Learning Arbitrary Statistical Mixtures of Discrete Distributions

Yuval Rabani - The Hebrew University of Jerusalem
joint works with J. Li, L.J. Schulman, C. Swamy
motivation: topic models
[Hofmann 1999, Papadimitriou et al. 2000]
Regard documents as "bags of words" to generate a d-word document:

- draw d iid samples from a distribution p
k topic distributions $p_{1}, p_{2}, \ldots, p_{k}$
Pure documents: choose $p=p_{i} w /$ prob. w_{i}
mixed topic models

Each document is a mixture of topics. to generate a d-word document:

- draw d iid samples from a distribution p
k topic distributions $p_{1}, p_{2}, \ldots, p_{k}$
probability measure θ on $\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)$
Choose $p \in \operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)$ according to θ
example: latent Dirichlet allocation [Blei-Ng-Jordan 2003]
motivation: collaborative filtering
[Hofmann-Puzicha 1999, Kleinberg-Sandler 2004]
Purchase history of customers:
Customer has distribution p on purchases. Purchases are drawn iid from p
p is chosen according to a probability measure θ on $\operatorname{conv}\left(p_{1}, \ldots, p_{k}\right)$

motivation: summary

Data mining: simple model for

- document features (LSI)
- customer taste (collaborative filtering)
- hyperlinks, citations (Kleinberg's HITS)
- observational studies (clinical, wildlife, ...)

Properties:

- a large number of possible features
- each specimen exhibits a few features
- population behaves "nicely"

learning the mixture model

known: dictionary $\{1,2, \ldots, n\}$
input: m samples of d-tuples from $\{1,2, \ldots, n\}$
How is a sample generated? -

- pick p from θ (hidden from the observer)
- draw d items iid from p
goal: learn the model - θ
failure probability: a small constant δ

learning mixtures of Gaussians

k Gaussians in R^{n}

- Dasgupta (1999) O($n^{1 / 2}$) sep.

Dasgupta-Schulman (2000) O($n^{1 / 4}$) sep.

- Arora-Kannan (2001) ellipsoidal
- Vempala-Wang (2002) O($\left.k^{1 / 4}\right)$ sep.

Kannan-Salmasian-Vempala (2005)
Achlioptas-McSherry (2005)
Brubaker-Vempala (2008)

- Feldman et al. (2006) axis aligned
 Kalai-Moitra-Valiant (2010) k=2 general Moitra-Valiant (2010) Belkin-Sinha (2010) \}general

Gaussians vs. pure topic models

- single view vs. multi-view samples: Gaussians - learnable using single view topic models - require multi-view:
- sample info. vs. model size:

Gaussians - n vs. k•n²
topic models - d vs. k•n

- multi-view topic models = power distributions on $\{1,2, \ldots, n\}^{d}$
n is large, d is small.

common techniques

- spectral decomposition
- random projection
- method of moments
back to topic models
minimize:
\# samples m
aperture (\# views) d
running time (in terms of m, d, n, k)
trivial information theoretic bounds:
- if $m \cdot d=o(n)$ then the error could be > (we don't see most of the dictionary)
- if $d=\Omega(n \log n)$ then most samples give an accurate estimate of their p.

some notation

constituents matrix: $P=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$
mean: $\mu=\int p d \theta$

$$
\left(w_{1} p_{1}+w_{2} p_{2}+\cdots+w_{k} p_{k}\right)
$$

pairwise distrib.: $M=\int p p^{+} d \theta \quad\left(w_{1} p_{1} p_{1}^{+}+w_{2} p_{2} p_{2}{ }^{+}+\cdots+w_{k} p_{k} p_{k}^{+}\right)$ variance: $V=M-\mu \mu^{+}$
$i^{\text {th }}$ largest (left) singular value: $\sigma_{i}(A)$
$i^{\text {th }}$ largest (real) eigenvalue: $\lambda_{i}(A)$
condition number: $k(A)=\sigma_{1}(A) / \sigma_{\text {rank }(A)}(A)$
min. variation distance $\zeta_{1}=\sqrt{n} \cdot \min \left\{\left\|p_{i}-p_{j}\right\|_{2}: i \neq j\right\}$
min. non-zero eigenvalue $\zeta_{2}=\sqrt{n \cdot \lambda_{\text {rank }(v)}(V)}$
spreading parameter: $\zeta=\max \left\{\zeta_{1}, \zeta_{2}\right\}$
pure mixtures

