(1—¢)(1+¢)L' = (1 —€?)L' such packets. Thus, w.h.p.
the number of packets that are actually scheduled to
cross e during the frame is at most (1 —6")a f(n), where
8" 1s a function of ¢. The number of steps a packet takes
during the frame is at most f(n)/g(n). Therefore, us-
ing the assumed algorithm, we can schedule all the path
segments that fall into this frame so that each packet is
delivered within (1 +8)(1 — &)af(n) +2f(n) < af(n)
steps, where the inequality is true under the assump-
tion that « 1s sufficiently large. This schedule can be
completed within the frame. a

5 Distributed Execution

In this section, we sketch the ideas used in implement-
ing the above algorithms in a distributed fashion. The
detailed algorithms will be presented in the full version
of the paper.

We assume that packets may carry a small amount of
extra routing data. Individual nodes have access to the
queues of the edges adjacent to them. They can decide
to forward packets from incoming queues into outgoing
queues, or leave packets in the incoming queues. Aside
from data stored in the packets, no other data is com-
municated between nodes. At any given time, a node
does not have access to data stored in packets that have
not yet reached it.

The distributed implementation is straightforward.
Packets carry their path id and data used by the algo-
rithm. We assume a global clock, so the partition into
frames at all levels of the recurrence is known to all
nodes. Other than the path, the only data needed for
each packet is its current delay (given as the clock tick
it’s waiting for), and the level of the recurrence it’s at.

The algorithm run by each node is the following. At
each time step, the node examines its incoming queues.
Only packets that were waiting for the current clock
tick need to be handled. There are two cases:

Case 1: The packet is at the bottom level of the re-
currence. In this case, the packet has to move to an
adjacent node according to its path. Let’s assume for a
moment that indeed the node performs this move.
Case 2: Otherwise, the packet’s schedule has to be fur-
ther refined. In this case, the node tosses the needed
dice, and determines a further delay of the packet. If
the refined level 1s the bottom of the recurrence, the
packet is delayed till the first available slot in the (con-
stant size) frame.

The node maintains counters for each outgoing queue,
for each level of recurrence. If the number of packets
that has to move along a certain edge during a single
frame of some level exceeds the upper bound allowed
by the algorithm, then additional packets are not al-
lowed to move along that edge during that frame. Such
a packet is dumped. This is done by delaying it suffi-
ciently, and changing the recurrence level, if needed.

Notice that blocked and bad edges might be detected
not in the beginning of a frame, but later on. Also, a
packet whose path crosses a blocked or bad edge during
a frame might begin its move in the frame, and detect
the problem only when 1t reaches the edge. This simply
means that the packet managed to move ahead some
steps despite the failure. It does not introduce addi-
tional failures (though perhaps prevents some), and the

node can compute the required delay in case of failure
given its access to the global clock.

Implementing the periodic algorithm is similar. The
leading packet in each stream determines the schedule.
Nodes must store the scheduling information for each
stream (how long to delay packets arriving from that
stream). The schedule can be redone every now and
then at regular intervals by handling new leading pack-
ets. These ideas can also be used to implement the
bursty traffic algorithm.

References

[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and
M. Sudan. Priority encoding transmission. In Proc.
85th Ann. IEEF Symp. on Foundations of Com-
puter Science, November 1994, pages 604-612.

[2] N. Alon and J.H. Spencer. The Probabilistic
Method. Wiley, 1992.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and
O. Waarts. On-line load balancing with appli-
cations to machine scheduling and virtual circuit
routing. In Proc. of the 23rd Ann. ACM Symp. on
Theory of Computing, San Diego, May 1993.

[4] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput
competitive on-line routing. In Proc. of the 34th
Ann. Symp. on Foundations of Computer Science,
Palo Alto, November 1993.

[5] J. Beck. An algorithmic approach to the Lovdsz
Local Lemma. Random Structures and Algorithms,
2(4):367-378, 1991.

[6] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan,
and D.P. Williamson. Adversarial queueing theory.
In these proceedings.

[7] R.L. Brooks. On colouring the nodes of a network.
Proc. Cambridge Philos. Soc., 37:194-197, 1941.

[8] P. Erdés and L. Lovdsz. Problems and results on 3-
chromatic hypergraphs and some related questions.
In A. Hajnal et al., eds., Infinite and Finite Sets.
North Holland, 1975, pages 609-628.

[9] R. Gawlick, A. Kamath, S. Plotkin, and K. Ra-
makrishnan. Routing and admission control in gen-
eral topology networks. Technical report no. STAN-
CS-TR-95-1548, Stanford University, 1995.

[10] F.T. Leighton. Methods for message routing in par-
allel machines. In Proc. of the 24th Ann. ACM
Symp. on the Theory of Computing, May 1992,
pages 77-96.

