean refactor, the fewer cases
we have to analyze. Hence, we are in a tradeoff between quantity
and cleanness.

The following describes the 176,309 refactors done during 2018,
on which we based our decisions regarding the scope of refactors
to analyze and their context. The full distributions and generating
code are part of the supplementary materials.

First, we are interested only in refactoring done on source code.
We used the 28 major source code filename extensions, which cover
49% of GitHub files. Out of all the (file, refactor commit) pairs, 57%
belong to a major source code extension.

Another set of files that we would like to scope out are test
files, since the goal and behavior of tests is different from regular
code. Moreover, a refactor involving a test is likely to refactor the
tested file and not the test file. Since the code is not available in
BigQuery, we identify test files by matching their path with the
pattern ‘test’[12, 20], which matched 21%.

We define the context of a refactor as the commits made to the
same file before and after the refactor. In order to identify a change,
we need at least one commit before and after the refactor, and
more are needed for a robust analysis. In a context that spans three
months, 57% had fewer than 10 commits before the refactor and
56% had fewer than 10 commits after it. In a context that spans six
months the figures were 56% and 48%. Aiming for clean results we
examined the 61,331 refactor commits with at least 10 commits in
3 months on either side, and involving a single non-test file.

3 REFACTOR INFLUENCE ANALYSIS
We first explain the methodology and then present results.

3.1 Linguistic Identification of Useful
Refactors

Refactors are diverse in type, size, goal, subject, and implementation.
As we show below, their effect on bug rate has a high standard
deviation. This hints that there might be different types of refactors
with different effects.

In order to identify the most effective refactors, we retrieved the
commit messages from our refactor dataset and tokenized them. We
labeled them bywhether the refactor reduced the bug rate by at least
0.1. This enabled us to use machine learning to predict improvement
and evaluate influence. However, the number of tokens is very
high, the same semantic meaning might be represented by different
tokens, and all probabilities are subject to noise. Therefore, we used
linguistic and domain knowledge to map the tokens into groups,
e.g. considering ‘reorganizes’, ‘reorganized’ and ‘repackaging’ as
members of the ‘reorganize’ group.

3.2 Using Coupling as a Metric
Linguistic analysis as described above is based on what the devel-
oper intended to do in the refactor, and documented in the commit
message. But the refactor might fail to fulfill the intent or have other
side effects. It is therefore interesting to also look at the effect of
software properties that just happened to change. We use coupling,
which is a metric of software quality, and examine the influence of
a reduction in the coupling on the bug-fix rate.

Zimmermann et al. [21] showed that co-changes analysis, namely
files that change in the same commit, can be used to detect coupling.
We use the idea as a file-level metric for coupling based on the size
of co-changes. A commit is a unit of work ideally reflecting the
completion of a task. It should contain only the files relevant to
that task. A large number of files needed for a task means coupling.
Therefore, the metric is the average number of files in a commit.

The same approach can be applied to other software metrics
such as length, readability, and complexity.

3.3 Influence of Refactoring
In order to analyze the influence of refactors, we should first know
what happens without them. We compared the bug-fix rates of files
in two adjacent three-month windows and saw that only 42% of
the files had a lower bug-fix rate in the later window. The average
difference in the bug-fix rate is only 0.004, with standard deviation
of 0.2. Probability of improving by 0.1 or more was 12% (with 10
commits, 0.1 means one commit). These results indicate code rot,
yet show that code quality decreases slowly and with a variance
that is much larger than the change.

We present the influence of refactors in table 1. We examined
clean refactors with at least 10 commits in a three-month window
before them and in two such windows after them. The requirement
for the second window reduces the dataset by about 35%.

