Matrix Balancing in L_{p}
 norms: A New Analysis of Osborne's Iteration
 Yuval Rabani
 The Hebrew University of Jerusalem

joint work with:
Rafail Ostrovsky and Arman Yousefi (UCLA)

Matrix Balancing

- $n \times n$ real matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$
- it is balanced in $\|\cdot\|$ iff $\forall i,\left\|a_{i} \cdot\right\|=\left\|a_{\cdot i}\right\|$
- $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ balances A iff $D A D^{-1}$ is balanced (ai. scaled by di, a•i scaled by 1/di)
- diagonal entries, signs of entries don't matter; w.l.o.g. A is nonnegative, has all-Os diagonal.

Osborne's Iteration

- balance index i: scale $a_{i \cdot}$ by $\sqrt{\left\|a_{\cdot i}\right\| / \| a_{i \cdot} \cdot \mid}$ and $a_{\cdot i}$ by $\sqrt{\left\|a_{i \cdot}\right\| /\left\|a_{\cdot i}\right\|}$
- repeat (round-robin) until the matrix is balanced
- [Osborne 1960] the L_{2} norm iteration converges to a balanced matrix
- [Parlett \& Reinsch 1969] same iteration for any L_{p} norm
- $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ balances A in the L_{p} norm iff $\operatorname{diag}\left(d_{1}{ }^{p}, d_{2}{ }^{p}, \ldots, d_{n}{ }^{p}\right)$ balances $\left(a_{i j}{ }^{p}\right)$ in the L_{1} norm
- [Grad 1971] convergence of the L_{1} norm iteration

Why Balance?

- A and $D A D^{-1}$ have the same eigenvalues
- eigenvalue computations on unbalanced matrices are numerically unstable
- [Osborne 1960] if D balances A in L_{2} then it minimizes the Frobenius norm of D A D ${ }^{-1}$
- the numerical stability of eigenvalue computations depends on the Frobenius norm of the matrix
- Osborne's iteration is implemented in almost all numerical linear algebra software: MATLAB, LAPACK, EISPACK

Balanceable Matrices

- A is balaceable iff $\exists D$ s.t. $D A D^{-1}$ is balanced
- G_{A} - weighted digraph on $\{1,2, \ldots, n\}$ $(i, j) \in E\left(G_{A}\right)$ iff $a_{i j}>0$, weight is $a_{i j}$
- if A is balanced in the L_{1} norm, then the weights form a valid circulation in G_{A}
- [Eaves et al. 1985] A is balanceable iff G_{A} is strongly connected
- [Hartfiel 1971] D is unique up to uniform scaling

Balancing in L_{1}

[Kalantari-Khachiyan-Shokoufandeh 1997]

- def: A is ε-balanced if $\sqrt{\sum_{i}\left(\left\|a_{i}\right\|-\left\|a_{i}\right\|\right)^{2}} / \sum_{i j} a_{i j} \leq \varepsilon$
- Ellipsoid based algorithm, $O\left(n^{4} \log (n \log a / \varepsilon)\right)$ arithmetic operations

$$
a=\Sigma_{i j} a_{i j} / a_{\text {min }} \quad\left(a_{\text {min }}=\min \left\{a_{i j}: a_{i j}>0\right\}\right)
$$

- [Kalantari et al. 1997]: $d>0$ minimizes $F(d)=\sum_{i j} a_{i j}\left(d_{i} / d_{j}\right)$ iff $D=\operatorname{diag}(d)$ balances $A=\left(a_{i j}\right)$ in the L_{1} norm
- minimize $f(x)=f_{A}(x)=\sum_{i j} a_{i j} \exp \left(x_{i}-x_{j}\right)$ is an unconstrained convex program

Balancing in L_{∞}

- [Schneider \& Schneider 1991] O(n^{4}) algorithm
- [Young, Tarjan \& Orlin 1991] improved $O\left(m n+n^{2} \log n\right)$ $\mathrm{m}=$ \#arcs of G_{A}
- [Chen 1998] Osborne's iteration converges to a balanced matrix, $\Theta\left(n^{3}\right)$ iterations when G_{A} is a directed cycle
- [Schulman \& Sinclair 2015]: a variant (different order) of Osborne's iteration converges in $O\left(\mathrm{n}^{3} \log (\mathrm{\rho} / \varepsilon)\right)$ iterations to an ε-balanced matrix, $\rho=$ initial imbalance
- stronger notion of approximation: maxi $_{i} \mid \log \left(| | a_{i}| | /\left|\left|a_{i}\right|\right|| | \leq \varepsilon\right.$

