Convergence of Incentive-Driven Dynamics in Fisher Markets

Yuval Rabani The Hebrew University of Jerusalem

joint work with: Krishnamurthy Dvijotham and Leonard J. Schulman (Caltech)

Decisions in Markets

- "selfish" agents create, allocate, and exchange limited resources in a state of equilibrium
- knowledge, control distributed; no common goal; system is not engineered
- how is the system driven towards equilibrium?
- how is equilibrium restored in reaction to "shocks"?
- these are questions about the dynamics / stability

Game Theoretic Perspective

- <u>dynamics</u>: given a stage game, play it repeatedly
- this is just a longer game
- extensive form (perfect) equilibria -
 - compute in advance optimal moves in all situations
 - players play an equilibrium, thus a static notion
 - often intractable [Borgs et al. 2010; but Halpern et al. 2014]
 - unrealistically prescient players
 - what happens if the game changes unexpectedly?

Dynamics Wish List

- empirical evidence for moves and outcome
- strategic justification of moves and outcome
- moves undamped, not tailored for convergence
- convergence, to an attractive outcome, quickly
- adaptation to unpredictable evolution

Learning Dynamics

- no-regret dynamics -
 - converge to a correlated equilibrium [Hart & Mas-Collel 2000]
 - but reactions need to be damped carefully
 - what's the strategic justification? explicit form?
- best-response -
 - bounded rationality (myopic players)
 - desirable outcome? in some cases [Awerbuch et al. 2008, Chien & Sinclair 2011]
- fictitious play [Brown 1951]
- logit dynamics [Blume 1993, ..., Auletta et al. 2015]
- level k model (receding horizon control) -
 - extensive empirical evidence [Stahl & Wilson 1994-5; see Crawford et al. 2013]
 - adaptive and sophisticated learning [Milgrom & Roberts 1991]

Fisher Markets

- m perfectly divisible goods, each owned by a seller
- the endowment of each good is scaled to 1
- the demand is generated by n buyers with budgets and concave utility functions

Demand

- every good j has a varying price pj
- every buyer i has a fixed budget bi
- i's utility function u_i(x_i) assigns a value to every basket of goods x_i (x_{ij} is the quantity of good j)
- i demands x_i(p) = argmax u_i(x_i) subject to the budget constraint ∑_j p_j x_{ij} ≤ b_i
- the demand for j at prices p is $x_{ij}(p) = \sum_i x_{ij}(p)$
- equilibrium price vector p^* : $\forall j, x_{ij}(p^*) = 1$ (the market clears) unique in our setting, but not in general

Elasticity of Demand

- the price elasticity of the demand for j with respect to p_k is <u>log x_j(p)</u> <u>log p_k</u>
- own elasticity: j = k; cross elasticity: $j \neq k$
- we assume (elastic and bounded demand):
 - cross price elasticities ≥ 0 (e.g., WGS utilities)
 - own price elasticities < -1 (incentive to clear market)
 - all prices $\leq p_{min} \Rightarrow$ all demands > 1
 - all prices $\geq p_{max} \Rightarrow$ all demands < 1

 $0 < p_{min} < p_{max} < \infty$

boundedness

Price Updates

- each round: announce new prices and observe demand
 - synchronous simultaneous price updates
 - asynchronous arbitrary update schedule
 - ongoing markets [CF08] also irregularly delayed market signals
- (discrete time) proportional tâtonnement [Walras 1874, Samuelson 1941]: $p_j^{t+1} = p_j^t (1 + \epsilon \cdot (x_{\cdot j}(p^t) - 1))$
- empirical evidence (even when it doesn't converge) [Plott et al. 2000-2011]
- In Fisher markets with CES+Cobb-Douglas+Leontief utilities:
 - converges (quickly) to equilibrium [Cole et al. 2008-2016]
 - equivalent to gradient/coord. descent [CCD13, CC16]
 - thus, regret minimizing
 - but, this requires careful choice of the damping factor ε

