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motivation: topic models

[Hofmann 1999, Papadimitriou et al. 2000]

Regard documents as “"bags of words”
to generate a d-word document:
- draw d iid samples from a distribution p

k topic distributions pi, p, ..., p

Pure documents: choose p = p; w/prob. w;



mixed topic models

Each document is a mixture of topics.

to generate a d-word document:
- draw d iid samples from a distribution p

K topic distributions pi, p2, ..., pk
probability measure 6 on conv(py,...,px)
Choose p € conv(py,...,px) according to O

example: latent Dirichlet allocation

[Blei-Ng-Jordan 2003]



motivation: collaborative filtering

[Hofmann-Puzicha 1999, Kleinberg-Sandler 2004]

Purchase history of customers:
Customer has distribution p on purchases.
Purchases are drawn iid from p

p is chosen according to a probability
measure 6 on conv(py,...,pk)



motivation: summary

Data mining: simple model for

e document features (LSI)

e customer taste (collaborative filtering)

e hyperlinks, citations (Kleinbergs HITS)

e observational studies (clinical, wildlife, ...)

Properties:
e a large number of possible features

* each specimen exhibits a few features
* population behaves “nicely”



learning the mixture model

known: dictionary {1,2,...,n}
input: m samples of d-tuples from {1,2,...,n}

How is a sample generated? -
- pick p from O (hidden from the observer)
- draw d items iid from p

goal: learn the model - ©

failure probability: a small constant ©




learning mixtures of Gaussians

k Gaussians in R"

* Dasgupta (1999) O(n"" ") sep.
Dasgupta-Schulman (2000) O(n

e Arora-Kannan (2001) ellipsoidal

* Vempala-Wang (2002) ok sep.
Kannan-Salmasian-Vempala (2005)
Achlioptas-McSherry (2005)
Brubaker-Vempala (2008)

e Feldman et al. (2006) axis aligned
Kalai-Moitra-Valiant (2010) k=2 general
Moitra-Valiant (2010)
Belkin-Sinha (2010)
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) sep.

general



Gaussians vs. pure topic models

* single view vs. multi-view samples:
Gaussians - learnable using single view
topic models - require multi-view:

e sample info. vs. model size:
Gaussians - n vs. k-n°
topic models - d vs. k-n

 multi-view topic models =
power distributions on {1,2,...,n}“
n is large, d is small.

> >



common techniques

e spectral decomposition
 random projection

e method of moments



back to fopic models

minimize: m, n are large
aperture (# views) d
running time (in terms of m, d, n, k)

trivial information theoretic bounds:
- if m-d = o(n) then the error could be »

(we dont see most of the dictionary)

- if d = Q(n log n) then most samples give an
accurate estimate of their p.



some notation

constituents matrix: P = (py,p2,-..,pk)
mean: | = jp do (Wipi+Wopa+- +Wipy)
pairwise distrib.: M = Jpp" dB  (wyp;p, +Wopaps '+ + Wi PP )

variance: V = M - pp’

i™ largest (left) singular value: Ti(A)
i largest (real) eigenvalue: \i(A)
condition number: kK(A) = Gi(A) / Tranka)(A)

min. variation distance T, = ~/n-min{llpi-pjll>: i # j}

min. non-zero eigenvalue C; = /n-Aqgnkv)(V)

spreading parameter: T = max{C,, C,}



oure mixtures



Anandkumar-Hsu-Kakade (2012)

assumption: P is full-rank (rank(P) = k)

aperture: d = 3 max; llp; - pillz
guarantee: w.h.p. L error £:max; ||pill2

sample size:
alg. A: m = k¢ / (0k(P))E (\(M))* €2
alg. B: m = ke n (k(P))2 / (C1)2 (A(M))? €2



R.-Schulman-Swamy (2014)

no assumptions

max; llp; - pill
aperture: d = 2k-1 i 1Pj = Pilh

guarantee: w.h.p. L, error ¢ (weights, too)
sample size:

m = k°n log° n /€° + exp(k® log(k/Tg))
(1st term uses d < 2) ?xp(;zon(iided
comparison with [AHK12]: or a=

to get L, error € they (might) need (for constant 0C):
alg. A: m = k°n®/ €°
alg. B: m = k°n’/ €°