Our Results

- We analyze the convergence rate of three natural variants of Osborne's L_{1} iteration:
- original $-O\left(\varepsilon^{-2} n^{2} \log a\right)$ iterations; $O\left(\varepsilon^{-2} m n \log a\right)$ arithmetic operations on $O(n \log a)$-bit numbers
- greedy - K iterations; O(m + K n log n) arithmetic operations on $O(n \log a)$-bit numbers; $K=\min \left\{\varepsilon^{-2} \log a, \varepsilon^{-1} n^{3 / 2} \log (a / \varepsilon)\right\}$
- random $-O\left(\varepsilon^{-2} \log a\right)$ iterations; $O\left(m+\varepsilon^{-2} n \log a\right)$ arithmetic operations on $O(\log (a n / \varepsilon))$-bit numbers
- lower bound: $\Omega(1 / \sqrt{\varepsilon})$, any variant

Some Observations

- recall $f(x)=\sum_{i j} a_{i j} e^{x_{i}-x_{j}}=\| \| A(x)\| \|_{1}$ $A(x)=\left(a(x)_{i j}\right)=D A D^{-1}$ for $D=\operatorname{diag}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right)$
- Osborne's iteration = coordinate descent to find $x^{*}=\operatorname{argmin} f(x)$
- $\partial f(x) / \partial x_{i}=\left\|a(x)_{i} \cdot\right\|_{1}-\|a(x) \cdot \cdot\|_{1}$
- $\operatorname{diag}\left(e^{x_{1}}, \ldots, e^{x_{n}}\right) \varepsilon$-balances A iff $\|\nabla f(x)\|_{2} / f(x) \leq \varepsilon$

Some Lemmas

- if $A(x) \mapsto A\left(x^{\prime}\right)$ as a result of balancing i, then $f(x)-f\left(x^{\prime}\right) \geq\left(\partial f(x) / \partial x_{i}\right)^{2} / 2\left(\left\|a(x)_{i}\right\|+\left\|a(x)_{\cdot i \|}\right\|\right)$
- if i maximizes the drop in potential, then

$$
f(x)-f\left(x^{\prime}\right) \geq\left(\|\nabla f(x)\|_{2}\right)^{2} / 4 f(x)=f(x) \cdot\left(\|\nabla f(x)\|_{2} / 2 f(x)\right)^{2}
$$

- the challenging lemma: $f(x)-f\left(x^{*}\right) \leq(n / 2) \cdot\|\nabla f(x)\|_{1}$

Distance to Optimality

Lemma: $f(x)-f\left(x^{*}\right) \leq(n / 2) \cdot\|\nabla f(x)\|_{1}$
Proof: W.I.o.g. $x=0(\operatorname{so} A(x)=A)$.

- Recall ||Vf(0) $\left\|_{1}=\Sigma_{i}\left|\left\|a_{i}\right\|_{1}-\left\|a_{\cdot i}\right\|_{1}\right|\right.$
- Put $S=\left\{i:\left\|a_{i}\right\|_{1}>\left\|a_{i}\right\|_{1}\right\}$ and $T=\left\{i:\left\|a_{\cdot i}\right\|_{1}<\left\|a_{i}\right\|_{1}\right\}$
- Form a circulation by adding arcs between S and T
- Total added weight $=\sum_{i \in S}\left(\left\|a_{\cdot}\right\|_{1}-\left\|a_{i} \cdot\right\|_{1}\right)=1 / 2 \cdot\|\nabla f(0)\|_{1}$
- Remove flow cycles via new arcs (cycle $\leq n$ arcs)
- Remaining weight $\geq f(0)+1 / 2 \cdot| | \nabla f(0)\left\|_{1}-(n / 2) \cdot\right\| \nabla f(0) \|_{1}$

(cont.)