Anandkumar-Hsu-Kakade (2012)
assumption: P is full-rank $(\operatorname{rank}(P)=k)$
aperture: $d=3$
$\max _{j}\left\|p_{j}-\dot{p}_{j}\right\|_{2}$
guarantee: w.h.p. L_{2} error $\varepsilon \cdot \max _{i}\left\|p_{i}\right\|_{2}$
sample size:
alg. A: $m=k^{c} /\left(\sigma_{k}(P)\right)^{8}\left(\lambda_{k}(M)\right)^{4} \varepsilon^{2}$
alg. $B: m=k^{c} n(k(P))^{8} /\left(\zeta_{1}\right)^{2}\left(\lambda_{k}(M)\right)^{2} \varepsilon^{2}$
R.-Schulman-Swamy (2014)

tight

no assumptions
aperture: $d=2 k-1$

$\max _{j}\left\|p_{j}-p_{j}\right\|_{1}$

guarantee: w.h.p. L_{1} error ε (weights, too)
sample size:
$m=k^{c} n \log ^{c} n / \varepsilon^{6}+\exp \left(k^{2} \log (k / \zeta \varepsilon)\right)$
(1st term uses $d \leq 2$)
comparison with [AHK12]:
$\exp (k)$ needed for $\mathrm{d}=\mathrm{O}(\mathrm{k})$ to get L_{1} error ε they (might) need (for constant ζ):
alg. $A: m=k^{c} n^{8} / \varepsilon^{2}$
alg. $B: m=k^{c} n^{3} / \varepsilon^{2}$

Li-R.-Schulman-Swamy (2015)

no assumptions
aperture: $d=2 k-1$
guarantee: w.h.p. L_{1} error ε
sample size:
$m=k^{4} n^{3} \log n / \varepsilon^{6}+\exp \left(k^{2} \log (k / \varepsilon)\right)$
(1st term uses $d \leq 2$)
comparison with previous results: the sample size does not depend on ζ

mixed mixtures

Arora-Ge-Moitra (2012)

assumption: $p_{1}, p_{2}, \ldots, p_{k}$ are ρ-separable (each p_{i} has an item $w /$ prob. $\geq \rho$ that has 0 probability in the other $\mathrm{p}_{\mathrm{j}}-\mathrm{s}$)
guarantee: w.h.p. L_{∞} error $\varepsilon\left(L_{1}\right.$ error $\left.\varepsilon \cdot n\right)$ sometimes (e.g., LDA) also θ recovered
sample size: $m=k^{c} \log n / \varepsilon^{2} \rho^{6} d$
technique: nonnegative matrix factorization [Arora-Ge-Kannan-Moitra 2012]

Anandkumar-Foster-Hsu-Kakade-Liu (2012)
assumption: $\operatorname{rank}(P)=k$ and θ is Dirichlet
aperture: $d=3$
guarantee: w.h.p. L_{2} error ε
sample size: $m=k^{c} /\left(\sigma_{k}(P)\right)^{6} \varepsilon^{2}$

Li-R.-Schulman-Swamy (2015)

no assumptions

d $>1 / \varepsilon$ needed

aperture: $d>k^{11} / \varepsilon^{10}$
guarantee: w.h.p. L-transportation cost ε sample size:
$m=k^{4} n^{3} \log n / \varepsilon^{6}+\exp (k \log (k / \varepsilon))$
(1st term uses $d \leq 2$)

about the proofs

transportation distance

in general:
$\operatorname{Tran}(\eta, \theta)=\inf \left\{\int\|p-q\|_{1} d \varphi: \varphi\right.$ has marginals $\left.\eta, \theta\right\}$ $=\sup \left\{\left|\int f d(n-\theta)\right|: f\right.$ is 1 -Lipschitz $\}$ Kantorovich-Rubinstein duality
one-dimensional problem
goal: learn a prob. distribution θ on $[0,1]$
sample: pick $p \in[0,1]$ by θ (p hidden) toss a p-biased coin d times the alg. sees the d-tuple in $\{0,1\}^{d}$
repeated sampling gives \approx the mean $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}(\theta)$ of $\quad B_{i, d}(p)=\binom{d}{i} p^{i}(1-p)^{d-i}$ for all $i=0,1, \ldots, d$
distributions with similar first d moments