[11] F.T. Leighton and B.M. Maggs. Fast algorithms
for finding O(congestion + dilation) packet routing
schedules. In Proc. of the 28th Hawazei International
Conference on System Sciences, January 1995, vol
2, pages 555-563.

[12] F.T. Leighton, B.M. Maggs, and S.B. Rao. Packet
routing and job-shop scheduling in O(congestion
+ dilation) steps. Combinatorica, 14(2):167-186,
1994.

[13] F.T. Leighton, B.M. Maggs, A.G. Ranade, and
S.B. Rao. Randomized routing and sorting on fixed-
connection networks. J. Alg., 17(1):157-205, 1994.

[14] J. Spencer. Ten Lectures on the Probabilistic
Method. STAM, 1987.

steps, which is (14 68)(1 — &")af(n) + 2f(n) < af(n),

where the inequality can be ensured by the choice of
«. Notice that af(n) is exactly the number of time
slots in the T-frame of buckets, so this schedule can be
completed within the T consecutive buckets.

The resulting schedules of the time buckets are com-
bined into a single cyclic schedule for the problem. Each
packet follows the schedule of frame ¢, and waits till the
beginning of the next frame before continuing along the
rest of its path. In the resulting schedule each packet
might wait up to O(R) steps in 1ts initial queue at the
source, due to the initial random delay (of k& buckets =
R time steps), and then succeeds in making f(n)/g(n)
steps in each time frame of size af(n), so the packet is

delivered within O(R+g(n)d;+ f(n)) time steps. O

Corollary 16 For any periodic packet scheduling prob-
lem with mazimum congestion bounded by 1 — € for
some constant € > 0, and mazimum rate R, there is a
schedule that delivers all packets to their destination in
O(R+ D +logn) steps, and the scheduling algorithm of
Section 2 can be used to find a schedule delivers all pack-
ets to their destination in O(R) + (log* n)0Uoe™ ™) D 4
poly(log n) steps.

Notice that when R and D are both small, then the
additive poly(logn) term dominates the length of the
schedule. For this case we can do better by dropping
some packets.

First we need to prove a lossy version of Theorem 12.
Recall the outline of the schedule of Theorem 12: we
use Lemma 1 to get an initial schedule with frame sizes
T = logn, and then we use the the recursive algo-
rithm of Section 2.2. The first phase uses Lemma 1
and no catchup tracks. Packets in this phase have a
failure probability of 1/exp(T). In the resursive algo-
rithm packets have a failure probability of 1/exp(7’) in
each frame of size T, for the initial frame size T How—
ever, for T' & logn, the 1/exp(T) probability is small
enough, and using catchup tracks at this point would
cause large extra delays.

Let p denote the acceptable probability of packet
loss and assume that D < p~!. The lossy version of
the algorithm starts with a similar special first phase,
not using catchup tracks. This first phase generates a
schedule with frames of size T = logp~'. The probabil-
ity of loosing a packet due to congestion at this phase
is bounded by 1/exp(T) = 1/poly(p~!). After this ini-
tial phase we use the recursive algorithm of Section 2
with parameter v ~ log”™ p~! with frames of size T'. The
recursive algorithm schedules each packet with proba-
bility 1 — 1/exp(T).

We use Theorem 15 to convert this algorithm for
scheduling single packets to an algorithm for scheduling
streams of packets with low probability packet loss.
Theorem 17 For any periodic packet scheduling prob-
lem with mazimum congestion bounded by 1—e¢ for some
constant € > 0, mazimum rate R and mazimum paths
length D, and a probability p such that D < p~' there
1s a schedule that delivers each packet to its destination
with probability 1 —p in O(R)+ (log” p_l)o(bg*p D+
poly(log p~1) steps.

One drawback of this algorithm is that any individ-
ual stream is not scheduled at all with probability p. A

possible solution to this problem is to repeat the random
choices every now and then. If this is done frequently
enough, any individual stream might lose a small seg-
ment with low probability. The trouble is that packets
scheduled according to the new random choices might
conflict with previous packets scheduled according to
the old random choices. This requires flushing the net-
work (dropping all packets) whenever the schedule is
determined anew. Thus, it can be done only after a
large (constant) number of cycles had passed. Some of
the residual capacity € can be used for the flushing, or
else the amount of packet loss 1s somewhat increased.
The details will appear in the full version of the paper.

4 Bursty Traffic

In this section we sketch how our methods can be used
to handle irregular traffic patterns. We say that the
packet traffic is L-bursty with congestion 1 — € iff for
any time period of length ¢ which is at least L, for any
edge e, the number of packets injected on streams that
use e is at most (1 — €)t.