Claim: remaining weight $\leq f\left({ }^{*}\right)$

- flow cycles: C_{k} of length n_{k}, weight $a_{k}, k=1,2, \ldots$
- $G_{A^{\prime}}=$ graph of remaining weights $=\Sigma_{k} a_{k} C_{k}$
$-f\left(x^{*}\right)=\sum_{i j} a_{i j} \exp \left(x_{i}^{*}-x_{j}^{*}\right) \geq \sum_{i j} a_{i j} \exp \left(x_{i}^{*}-x_{j}^{*}\right)$
$=\sum_{i j} \sum_{k i j \in C_{k}} a_{k} \exp \left(x_{i}^{*}-x_{j}^{*}\right)=\sum_{k} \sum_{i j \in C_{k}} a_{k} \exp \left(x_{i}^{*}-x_{j}^{*}\right)$
$\geq \sum_{k} n_{k}\left(\Pi_{i j \in C_{k}} a_{k} \exp \left(x_{i}^{*}-x_{j}^{*}\right)\right)^{1 / n_{k}}=\sum_{k} n_{k} a_{k}=\sum_{i j} a_{i j}^{\prime}$
arithmetic-geometric mean inequality
Π weights along cycle invariant to balancing

Greedy Balancing

Recall: $f(x)-f\left(x^{\prime}\right) \geq f(x) \cdot\left(\|\nabla f(x)\|_{2} / 2 f(x)\right)^{2}$
if $A(x)$ is not ε-balanced, $\|\nabla f(x)\|_{2} / f(x)>\varepsilon$
Analysis \#1: $f\left(x^{\prime}\right)<\left(1-\varepsilon^{2} / 4\right) \cdot f(x)$

$$
f(0)=\sum_{i j} a_{i j} \text { and } f\left(x^{*}\right) \geq a_{\text {min }}
$$

Analysis \#2: $\|\nabla f(x)\|_{1} \leq n^{1 / 2} \cdot\|\nabla f(x)\|_{2}$

$$
\begin{aligned}
f(x)-f\left(x^{\prime}\right) & \geq\|\nabla f(x)\|_{1} \cdot\|\nabla f(x)\|_{2} /\left(4 n^{1 / 2} \cdot f(x)\right) \\
& >\left(\varepsilon / 2 n^{3 / 2}\right) \cdot\left(f(x)-f\left(x^{*}\right)\right)
\end{aligned}
$$

Other Variants

- original algorithms - requires analyzing a phase
- random order - i is chosen with probability $\left(\left\|a(x)_{i}\right\|+\|a(x) \cdot i\|\right) / 2 f(x)$

The Lower Bound

$A=\left[\begin{array}{c:c|c|c}0 & 1 & 0 & 0 \\ \hdashline 1 & 0 & 101 \varepsilon & 0 \\ \hdashline 0 & \varepsilon & 0 & 1 \\ \hdashline 0 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& \text { D A D }{ }^{-1}=\begin{array}{c|c|c|c|}
0 & 1 & 0 & 0 \\
1 & 0 & \sqrt{1018} & 0 \\
\hline 0 & \sqrt{1018} & 0 & 1 \\
\hline 0 & 0 & 1 & 0
\end{array} \\
& D=\operatorname{diag}(1,1, \sqrt{101}, \sqrt{101})
\end{aligned}
$$

- in one iteration $\mathrm{a}_{32} / \mathrm{a}_{23}$ grows by a factor $\leq \frac{1+70 \sqrt{\varepsilon}}{1+\varepsilon}$
- if A^{\prime} is ε-balanced then $a^{\prime}{ }_{32} / a^{\prime}{ }_{23}>\frac{1}{100}$

Concluding Remarks

- how many iterations are needed to get $\forall i$, $\max \left\{\left\|a_{\cdot i}\right\|,\left\|a_{i}\right\|\right\} / \min \left\{\left\|a_{i}\right\|,\left\|a_{i \cdot}\right\|\right\} \leq 1+\varepsilon ?$
- tight bounds in terms of ε - can we get a bound of $\tilde{O}(n)$ which is also tight in terms of ε ?
- a practically appealing heuristic with better dependence on ε ?