Best Response

- each seller j acts as follows:
 - predicts that the other sellers will stay put at the current prices p_{-j} = (p₁, ..., p_{j-1}, ., p_{j+1}, ..., p_m)
 - sets its own price to a value F_j(p) that maximizes predicted revenue
- own price elasticity < -1 $\Rightarrow x_{ij}(p_{-j}, F_j(p)) = 1$

A General Framework

- A price update $p_j \mapsto F_j(p)$ is:
 - monotone, iff $p \ge q$ (coord.-wise) $\Rightarrow F_j(p) \ge F_j(q)$
 - <u>sub-homogeneous</u>, iff $\lambda \in (0,1) \Rightarrow \forall p, F_j(\lambda p) \ge \lambda F_j(p)$
 - strictly so, iff the inequality is strict for all p > 0
 - $[p_{min}, p_{max}]$ -price bounded, iff $p \in [p_{min}, p_{max}]^m \Rightarrow F_j(p) \in [p_{min}, p_{max}]$
- F is ... iff ∀j, F_j is ...
- F is stable iff $F(p^*) = p^*$

Belief Formation

- F = finite set of (single seller) price updates
 for seller j, f ∈ F sets j's price given the other prices p_{-j}
- j's level 0 update: keep current price pi
- j's level 0 belief on $s \neq j$: s uses a level 0 update.
- a level 1 update of j: use $f(p_{-j})$ for some $f \in \mathcal{F}(p_{-j})$ are level 0 beliefs of j)
- a level 1 belief of j on $s \neq j$: s uses a level ≤ 1 update.
- a level k update of j: use $f(q_{-i})$ for some $f \in \mathcal{F}$; q_{-i} are level < k beliefs of j
- a level k belief of j on $s \neq j$: s uses a level $\leq k$ update.

Belief-Based Updates

<u>Thm</u>: Suppose that all $f \in \mathcal{F}$ are monotone, strictly sub-homogeneous, and bounded. Then $\forall k$ every level k update satisfies the same properties.

Our Main Theorem

Consider an update of prices $p \mapsto F(p) = (F_1(p), F_2(p), ..., F_m(p))$

<u>Thm</u>: If F is monotone, strictly sub-homogeneous, and bounded, then it is a strict contraction under the Thompson metric.

Thompson metric:

 $d(p,q) = \| (\log(p_1 / q_1), ..., \log(p_m / q_m)) \|_{\infty}$

Consequences

<u>dynamic</u>: $\mathcal{F} =$ monotone, strictly sub-homogeneous, bounded, and stable prices updates (finite set).

 $p^{t+1} = F^{\beta(t)}(p^t) = (F_1(p^t), F_2(p^t), ..., F_m(p^t))$

 F_j is a level $k_j(t) \ge 1$ update $\beta_j(t)$ are the level $< k_j(t)$ beliefs of j that determine F_j

<u>Thm</u>: $\exists \xi_{max} < 1$ such that $d(p^t, p^*) < (\xi_{max})^t \cdot d(p^0, p^*)$

 $\frac{\text{Corollary}}{\|p^{t} - p^{*}\|_{\infty}} < ((p_{max})^{2} / p_{min}) \cdot (\xi_{max})^{t} \cdot d(p^{0}, p^{*})$ $\|p^{t} - p^{*}\|_{2} < \sqrt{n} \cdot ((p_{max})^{2} / p_{min}) \cdot (\xi_{max})^{t} \cdot d(p^{0}, p^{*})$

Concrete Markets

<u>Thm</u>: If the demand is elastic and bounded, then $F^{\beta(t)}$ is monotone, strictly sub-homogeneous, bounded, and stable.

 \Rightarrow the dynamic converges quickly to equilibrium

- beliefs not assumed to and cannot be consistent
- each seller believes: "I'm slightly smarter than the others" (and they believe the same thing about me)

Concluding Remarks

- applies also to asynchronous updates
 - t measures epochs
 - epoch = interval of \geq 1 update of every price
- the worst case is best-response (to level 0 beliefs)
- more general applicability? (games?)
- using (noisy?) information to update beliefs?