Learning Arbitrary Statistical Mixtures of Discrete Distributions

Yuval Rabani – The Hebrew University of Jerusalem

joint works with J. Li, L.J. Schulman, C. Swamy

motivation: topic models

[Hofmann 1999, Papadimitriou et al. 2000]

Regard documents as "bags of words" to generate a d-word document:

- draw d iid samples from a distribution p

k topic distributions p_1 , p_2 , ..., p_k Pure documents: choose $p = p_i$ w/prob. w_i

mixed topic models

Each document is a mixture of topics. to generate a d-word document: - draw d iid samples from a distribution p k topic distributions p_1 , p_2 , ..., p_k probability measure θ on conv(p₁,...,p_k) Choose $p \in conv(p_1,...,p_k)$ according to θ example: latent Dirichlet allocation [Blei-Ng-Jordan 2003]

motivation: collaborative filtering

[Hofmann-Puzicha 1999, Kleinberg-Sandler 2004]

Purchase history of customers: Customer has distribution p on purchases. Purchases are drawn iid from p

p is chosen according to a probability measure θ on conv(p₁,...,p_k)

motivation: summary

Data mining: simple model for

- document features (LSI)
- customer taste (collaborative filtering)
- hyperlinks, citations (Kleinberg's HITS)
- observational studies (clinical, wildlife, ...)

Properties:

- a large number of possible features
- each specimen exhibits a few features
- population behaves "nicely"

learning the mixture model

<u>known</u>: dictionary {1,2,...,n} <u>input</u>: m samples of d-tuples from {1,2,...,n}

How is a sample generated? -

- pick p from θ (hidden from the observer)
- draw d items iid from p

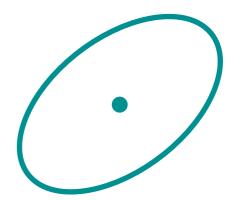
<u>goal</u>: learn the model – θ

failure probability: a small constant δ

learning mixtures of Gaussians

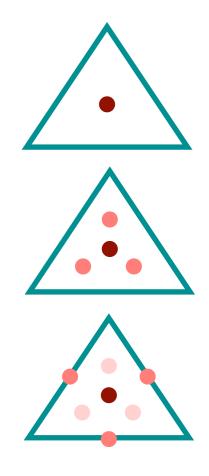
k Gaussians in Rⁿ

- Dasgupta (1999) O(n^{1/2}) sep.
 Dasgupta-Schulman (2000) O(n^{1/4}) sep.
- Arora-Kannan (2001) ellipsoidal
- Vempala-Wang (2002) O(k^{1/4}) sep. Kannan-Salmasian-Vempala (2005) Achlioptas-McSherry (2005) Brubaker-Vempala (2008)
- Feldman et al. (2006) axis aligned
 Kalai-Moitra-Valiant (2010) k=2 general
 Moitra-Valiant (2010)
 Belkin-Sinha (2010)



Gaussians vs. pure topic models

- single view vs. multi-view samples: Gaussians – learnable using single view topic models – require multi-view:
- sample info. vs. model size: Gaussians – n vs. k·n²
 topic models – d vs. k·n
- multi-view topic models = power distributions on {1,2,...,n}^d
 n is large, d is small.



common techniques

- spectral decomposition
- random projection
- method of moments

back to topic models

minimize:m, n are large# samples md, k are smallaperture (# views) drunning time (in terms of m, d, n, k)

trivial information theoretic bounds:

- if m·d = o(n) then the error could be ≫
 (we don't see most of the dictionary)
- if $d = \Omega(n \log n)$ then most samples give an accurate estimate of their p.

some notation

constituents matrix: $P = (p_1, p_2, ..., p_k)$ mean: $\mu = \int p \, d\theta$ $(w_1 p_1 + w_2 p_2 + \cdots + w_k p_k)$ pairwise distrib.: $M = \int pp^{\dagger} \, d\theta$ $(w_1 p_1 p_1^{\dagger} + w_2 p_2 p_2^{\dagger} + \cdots + w_k p_k p_k^{\dagger})$ variance: $V = M - \mu \mu^{\dagger}$

ith largest (left) singular value: $\sigma_i(A)$ ith largest (real) eigenvalue: $\lambda_i(A)$ condition number: $\kappa(A) = \sigma_1(A) / \sigma_{rank(A)}(A)$

min. variation distance $\zeta_1 = \sqrt{n \cdot \min\{||p_i - p_j||_2 : i \neq j\}}$ min. non-zero eigenvalue $\zeta_2 = \sqrt{n \cdot \lambda_{rank(V)}(V)}$ spreading parameter: $\zeta = \max\{\zeta_1, \zeta_2\}$ pure mixtures

