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motivation: topic models

[Hofmann 1999, Papadimitriou et al. 2000]

Regard documents as “bags of words”

to generate a d-word document:
- draw d iid samples from a distribution p

k topic distributions p1, p2, ..., pk

Pure documents: choose p = pi w/prob. wi



mixed topic models

Each document is a mixture of topics. 

to generate a d-word document:
- draw d iid samples from a distribution p 

k topic distributions p1, p2, ..., pk 


probability measure θ on conv(p1,...,pk) 

Choose p ∈ conv(p1,...,pk) according to θ
example: latent Dirichlet allocation 

[Blei-Ng-Jordan 2003]



motivation: collaborative filtering

[Hofmann-Puzicha 1999, Kleinberg-Sandler 2004]

Purchase history of customers:

Customer has distribution p on purchases.

Purchases are drawn iid from p

p is chosen according to a probability 
measure θ on conv(p1,...,pk)



motivation: summary

Data mining: simple model for
• document features (LSI)

• customer taste (collaborative filtering) 

• hyperlinks, citations (Kleinberg’s HITS) 

• observational studies (clinical, wildlife, ...)

Properties:
• a large number of possible features 

• each specimen exhibits a few features 

• population behaves “nicely”



learning the mixture model

known: dictionary {1,2,...,n}
input: m samples of d-tuples from {1,2,...,n}

How is a sample generated? -

- pick p from θ (hidden from the observer) 

- draw d items iid from p

goal: learn the model - θ


failure probability: a small constant δ



learning mixtures of Gaussians

k Gaussians in Rn

• Dasgupta (1999) O(n1 ⁄ 2) sep. 

 Dasgupta-Schulman (2000) O(n1 ⁄ 4) sep. 


• Arora-Kannan (2001) ellipsoidal 

• Vempala-Wang (2002) O(k1 ⁄ 4) sep. 

 Kannan-Salmasian-Vempala (2005) 

 Achlioptas-McSherry (2005) 

 Brubaker-Vempala (2008)

• Feldman et al. (2006) axis aligned 

 Kalai-Moitra-Valiant (2010) k=2 general

 Moitra-Valiant (2010)
    Belkin-Sinha (2010) }general
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Gaussians vs. pure topic models

• single view vs. multi-view samples:     
Gaussians - learnable using single view    
topic models - require multi-view:


     

• sample info. vs. model size:                                                                          

Gaussians - n vs. k·n2                             
topic models - d vs. k·n


• multi-view topic models =                   
power distributions on {1,2,…,n}d                          
n is large, d is small. 

comparison
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common techniques

• spectral decomposition


• random projection


• method of moments



back to topic models

minimize:  
# samples m  
aperture (# views) d 
running time (in terms of m, d, n, k)

trivial information theoretic bounds:  
- if m·d = o(n) then the error could be ≫

(we don’t see most of the dictionary)
- if d = Ω(n log n) then most samples give an

  accurate estimate of their p.

m, n are large

d, k are small



some notation

constituents matrix: P = (p1,p2,...,pk) 

mean: μ = ∫p dθ                       (w1p1+w2p2+⋯+wkpk)

pairwise distrib.: M = ∫pp† dθ    (w1p1p1
†+w2p2p2

†+⋯+wkpkpk
†)


variance: V = M - μμ†

ith largest (left) singular value: σi(A)  
ith largest (real) eigenvalue: λi(A)  
condition number: κ(A) = σ1(A) / σrank(A)(A)

min. variation distance ζ1 = √n·min{||pi-pj||2 : i ≠ j} 

min. non-zero eigenvalue ζ2 = √n·λrank(V)(V)

spreading parameter: ζ = max{ζ1, ζ2} 



pure mixtures



Anandkumar-Hsu-Kakade (2012)

assumption: P is full-rank (rank(P) = k) 


aperture: d = 3


guarantee: w.h.p. L2 error ε·maxi ||pi||2

sample size:  
alg. A: m = kc / (σk(P))8 (λk(M))4 ε2  
alg. B: m = kc n (κ(P))8 / (ζ1)2 (λk(M))2 ε2

maxj ||pj - ṕj||2



R.-Schulman-Swamy (2014)

no assumptions
aperture: d = 2k-1 
guarantee: w.h.p. L1 error ε (weights, too)
sample size:
m = kc n logc n /ε6 + exp(k2 log(k/ζε)) 

(1st term uses d ≤ 2)

comparison with [AHK12]:  
to get L1 error ε they (might) need (for constant ζ):

alg. A: m = kc n8 / ε2  
alg. B: m = kc n3 / ε2

maxj ||pj - ṕj||1

tight

exp(k) needed 
for d=O(k)