The average change in the bug rate is small for all refactor types,
and in all but one it is positive (an increase in bug rate). However,
the standard deviation is large, so there are many cases where the
refactoring does help. The results are sorted according to the proba-
bility of a substantial reduction in the bug rate (emphasized), where
“substantial” is taken to be at least 0.1 in a 3-month context. In all
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Table 1: Effect of refactor operations on bug rate

Metric: difference probability to improve
Avg±stddev by >0.1 by >0 by >0 by >0

Window before: 3mon 3mon 3mon 3mon 6mon
Window after: 3mon 3mon 3mon 4-6mn 6mon

Action Commits
todo 256 -0.003±0.137 0.248 0.493 0.523 0.500
feedback 149 0.005±0.137 0.228 0.479 0.407 0.419
reuse 122 0.027±0.136 0.211 0.398 0.451 0.511
upgrade 79 0.002±0.134 0.205 0.446 0.566 0.506
SE goals 995 0.003±0.137 0.205 0.485 0.527 0.506
sp/tab 358 0.000±0.132 0.202 0.486 0.469 0.499
improve 3,193 0.005±0.135 0.196 0.482 0.484 0.486
optimization 1,141 0.005±0.135 0.196 0.465 0.475 0.457
refactor 4,241 0.006±0.133 0.186 0.465 0.505 0.489
enum/ns 261 0.004±0.121 0.184 0.494 0.494 0.523
unneeded 7,167 0.001±0.129 0.180 0.501 0.496 0.502
rework 850 0.013±0.133 0.178 0.449 0.466 0.401
baseline 39,944 0.005±0.127 0.172 0.475 0.486 0.476
reorganize 423 0.013±0.144 0.168 0.410 0.487 0.462
rename 2,492 0.003±0.123 0.168 0.463 0.481 0.459
simplify 2,605 0.004±0.122 0.164 0.473 0.471 0.461
clean 595 0.009±0.134 0.162 0.460 0.482 0.482
coupling 10,180 0.028±0.133 0.135 0.403 0.447 0.459
style 196 0.036±0.137 0.132 0.397 0.470 0.420
spelling 47 0.046±0.128 0.080 0.380 0.500 0.360

cases but one this was larger than the 12% found for general com-
mits. The next column shows the probability for any improvement,
and the last two consider alternative time windows. “Commits” is
the number of refactors we analyze. Note that some of the results
are based on a small number of cases.

The rows of the table represent the refactoring operations. The
baseline row (emphasized) presents the influence of a general refac-
tor. Operations that may require explanation are ‘feedback’ - with
external feedback (human as code review or mechanical as pylint),
‘enum/ns’ - software engineering constructs like enum or names-
pace, ‘SE goals’ - explicit reference to a software goal like abstrac-
tion, ‘unneeded’ - removing unneeded code, ‘sp/tab’ - the white-
space/tabs wars common in the Python community, ‘refactor’ -
explicitly mentioning the term. ‘Coupling’ is refactors that had a
side-effect of reducing the number of non-test files in the commit
by at least one file. The rest of the operations are a textual evidence
of the name of the operation and its semantically equivalent terms.
A refactor can involve several operations.

Only one operation had a probability for improvement of 50% in
the next three months. However, in 75% of them the probability of
improvement was better than the 42% expected for general commits.
Observing the difference average and standard deviation it is clear
that all changes are small, usually reducing the quality and with a
high variance. This explains the mixed results in prior work. None
of the operations is a silver bullet or even reaches 60% probability
of improvement and a substantial reduction in bug rate.

Another result is that four to six months after the refactor many
operations are better than after one to three months. This might

suggest that a refactor disrupts the system and might cause more
bugs in the short term. But good refactors have a return on invest-
ment in the long term, and for some operations the six-month bug
rate shows improvement.

3.4 Possible Explanations
Once we can identify influential operations, the first question that
comes to mind is “Why does it influence in this way?” We don’t
claim to provide answers here but to suggest ideas that should be
investigated on their own.

The probability of reducing the bug rate by 0.1 between two 3-
month periods is 12%. Doing a refactor raises the probability to 17%.
The leading operation is ‘todo’, though based on a small number of
cases. It is interesting to further investigate why it is so influential.
A possible reason is that ‘todo’s actually reflect what the developers
themselves think should be done, based on their knowledge of the
code, and it is indeed advisable to act on this input.

‘Feedback’ and ‘SE goals’ indicate a change that is supported
by an external influence and guided. Maybe the identification of a
proper target contributes to the success. ‘Feedback’ is not a specific
change but a result of consulting, and its substantial improvement
probability is 32% higher than that of a baseline refactor.

‘Reuse’ and ‘upgrade’ should have been a free lunch, using an
already-existing component. However, the change itself led to short
term bugs and returning the investment only in the longer term.