To illustrate our results, set L' = max{L, De " lalogn},
for some constant «. Consider the following simple al-
gorithm. Insert a delay €y [0, L'] for each packet. Con-
sider the following schedule. Partition time into consec-
utive frames of length alogn. A packet makes a move
on the first available slot in the frame following its ar-
rival. Similar to previous arguments, the probability
that too many packets have to move in any particu-
lar alogn frame is at most n~° for some constant ¢
which depends on «. The reason why this is true is
that the set of packets which may fall into a particu-
lar frame is exactly the set of packets injected in some
time interval of length (1 + €)L’ (these are the only
packets that could have made it to the relevant edge in
time, according to the relation between L’ and D), and
there are at most (1 —¢)(1+¢)L’ = (1 — €?) L’ packets
injected during that interval. The probability that a
packet fails on any of the <) edges along its path is at
most Dn~¢ < n~=t!. Thus, we get results analogous to
the Leighton-Maggs-Rao distributed algorithm: Each
packet is delivered w.h.p. after at most O(L + D logn)
steps.

Arguing along the lines of previous sections, we im-
prove this by the following

Theorem 18 Assuming there is a scheduling algorithm
for the single packets problem that delivers all packets
to their destination in (1 4+ 6)C + g(n)D + f(n) steps
for some constant 6 > 0, then there is a scheduling
algorithm for the L- bursty, 1—¢ congested, traffic prob-
lem that delivers each packet to its destination w.h.p.

O(L+g(n)D+ f(n)) steps, assuming that f(n) > logn

Proof. Set L' = max{L, e~ ta[Dg(n)+2f(n)]} for some
constant «. Partition time into consecutive frames of
length «f(n) each. Consider the following “schedule.”
When a packet is injected, wait till the begining of the
next frame, then insert a delay €y [0, L'], finally, move
the packet one step every ag(n) time steps. Consider
any edge e and any particular frame. Any packet that
moves across e during that frame must have been gen-
erated within a time interval of length at most o f(n) +
L'+ aDg(n) + af(n) < (1 +€)L'. There are at most

€, and the mazimum rate R, there is another periodic
scheduling problem with mazimum congestion at most
1 — ¢ where all streams have common rate R = O(R),
such that any schedule for the new problem provides a
schedule for the old problem, where each packet is de-
livered in at most R’ more steps than the corresponding
packet in the new problem.

Proof. We will replace a stream with rate r; along paths
P; with n; = [R'/r;] different streams each of rate R’
along paths P;. We choose R’ so that the congestion of
the resulting schedule is at most 1 —¢’. The congestion
of the new schedule is

S n/R < S (Uri+1/R) < (1- 0+ R/R,

i:e€P; i:e€P;

where the last inequality follows from the fact that with
maximum rate R there can be at most R different paths
through the edge e. Now if R’ > (¢ — ¢/)"' R then we
get that ;. cp n; < (1 —¢€)R as desired. O

Before we get to the main result, we give a sim-
pler initial schedule based on the on-line algorithm of
Leighton, Maggs, and Rao.

Theorem 14 If the congestion is bounded by 1—¢ for a
constant €, and the mazimum rate is R, then there exists
a schedule in which all packets along paths of length d;
are routed to their destination in O(R+ d; logn) steps.

Proof. Using Lemma 13 we see that it is no loss of
generality to assume that all streams have the same
rate B. We can further assume that R > «alogn, for any
constant « (otherwise, replace each stream by several
streams with the desired rate). The schedule will be
periodic with period R. In the schedule of an edge there
will be a time slot allocated to each path through the
edge every R steps. The edge will forward a packet
from the scheduled path along the edge if there 1s one
in the queue of the edge. We will carefully coordinate
the slots assigned to a stream so that after an initial
delay of at most R steps, the packet will pass a new
edge every logn steps.

To create the schedule select a value k so that R/k ~
alogn where o is a large constant (dependent on ¢€), and
divide the time period of [1..R] into k roughly equal size
slots of consecutive time steps. We will refer to these
sets of consecutive time steps as buckets. We first give
an initial assignment of each edge on a stream’s path
to buckets. Each packet will traverse exactly one edge
during a bucket until it reaches its destination. Each
stream selects an initial delay €y [1..R], and starting
at the that time reserves a step in the corresponding
time bucket for its first edge, a step in the next bucket
in the next edge, etc. Notice that time is understood
mod R for now.

We argue using Chernoff bounds that for any edge
and bucket the number of streams that have a reserved
time slot in the bucket of the edge is at most R/k, the
size of the bucket. Consider an edge e and a bucket j.
Each path using this edge has a probability of 1/k of
being assigned to this bucket, so the expected number
of streams assigned buckets is at most (1 — €)R/k, and
then the choice of R/k & alogn and Chernoff bounds
imply that with high probability there are no more than
R/k assigned streams.