Lemma: if $\forall 1$-Lip. function on $[0,1]$ is $\pm \gamma$ a linear combination of $B_{i, d}-s$ with coefficients $\in[-C,+C]$, then
$\operatorname{Tran}(\eta, \theta) \leq C \cdot\|F(\eta)-F(\theta)\|_{1}+\gamma$
proof: Kantorovich-Rubinstein duality + triangle inequality.

A bound on the error
thm: for $C=O(1)$ we can get $\gamma=O(1 / \sqrt{d})$
\Rightarrow poly (d) sample, $O(1 / \sqrt{d})$ error.

Jackson's thm: if f is 1 -Lip. on $[-1,+1]$ then
\exists degree-d polynomial q such that
$\|f-q\|_{\infty}=O(1 / d)$.
uses Chebyshev polynomials $\Rightarrow C=d^{c} .2^{d}$
$\Rightarrow \exp (d)$ sample, $O(1 / d)$ error.
the algorithm

- get a good estimate F^{\prime} of the frequency moments F (we want $\left\|F^{\prime}-F\right\|_{\infty}<1 / d^{c} 2^{d}$)
- partition $[0,1]$ into $d^{c} 2^{d}$ segments; put $b_{i, j}=E\left[B_{i, d}\right]$ in segment j.
- solve a linear system to get a piecewise constant probability measure η with

$$
\Sigma_{j} b_{i, j} \eta_{j}=F_{i}^{\prime} \pm 1 / d^{c} 2^{d}, \forall i
$$

- (notice that $\left.F_{i}(\eta) \approx \Sigma_{j} b_{i, j} \eta_{j} \approx F_{i}(\theta) \pm 1 / d^{c} 2^{d}\right)$
k spikes
θ has finite support of size k
$d=2 k-1$
$F(\theta)=$ vector of the first d moments of θ
Lemma: \forall two k-spike distributions η, θ,
$\|F(\eta)-F(\theta)\|_{2} \geq(\operatorname{Tran}(\eta, \theta) / k)^{O(k)}$
(in general, $\left|F_{i}(\eta)-F_{i}(\theta)\right| \leq i \cdot \operatorname{Tran}(\eta, \theta)$)

higher dimensions

W.l.o.g. the mixture model is isotropic:

$$
\forall i \in\{1,2, \ldots, n\}, 1 / 2 n \leq \mu_{i} \leq 2 / n
$$

$\Rightarrow L_{1}$ and L_{2} norms are \approx isometric and \exists basis $b_{1}, b_{2}, \ldots, b_{k^{\prime}}$ for span (P) with bounded entries
$\Rightarrow \operatorname{span}(P)$ learnable from empirical pairwise distribution, using Vu (2005)

Project samples onto $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}, \ldots, b_{k^{\prime}}$ or $\approx \operatorname{span}(P)$.
Notice: $\left\langle p, b_{i}\right\rangle=E\left[\left(b_{i}\right)_{s}: s \sim p_{j}\right]$
Compute a model that matches \approx the projections.
a multidimensional version of Jackson's thm
thm (Yudin): if $f: B^{k}(R) \rightarrow \mathbb{C}$ is 1 -Lip. then $\exists c_{z}$ $\forall z \in \mathbb{Z}^{k} \cap B^{k}(R)$ with $\left|c_{z}\right| \leq \exp (k)$ such that $\forall x \in B^{k}(R),\left|f(x)-\Sigma c_{z} \cdot e^{i<z, x\rangle}\right|=O(k / R)$
$\Rightarrow \operatorname{Tran}(\eta, \theta)$ is bounded by supb $\operatorname{Tran}(\langle b, \eta\rangle,\langle b, \theta\rangle)$

concluding remarks

- better bounds for mixed documents? under what conditions?
- learning from sparse samples?