Anandkumar-Hsu-Kakade (2012)

assumption: P is full-rank (rank(P) = k) aperture: d = 3 $\max_{j} ||p_{j} - \hat{p}_{j}||_{2}$ guarantee: w.h.p. $L_2 \operatorname{error} \varepsilon \cdot \max_i ||p_i||_2$ sample size: alg. A: m = $k^c / (\sigma_k(P))^8 (\lambda_k(M))^4 \epsilon^2$ alg. B: m = k^c n ($\kappa(P)$)⁸ / (ζ_1)² ($\lambda_k(M)$)² ϵ^2

R.-Schulman-Swamy (2014) tight no assumptions $\max_{j} ||p_{j} - \hat{p}_{j}||_{1}$ aperture: d = 2k-1guarantee: w.h.p. L_1 error ϵ (weights, too) sample size: m = k^c n log^c n $/\epsilon^6$ + exp(k² log(k/ $\zeta\epsilon$)) exp(k) needed (1st term uses $d \leq 2$) for d=O(k)comparison with [AHK12]: to get L_1 error ϵ they (might) need (for constant ζ): alg. A: $m = k^c n^8 / \epsilon^2$ alg. B: $m = k^c n^3 / \epsilon^2$

Li-R.-Schulman-Swamy (2015)

no assumptions aperture: d = 2k-1guarantee: w.h.p. L₁ error ϵ <u>sample size</u>: $m = k^4 n^3 \log n / \epsilon^6 + \exp(k^2 \log(k/\epsilon))$ (1st term uses $d \le 2$)

comparison with previous results: the sample size does not depend on $\boldsymbol{\zeta}$

mixed mixtures

Arora-Ge-Moitra (2012)

<u>assumption</u>: $p_1, p_2, ..., p_k$ are ρ -separable (each p_i has an item w/prob. $\geq \rho$ that has 0 probability in the other p_j -s)

guarantee: w.h.p. L_{∞} error ϵ (L_1 error $\epsilon \cdot n$) sometimes (e.g., LDA) also θ recovered

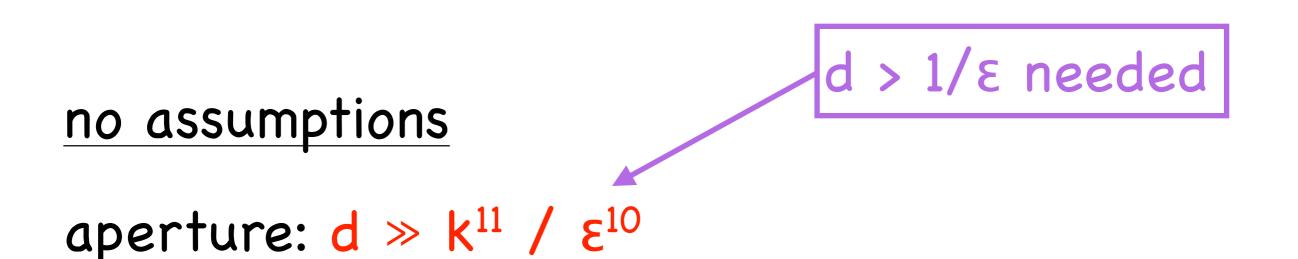
sample size: $m = k^c \log n / \epsilon^2 \rho^6 d$

technique: nonnegative matrix factorization [Arora-Ge-Kannan-Moitra 2012] Anandkumar-Foster-Hsu-Kakade-Liu (2012)

<u>assumption</u>: rank(P) = k and θ is Dirichlet aperture: d = 3 quarantee: w.h.p. L₂ error ϵ

sample size: $m = k^c / (\sigma_k(P))^6 \epsilon^2$

Li-R.-Schulman-Swamy (2015)