Li-R.-Schulman-Swamy (2015)

no assumptions

aperture: d = 2k-1

guarantee: w.h.p. L, error &

sample size:

m = k*n3 logn /€ + exp(k® log(k/¢))
(1st term uses d < 2)

comparison with previous results:
the sample size does not depend on C



mixed mixtures



Arora-Ge-Moitra (2012)

assumption: pi,pz,..,px are p-separable
(each pi has an item w/prob. > p that has O
probability in the other pj-s)

guarantee: w.h.p. L., error € (L, error £-n)
sometimes (e.g., LDA) also O recovered

sample size: m = klog n / €2 p°d

technique: nonnegative matrix factorization
[Arora-Ge-Kannan-Moitra 2012]



Anandkumar-Foster-Hsu-Kakade-Liu (2012)

assumption: rank(P) = k and 0O is Dirichlet

aperture: d = 3
guarantee: w.h.p. L; error &

sample size: m = k¢ / (ok(P))® €2




Li-R.-Schulman-Swamy (2015)

| d > 1/€ needed
no assumptions

aperture: d » k! / €!°

guarantee: w.h.p. Li-fransportation cost &

sample size:
m = k* n3 log n / €° + exp(k log(k/¢))
(1st term uses d < 2)




about the proofs



transportation distance

(0,1) distribution 1 — distribution 2 (1,0)

in general:
Tran(n,0) = inf{fllp-qll, dp: ¢ has marginals n,0}
= sup{lJ'lc d(n-0)l: f is 1-Lipschitz}

Kantorovich-Rubinstein duality



one-dimensional problem

goal: learn a prob. distribution 6 on [0,1]

sample: pick p € [0,1] by 6 (p hidden)
toss a p-biased coin d times
the alg. sees the d-tuple in {0,1}¢

repeated sampllng g es = the mean
Fi=F (e) of B; d = (f) . p)d_i
foralli=0,1, .., d



distributions with similar first d moments

Lemma: if v 1-Lip. function on [0,1]
is +Y a linear combination of Bj4-s with
coefficients € [-C,+C], then

Tran(n,0) < C.lIF(n)-FO)I; + v

proof: Kantorovich-Rubinstein duality +
triangle inequality.




A bound on the error

thm: for C = O(1) we can get y = O(1/./d)
= poly(d) sample, O(1/./d) error.

Jacksons thm: if f is 1-Lip. on [-1,+1] then
3 degree-d polynomial q such that
If-qll. = O(1/d).

uses Chebyshev polynomials = C = d¢.2¢

= exp(d) sample, O(1/d) error.



the algorithm

get a good estimate F’ of the frequency
moments F (we want ||F'-Fl|.. < 1/d°2°)
partition [0,1] into d°2¢ segments; put

bi,j = E[Bi,d] In segmenf J

solve a linear system to get a piecewise
constant probability measure 1 with
2ibijni=F ¢ 1/d29, vi

(notice that Fi(n) = 2; bi; n; = Fi(B) + 1/d°29)



k spikes

O has finite support of size k
d = 2k-1
F(O) = vector of the first d moments of 6

Lemma: Vtwo k-spike distributions 1,6,
IF(n) - F(O)llz 2 (Tran(n,B) / k)°®)

(in general, IFi(n) - Fi(9)| < i-Tran(n,0))



higher dimensions

W.l.o.g. the mixture model is isotropic:
Vi € §1,2,...,n}, 1/2n < Yi < 2/n

= L, and L, norms are = isomeftric and
Ibasis by, by, ..., by for span(P) with bounded entries

= span(P) learnable
from empirical pairwise distribution, using Vu (2005)

Project samples onto b,’, b,’, ..., by’ or =span(P).
Notice: <p,bi> = E[(bi)s: s ~ pj]

Compute a model that matches =~ the projections.



a multidimensional version of Jacksons thm

thm (Yudin): if f:B(R)—C is 1-Lip. then 3c;
vzeZ*nBY(R) with |c.| < exp(k) such that
vxeBX(R), If(x) - Zc..e**| = O(k/R)

= Tran(n,0) is bounded by supyTran(<b,n>,<b,0>)



concluding remarks

e better bounds for mixed documents?
under what conditions?

e learning from sparse samples?