The influence of ‘improve’ is lower, suggesting that we might not
be as good as we think in identifying needed improvements. This is
even more so with ‘clean’ and ‘reorganize’, which are slightly less
beneficial than a general refactor, and ‘rework’, which is perhaps
marginally better.

Simplification is one of the most advocated principles in software
engineering and in general. One would expect that the influence
of simplification would be high, but our results indicate it is lower
than a general refactor. It will be interesting to investigate if sim-
plification refactors indeed improve complexity metrics.

Interestingly, other than ‘rename’ and ‘unneeded’, we didn’t iden-
tify the linguistic expression of any refactor technique (e.g., ‘extract
method’, ‘pull up/down’). This might suggest that the context and
goal, and not the technique, are the cause of influence. A focused
study is needed to verify this.

Reduced coupling is slightly worse than no refactor in the first 3
months, and improves later. This might hint that a large reduction
in coupling is somewhat positive but involves destabilizing the
system.

3.5 Influence on the System and Influence of
the Developer

The linguistic exploration led to some surprising results. Consider
the removal of unneeded code, whitespace wars, style, rename, and
spelling. The compiler is indifferent to all of them, yet we see that
they have an effect. Hence, they influence via the developer, who
might make more bugs, e.g. due to confusing variable names.

The terms of whitespace wars, style, and spelling were not part
of our definition of a refactor. But their influence was big enough
to be observed in our refactor model hits. It is also possible that
developers who pay attention to style, pay attention to quality in
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general. In order to investigate their influence regardless of our
refactor model, one should develop a model for them and consider
all their occurrences.

4 THREATS TO VALIDITY
We checked differences in bug-fix rates before and after a refactor
as a measure of quality improvement. The time windows used
might be too long or too short. Since our context is rather long, it
is possible that different causes interfere with the change, a threat
we try to control by using a large number of cases.

The use of bug fixes might be misleading in case the refactor does
not lead to more bugs but helps to find bugs more efficiently. For
example, simplifying the code might reveal old bugs and increase
the future bug-fix rate.

We don’t know how a developer decides to do a refactor. How-
ever, it is not uniformly selecting a random file each day. The refac-
tors done depend on the history and goals, and this might bias our
data. If one decides to refactor a file after a period that had many
fixes by chance, the regression towards the mean might be seen
as an improvement. External causes, like a quality assurance blitz,
might also change the probability of finding and fixing a bug.

In order to analyze the refactors we needed a suitable context.
The refactors in the scope, and even more the clean refactors, are
a small part of all the refactors. A refactor done on an extensively
changing file might not represent other refactors. Finding recom-
mendable operations using clean commits and verifying them on
all commits will enable validation of the results.

The linguistic models for corrective and refactor commits were
built and estimated using labeled data sets. The models reach high
precision by not only identifying a term occurrence but also notic-
ing that “error message” and “this is a feature and not a bug” do not
indicate a corrective commit. While refactor operations are part of
the model, we don’t have a labeled data set and performance evalu-
ation for them. A text occurrence is usually positive, but validation
is needed.

5 FUTUREWORK AND CONCLUSIONS
We presented a method to identify refactor operations and evaluate
their effectiveness in reducing the bug rate. We provide results on
known refactoring operations and identify new ones.

In general, refactors are instrumental in reducing bug rates due
to code rot. A recommendation depends on the metric of inter-
est. Almost all refactor operations have a better probability for a
substantial improvement or improvement after four to six months
than a general commit. Being conservative, we recommend oper-
ations with at least 50% for improvement in the next six months:
do your ‘todo’s, remove unneeded code, aim to improve software
goals, upgrade and reuse, and use enums and namespaces.

Many other metrics can be used as both the changed metric
in the refactor or the target metric we value. Some of them have
immediate influence (e.g., a refactor that shortens a file length),
making the change cleaner and the analysis results more robust.
Many other aspects might influence the effectiveness of refactoring:
developer’s familiarity with the code, experience, file age, etc. The
high variance of influence gives hope to finding more effective

operations. Using this method, and further developing the method
itself, can lead to more actionable recommendations.

Supplementary Materials
See https://github.com/evidencebp/Which-Refactoring-Reduces-
Bug-Rate
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