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Decisions in Markets
• “selfish” agents create, allocate, and exchange 

limited resources in a state of equilibrium 

• knowledge, control distributed; no common goal; 
system is not engineered 

• how is the system driven towards equilibrium? 

• how is equilibrium restored in reaction to “shocks”? 

• these are questions about the dynamics / stability



Game Theoretic Perspective 

• dynamics: given a stage game, play it repeatedly 

• this is just a longer game 

• extensive form (perfect) equilibria -  
‣ compute in advance optimal moves in all situations 
‣ players play an equilibrium, thus a static notion 
‣ often intractable [Borgs et al. 2010; but Halpern et al. 2014] 
‣ unrealistically prescient players 
‣ what happens if the game changes unexpectedly?



Dynamics Wish List
• empirical evidence for moves and outcome 

• strategic justification of moves and outcome 

• moves undamped, not tailored for convergence 

• convergence, to an attractive outcome, quickly 

• adaptation to unpredictable evolution



Learning Dynamics 
• no-regret dynamics - 

‣ converge to a correlated equilibrium [Hart & Mas-Collel 2000] 
‣ but reactions need to be damped carefully 
‣ what’s the strategic justification? explicit form? 

• best-response - 
‣ bounded rationality (myopic players) 
‣ desirable outcome? - in some cases [Awerbuch et al. 2008, Chien & Sinclair 2011] 

• fictitious play [Brown 1951] 

• logit dynamics [Blume 1993, …, Auletta et al. 2015] 

• level k model (receding horizon control) - 
‣ extensive empirical evidence [Stahl & Wilson 1994-5; see Crawford et al. 2013] 
‣ adaptive and sophisticated learning [Milgrom & Roberts 1991]



Fisher Markets

• m perfectly divisible goods, each owned by a seller 

• the endowment of each good is scaled to 1 

• the demand is generated by n buyers with budgets 
and concave utility functions



Demand
• every good j has a varying price pj 

• every buyer i has a fixed budget bi 

• i’s utility function ui(xi) assigns a value to every basket of 
goods xi (xij is the quantity of good j) 

• i demands xi(p) = argmax ui(xi) subject to the budget 
constraint ∑j pj xij ≤ bi 

• the demand for j at prices p is x∙j(p) = ∑i xij(p) 

• equilibrium price vector p*: ∀j, x∙j(p*) = 1 (the market clears)

unique in our setting, but not in general



Elasticity of Demand
• the price elasticity of the demand for j with respect to 

pk is  

• own elasticity: j = k; cross elasticity: j ≠ k 

• we assume (elastic and bounded demand): 
• cross price elasticities ≥ 0 (e.g., WGS utilities) 
• own price elasticities < -1 (incentive to clear market) 
• all prices ≤ pmin ⇒ all demands > 1 
• all prices ≥ pmax ⇒ all demands < 1

∂log x∙j(p) 
∂log pk

⎫                    
⎬boundedness 
⎭

0 < pmin < pmax < ∞



Price Updates 
• each round: announce new prices and observe demand 

‣ synchronous - simultaneous price updates 
‣ asynchronous - arbitrary update schedule 
‣ ongoing markets [CF08] - also irregularly delayed market signals  

• (discrete time) proportional tâtonnement [Walras 1874, Samuelson 1941]:  
pj

t+1 = pj
t (1 + ε∙(x∙j(p

t) - 1)) 
• empirical evidence (even when it doesn’t converge) [Plott et al. 2000-2011] 

• In Fisher markets with CES+Cobb-Douglas+Leontief utilities: 
‣ converges (quickly) to equilibrium [Cole et al. 2008-2016] 
‣ equivalent to gradient/coord. descent [CCD13, CC16] 
‣ thus, regret minimizing 
‣ but, this requires careful choice of the damping factor ε

CES
E&B



Best Response

• each seller j acts as follows: 
‣ predicts that the other sellers will stay put at the 

current prices p-j = (p1, …, pj-1, ∙, pj+1, …, pm) 
‣ sets its own price to a value Fj(p) that maximizes 

predicted revenue 

• own price elasticity < -1 ⇒ x∙j(p-j, Fj(p)) = 1



A General Framework
• A price update pj ↦ Fj(p) is: 
‣ monotone, iff p ≥ q (coord.-wise) ⇒ Fj(p) ≥ Fj(q) 

‣ sub-homogeneous, iff λ ∈ (0,1) ⇒ ∀p, Fj(λp) ≥ λFj(p) 

‣ strictly so, iff the inequality is strict for all p > 0 
‣ [pmin, pmax]-price bounded, iff                                      

p ∈ [pmin, pmax]m ⇒ Fj(p) ∈ [pmin, pmax] 

• F is … iff ∀j, Fj is … 

• F is stable iff F(p*) = p*



Belief Formation
• 𝓕 = finite set of (single seller) price updates 

for seller j, f ∈ 𝓕 sets j’s price given the other prices p-j 

• j’s level 0 update: keep current price pj 

• j’s level 0 belief on s ≠ j: s uses a level 0 update. 

• a level 1 update of j: use f(p-j) for some f ∈ 𝓕 (p-j are level 0 beliefs of j) 

• a level 1 belief of j on s ≠ j: s uses a level ≤ 1 update. 

• a level k update of j: use f(q-j) for some f ∈ 𝓕; q-j are level < k beliefs of j 

• a level k belief of j on s ≠ j: s uses a level ≤ k update.



Belief-Based Updates 

Thm: Suppose that all f ∈ 𝓕 are monotone, strictly 
sub-homogeneous, and bounded. Then ∀k every 
level k update satisfies the same properties.



Our Main Theorem 
Consider an update of prices 

p ↦ F(p) = (F1(p), F2(p), …, Fm(p)) 

Thm: If F is monotone, strictly sub-homogeneous, and 
bounded, then it is a strict contraction under the 
Thompson metric. 

Thompson metric:  
d(p,q) = || (log(p1 / q1), …, log(pm / qm)) ||∞



Consequences 
dynamic: 𝓕 = monotone, strictly sub-homogeneous, 
bounded, and stable prices updates (finite set).  

pt+1 = Fβ(t)(pt) = (F1(pt), F2(pt), …, Fm(pt)) 

Fj is a level kj(t) ≥ 1 update 
βj(t) are the level < kj(t) beliefs of j that determine Fj 

Thm: ∃ξmax < 1 such that d(pt, p*) < (ξmax)t ∙ d(p0,p*) 

Corollary: || pt - p* ||∞ < ((pmax)2 / pmin)∙(ξmax)t ∙ d(p0,p*) 
                  || pt - p* ||2 < √n∙((pmax)2 / pmin)∙(ξmax)t ∙ d(p0,p*)



Concrete Markets 
Thm: If the demand is elastic and bounded, then Fβ(t) 
is monotone, strictly sub-homogeneous, bounded, 
and stable. 

⇒ the dynamic converges quickly to equilibrium 

• beliefs not assumed to and cannot be consistent 
• each seller believes: “I’m slightly smarter than the 

others” (and they believe the same thing about me)



Concluding Remarks
• applies also to asynchronous updates 
‣ t measures epochs 
‣ epoch = interval of ≥ 1 update of every price 

• the worst case is best-response (to level 0 beliefs) 

• more general applicability? (games?) 

• using (noisy?) information to update beliefs?


