Matrix Balancing in L_p norms: A New Analysis of Osborne's Iteration

Yuval Rabani The Hebrew University of Jerusalem

joint work with: Rafail Ostrovsky and Arman Yousefi (UCLA)

Matrix Balancing

- $n \times n$ real matrix $A = (a_{ij})_{i,j=1,...,n}$
- it is balanced in $\|\cdot\|$ iff $\forall i$, $\|a_{i\cdot}\| = \|a_{\cdot i}\|$
- D = diag(d₁, d₂, ..., d_n) balances A iff D A D⁻¹ is balanced (a_i scaled by d_i, a_i scaled by 1/d_i)
- diagonal entries, signs of entries don't matter;
 w.l.o.g. A is nonnegative, has all-0s diagonal.

Osborne's Iteration

- balance index i: scale a_i by $\sqrt{\|a_i\|} / \|a_i\|$ and a_i by $\sqrt{\|a_i\|} / \|a_i\|$
- repeat (round-robin) until the matrix is balanced
- [Osborne 1960] the L₂ norm iteration converges to a balanced matrix
- [Parlett & Reinsch 1969] same iteration for any Lp norm
- diag(d₁, d₂, ..., d_n) balances A in the L_p norm iff diag(d₁^p, d₂^p, ..., d_n^p) balances (a_{ii}^p) in the L₁ norm
- [Grad 1971] convergence of the L₁ norm iteration

Why Balance?

- A and D A D⁻¹ have the same eigenvalues
- eigenvalue computations on unbalanced matrices are numerically unstable
- [Osborne 1960] if D balances A in L₂ then it minimizes the Frobenius norm of D A D⁻¹
- the numerical stability of eigenvalue computations depends on the Frobenius norm of the matrix
- Osborne's iteration is implemented in almost all numerical linear algebra software: MATLAB, LAPACK, EISPACK

Balanceable Matrices

- A is balaceable iff ∃D s.t. D A D⁻¹ is balanced
- G_A weighted digraph on {1,2,...,n}
 (i,j) ∈ E(G_A) iff a_{ij} > 0, weight is a_{ij}
- if A is balanced in the L_1 norm, then the weights form a valid circulation in G_A
- [Eaves et al. 1985] A is balanceable iff G_A is strongly connected
- [Hartfiel 1971] D is unique up to uniform scaling

Balancing in L₁

[Kalantari-Khachiyan-Shokoufandeh 1997]

- def: A is ε -balanced if $\sqrt{\sum_i (\|a_{ii}\| \|a_{ii}\|)^2} / \sum_{ij} a_{ij} \le \varepsilon$
- Ellipsoid based algorithm, O(n⁴ log(n log α / ε)) arithmetic operations

```
\alpha = \sum_{ij} a_{ij} / a_{min} (a_{min} = min\{a_{ij}: a_{ij} > 0\})
```

- [Kalantari et al. 1997]: d > 0 minimizes $F(d) = \sum_{ij} a_{ij} (d_i / d_j)$ iff D = diag(d) balances $A = (a_{ij})$ in the L_1 norm
- minimize $f(x) = f_A(x) = \sum_{ij} a_{ij} \exp(x_i x_j)$ is an unconstrained convex program

Balancing in L∞

- [Schneider & Schneider 1991] O(n⁴) algorithm
- [Young, Tarjan & Orlin 1991] improved O(mn + n² log n)
 m = #arcs of G_A
- [Chen 1998] Osborne's iteration converges to a balanced matrix, $\Theta(n^3)$ iterations when G_A is a directed cycle
- [Schulman & Sinclair 2015]: a <u>variant</u> (different order) of Osborne's iteration converges in $O(n^3 \log(\rho n/\epsilon))$ iterations to an ϵ -balanced matrix, ρ = initial imbalance
- stronger notion of approximation: $\max_i |\log(||a_{i}|| / ||a_{i}||)| \le \varepsilon$

Our Results

- We analyze the convergence rate of three natural variants of Osborne's L₁ iteration:
- original $O(\epsilon^{-2} n^2 \log \alpha)$ iterations; $O(\epsilon^{-2} mn \log \alpha)$ arithmetic operations on $O(n \log \alpha)$ -bit numbers
- greedy K iterations; O(m + K n log n) arithmetic operations on $O(n log \alpha)$ -bit numbers; $K = min\{\epsilon^{-2} log \alpha, \epsilon^{-1} n^{3/2} log(\alpha/\epsilon)\}$
- random $O(\epsilon^{-2} \log \alpha)$ iterations; $O(m + \epsilon^{-2} n \log \alpha)$ arithmetic operations on $O(\log(\alpha n/\epsilon))$ -bit numbers
- lower bound: $\Omega(1/\sqrt{\epsilon})$, any variant