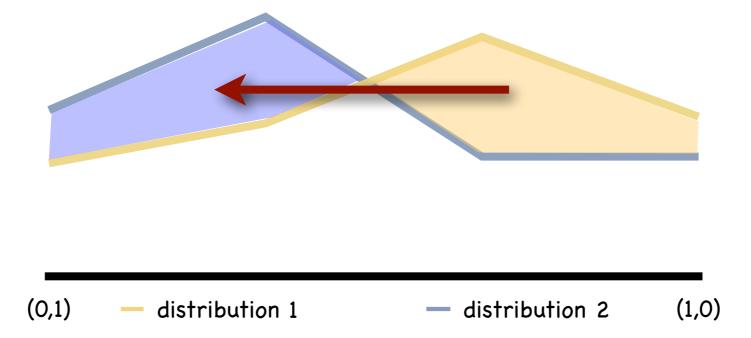


guarantee: w.h.p. L_1 -transportation cost ϵ

sample size: $m = k^4 n^3 \log n / \epsilon^6 + \exp(k \log(k/\epsilon))$ (1st term uses $d \le 2$)

about the proofs

transportation distance



in general:

Tran(η , θ) = inf{ $\int ||p-q||_1 d\phi$: ϕ has marginals η , θ }

= sup{|∫f d(η-θ)|: f is 1-Lipschitz} Kantorovich-Rubinstein duality one-dimensional problem

<u>goal</u>: learn a prob. distribution θ on [0,1] <u>sample</u>: pick p ∈ [0,1] by θ (p hidden) toss a p-biased coin d times the alg. sees the d-tuple in {0,1}^d

repeated sampling gives \approx the mean $F_i = F_i(\theta)$ of $B_{i,d}(p) = {d \choose i} p^i (1-p)^{d-i}$ for all i = 0, 1, ..., d

distributions with similar first d moments

<u>Lemma</u>: if \forall 1-Lip. function on [0,1] is $\pm \gamma$ a linear combination of $B_{i,d}$ -s with coefficients \in [-C,+C], then Tran(η , θ) \leq C.||F(η)-F(θ)||₁ + γ

<u>proof</u>: Kantorovich-Rubinstein duality + triangle inequality.

A bound on the error

<u>thm</u>: for C = O(1) we can get $\gamma = O(1/\sqrt{d})$ \Rightarrow poly(d) sample, O(1/ \sqrt{d}) error.

<u>Jackson's thm</u>: if f is 1-Lip. on [-1,+1] then \exists degree-d polynomial q such that $\|f-q\||_{\infty} = O(1/d).$ uses Chebyshev polynomials $\Rightarrow C = d^c \cdot 2^d$

 $\Rightarrow exp(d)$ sample, O(1/d) error.

the algorithm

- get a good estimate F' of the frequency moments F (we want ||F'-F||_∞ < 1/d^c2^d)
- partition [0,1] into d^c2^d segments; put
 b_{i,j} = E[B_{i,d}] in segment j.
- solve a linear system to get a piecewise constant probability measure η with
 Σ_j b_{i,j} η_j = F_i' ± 1/d^c2^d, ∀i
- (notice that $F_i(\eta) \approx \Sigma_j b_{i,j} \eta_j \approx F_i(\theta) \pm 1/d^c 2^d$)

k spikes

θ has finite support of size k d = 2k-1 $F(\theta) = vector of the first d moments of <math>\theta$ <u>Lemma</u>: $\forall two k$ -spike distributions η, θ , $||F(\eta) - F(\theta)||_2 \ge (Tran(\eta, \theta) / k)^{O(k)}$

(in general, $|F_i(\eta) - F_i(\theta)| \le i \cdot Tran(\eta, \theta)$)

higher dimensions

W.l.o.g. the mixture model is isotropic: $\forall i \in \{1,2,...,n\}, \ 1/2n \leq \mu_i \leq 2/n$

- ⇒ L₁ and L₂ norms are ≈ isometric and ∃basis b₁, b₂, ..., b_{k'} for span(P) with bounded entries
- ⇒ span(P) learnable from empirical pairwise distribution, using Vu (2005)

Project samples onto b_1' , b_2' , ..., $b_{k'}'$ or \approx span(P). <u>Notice</u>: $\langle p, b_i \rangle = E[(b_i)_s : s \sim p_j]$

Compute a model that matches \approx the projections.

a multidimensional version of Jackson's thm

<u>thm (Yudin)</u>: if $f:B^k(R) \rightarrow \mathbb{C}$ is 1-Lip. then $\exists c_z \forall z \in \mathbb{Z}^k \cap B^k(R)$ with $|c_z| \leq \exp(k)$ such that $\forall x \in B^k(R)$, $|f(x) - \sum c_z \cdot e^{i \langle z, x \rangle}| = O(k/R)$

 \Rightarrow Tran(η , θ) is bounded by sup_bTran(<b, η >,<b, θ >)

concluding remarks

- better bounds for mixed documents? under what conditions?
- learning from sparse samples?