Li-R.-Schulman-Swamy (2015)

no assumptions
aperture: d = 2k-1 
guarantee: w.h.p. L1 error ε
sample size:
m = k4 n3 log n /ε6 + exp(k2 log(k/ε)) 

(1st term uses d ≤ 2)

comparison with previous results:  
the sample size does not depend on ζ



mixed mixtures



Arora-Ge-Moitra (2012)

assumption: p1,p2,...,pk are ρ-separable 

(each pi has an item w/prob. ≥ ρ that has 0
probability in the other pj-s)


guarantee: w.h.p. L∞ error ε (L1 error ε·n)
sometimes (e.g., LDA) also θ recovered


sample size: m = kc log n / ε2 ρ6 d

technique: nonnegative matrix factorization 
[Arora-Ge-Kannan-Moitra 2012]



Anandkumar-Foster-Hsu-Kakade-Liu (2012)

assumption: rank(P) = k and θ is Dirichlet


aperture: d = 3


guarantee: w.h.p. L2 error ε

sample size: m = kc / (σk(P))6 ε2



Li-R.-Schulman-Swamy (2015)

no assumptions


aperture: d ≫ k11 / ε10


guarantee: w.h.p. L1-transportation cost ε

sample size: 

m = k4 n3 log n / ε6 + exp(k log(k/ε))

(1st term uses d ≤ 2)

d > 1/ε needed



about the proofs



transportation distance

in general:


Tran(η,θ) = inf{∫||p-q||1 dφ: φ has marginals η,θ}

                = sup{|∫f d(η-θ)|: f is 1-Lipschitz}

(0,1) (1,0)distribution 1 distribution 2

Kantorovich-Rubinstein duality



one-dimensional problem

goal: learn a prob. distribution θ on [0,1]


sample: pick p ∈ [0,1] by θ (p hidden)           

          toss a p-biased coin d times

          the alg. sees the d-tuple in {0,1}d


repeated sampling gives ≈ the mean         
Fi = Fi(θ) of                           

for all i = 0, 1, …, d

✓
d

i

◆
d�ipi (1� p)Bi,d(p) =



distributions with similar first d moments

Lemma: if ∀ 1-Lip. function on [0,1]

is ±γ a linear combination of Bi,d-s with 
coefficients ∈ [-C,+C], then

Tran(η,θ) ≤ C∙||F(η)-F(θ)||1 + γ


proof: Kantorovich-Rubinstein duality + 
triangle inequality.



A bound on the error

thm: for C = O(1) we can get γ = O(1/√d)

⇒ poly(d) sample, O(1/√d) error.


Jackson’s thm: if f is 1-Lip. on [-1,+1] then       
∃ degree-d polynomial q such that               
||f-q||∞ = O(1/d).

uses Chebyshev polynomials ⇒ C = dc∙2d


⇒ exp(d) sample, O(1/d) error.



the algorithm

• get a good estimate F’ of the frequency 
moments F (we want ||F’-F||∞ < 1/dc2d)


• partition [0,1] into dc2d segments; put      
bi,j = E[Bi,d] in segment j.


• solve a linear system to get a piecewise 
constant probability measure η with         
∑j bi,j ηj = Fi’ ± 1/dc2d, ∀i


• (notice that Fi(η) ≈ ∑j bi,j ηj ≈ Fi(θ) ± 1/dc2d)



k spikes

θ has finite support of size k

d = 2k-1

F(θ) = vector of the first d moments of θ 


Lemma: ∀two k-spike distributions η,θ,

||F(η) - F(θ)||2 ≥ (Tran(η,θ) / k)O(k)


(in general, |Fi(η) - Fi(θ)| ≤ i∙Tran(η,θ))



higher dimensions

W.l.o.g. the mixture model is isotropic: 

∀i ∈ {1,2,...,n}, 1/2n ≤ μi ≤ 2/n

⇒ L1 and L2 norms are ≈ isometric and

   ∃basis b1, b2, …, bk’ for span(P) with bounded entries


⇒ span(P) learnable 

   from empirical pairwise distribution, using Vu (2005)


Project samples onto b1’, b2’, …, bk’’ or ≈span(P).

Notice: <p,bi> = E[(bi)s : s ∼ pj]


Compute a model that matches ≈ the projections.



a multidimensional version of Jackson’s thm

thm (Yudin): if f:Bk(R)→ℂ is 1-Lip. then ∃cz 
∀z∈ℤk∩Bk(R) with |cz| ≤ exp(k) such that      
∀x∈Bk(R), |f(x) - ∑cz∙ei<z,x>| = O(k/R)


⇒ Tran(η,θ) is bounded by supbTran(<b,η>,<b,θ>)



concluding remarks

• better bounds for mixed documents?

 under what conditions?


• learning from sparse samples?