Some Observations

- recall $f(x) = \sum_{ij} a_{ij} e^{x_i x_j} = ||| A(x) |||_1$ $A(x) = (a(x)_{ij}) = D A D^{-1} \text{ for } D = \text{diag}(e^{x_1}, ..., e^{x_n})$
- Osborne's iteration = coordinate descent to find
 x* = argmin f(x)
- $\partial f(x) / \partial x_i = ||a(x)_{i \cdot}||_1 ||a(x)_{\cdot i}||_1$
- diag(e^{x_1} , ..., e^{x_n}) ε -balances A iff $||\nabla f(x)||_2 / f(x) \le \varepsilon$

Some Lemmas

- if $A(x) \mapsto A(x')$ as a result of balancing i, then $f(x) f(x') \ge (\partial f(x) / \partial x_i)^2 / 2(||a(x)_i|| + ||a(x)_i||)$
- if i maximizes the drop in potential, then $f(x) f(x') \ge (||\nabla f(x)||_2)^2 / 4f(x) = f(x) \cdot (||\nabla f(x)||_2 / 2f(x))^2$
- the challenging lemma: $f(x) f(x^*) \le (n/2) \cdot ||\nabla f(x)||_1$

Distance to Optimality

```
Lemma: f(x) - f(x^*) \le (n/2) \cdot ||\nabla f(x)||_1
```

```
Proof: W.I.o.g. x = 0 (so A(x) = A).
```

- Recall $\|\nabla f(0)\|_1 = \sum_i \|a_{i\cdot}\|_1 \|a_{\cdot i}\|_1$
- Put $S = \{i: ||a_{\cdot i}||_1 > ||a_{i \cdot}||_1\}$ and $T = \{i: ||a_{\cdot i}||_1 < ||a_{i \cdot}||_1\}$
- Form a circulation by adding arcs between S and T
- Total added weight = $\sum_{i \in S} (||a_{ii}||_1 ||a_{ii}||_1) = \frac{1}{2} \cdot ||\nabla f(0)||_1$
- Remove flow cycles via new arcs (cycle ≤ n arcs)
- Remaining weight $\geq f(0) + \frac{1}{2} \cdot ||\nabla f(0)||_1 (n/2) \cdot ||\nabla f(0)||_1$

(cont.)

Claim: remaining weight $\leq f(x^*)$

- flow cycles: C_k of length n_k , weight a_k , k=1,2,...
- $G_{A'}$ = graph of remaining weights = $\sum_k \alpha_k C_k$

```
 \begin{array}{l} -f(x^{*}) = \sum_{ij} a_{ij} \exp(x_{i}^{*} - x_{j}^{*}) \geq \sum_{ij} a_{ij}^{!} \exp(x_{i}^{*} - x_{j}^{*}) \\ = \sum_{ij} \sum_{k:ij \in C_{k}} \alpha_{k} \exp(x_{i}^{*} - x_{j}^{*}) = \sum_{k} \sum_{ij \in C_{k}} \alpha_{k} \exp(x_{i}^{*} - x_{j}^{*}) \\ \geq \sum_{k} n_{k} \left( \prod_{ij \in C_{k}} \alpha_{k} \exp(x_{i}^{*} - x_{j}^{*}) \right)^{1/n_{k}} = \sum_{k} n_{k} \alpha_{k} = \sum_{ij} a_{ij}^{!} \\ \uparrow \end{array}
```

arithmetic-geometric mean inequality

Tweights along cycle invariant to balancing

Greedy Balancing

```
Recall: f(x) - f(x') \ge f(x) \cdot (||\nabla f(x)||_2 / 2f(x))^2
             if A(x) is not \varepsilon-balanced, \|\nabla f(x)\|_2 / f(x) > \varepsilon
Analysis #1: f(x') < (1 - \varepsilon^2/4) \cdot f(x)
                       f(0) = \sum_{ij} a_{ij} and f(x^*) \ge a_{min}
Analysis #2: \|\nabla f(x)\|_1 \le n^{1/2} \cdot \|\nabla f(x)\|_2
                       f(x) - f(x') \ge ||\nabla f(x)||_1 \cdot ||\nabla f(x)||_2 / (4n^{1/2} \cdot f(x))
                                        > (\varepsilon / 2n^{3/2}) \cdot (f(x) - f(x^*))
```

Other Variants

- original algorithms requires analyzing a phase
- random order i is chosen with probability
 (||a(x)_{i·}|| + ||a(x)_{·i}||) / 2f(x)

The Lower Bound

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 101\epsilon & 0 \\ 0 & \epsilon & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

D = diag(1, 1, $\sqrt{101}$, $\sqrt{101}$)

- in one iteration a_{32}/a_{23} grows by a factor $\leq \frac{1+70\sqrt{\epsilon}}{1+\epsilon}$
- if A' is ε -balanced then $a'_{32} / a'_{23} > \frac{1}{100}$

Concluding Remarks

- how many iterations are needed to get ∀i,
 max{||a_{·i}||,||a_{i·}||} / min{||a_{·i}||,||a_{i·}||} ≤ 1 + ε?
- tight bounds in terms of ε can we get a bound of $\tilde{O}(n)$ which is also tight in terms of ε ?
- a practically appealing heuristic with better dependence on ε?