Now we schedule the reserved time slots in each
bucket arbitrarily. In the resulting schedule a packet
might have to wait up to R steps in the source queue
due to the initial random delay, but then 1t waits at
most R/k = «alogn steps between traveling on adja-
cent edges on its path, so the packet will be delivered
in R+ d; logn steps. O

The main theorem of this section is obtained by
a construction that i1s similar to Theorem 14, but it
uses a variant of the algorithm of Theorem 12. The
idea is that the (non-periodic) packet scheduling algo-
rithm developed in Section 2, that delivers all packets
to their destination in (14 8)C' 4 ¢g(n)D + f(n) steps
(where C'is the congestion, and D the maximum dila-
tion, as in Section 2), can be used to design a periodic
schedule that delivers all packets to their destination in
O(R+ g(n)D + f(n)) steps, assuming that the maxi-
mum congestion is bounded by a constant smaller than
1/(1+6).
Theorem 15 Assuming there is a scheduling algorithm
that delivers all packets to their destination in (1+6)C'+
g(n)D + f(n) steps for some constant & > 0, then there
15 a periodic scheduling algorithm that delivers all pack-
ets to their destination in O(R + g(n)D + f(n)) steps
assuming that the congestion s bounded by a constant

smaller than 1/(1+6) and f(n) > logn.

Proof. Using Lemma 13 we may assume without loss
of generality that all streams have the same rate R, and
the congestion of the schedule is bounded by (1 —4’) for
a constant &, so that (1 — é8)(1 +6) < 1. We may also
assume that R > ag(n) for any constant «, using the
same argument as in the proof of Theorem 14.

As in the proof of Theorem 14 the schedule will be
periodic with period R. We divide the interval of time
[1..R] into k approximately equal size buckets for some
k. This time we make the size of the bucket R/k =
ag(n), where o is a large constant (dependent on § and
the constant in the big-Oh of the assumed single packet
scheduling algorithm).

We first give an initial assignment of each edge on
a stream’s path to buckets. As in the schedule of The-
orem 14 each stream picks a delay in [1..R] uniformly
at random, and reserves adjacent buckets for adjacent
edges of it path (as before time is understood mod R for
now). We will consider T-frames of buckets in this ini-
tial schedule, consisting of T = f(n)/g(n) consecutive
buckets.

Similar to the proof of Theorem 14 we argue using
Chernoff bounds that for any edge and T-frame of buck-
ets the number of streams that have a reserved time
slot in one of the T consecutive buckets of the edge is
at most (1—6")af(n), for some constant §” > 0 so that
(I+6)(1=6") < 1.

Now we schedule the reserved time slots in each
bucket using the assumed scheduling algorithm for each
T-frame. We consider the scheduling problem defined
by the path segments of a T-frame of buckets. The
maximum dilation (length of a path) is at most D =
f(n)/g(n) by construction, and the maximum conges-
tion is at most C' = (1 — 8”)af(n) by the Chernoff
bound argument above. Therefore the assumed algo-
rithm finds a schedule that delivers all packets to the
end of their path segment in (1 4+ 6)C + g(n)D + f(n)

Lemma 10 Let i be a path segment in a T¢-frame F
handled by the recursive procedure called with frame size
T. Then, DUMP(%) is independent of all but at most

TOW™T) gimilar events.

Proof. We would like to prove the lemma by induction,
however, the task of bounding the number of dependen-
cies is complicated by the fact that different choices for
delays in the T-frames cause different dependencies due
to recursive calls. Instead of proving by induction the
bound on the number of correlated DUMP(j) events, we
prove by induction the structure of what other paths
are correlated with paths i.
Recall the correlation analysis in the proof of Lemma 8.

Consider the graph G(F') whose nodes are the path seg-

ments in a T%-frame, two of them connected by an edge
if they share a network edge. Lemma 8 shows that in
one level of recursion we get that DUMP(¢) events for
two path segments in the T-frame are correlated in the
non-recursive version of the algorithm only if they are
of distance at most 4 in this graph. More generally we
can show by induction that two DumP (i) and DumP(7')
events for two path segments 7 and i’ can be correlated
by the recursive procedure only if their distance in the
graph G(F) is at most 4%, where k is the depth of the
recursion.

The lemma follows by observing that the depth of
the recursion is O(log” n), and counting the number
of path segments that can satisfy the above condition.
0

We can now analyze the distribution of the number
of dumped path segments. Path segments get dumped
by two events (1) an edge having too many paths through
failing in the first phase of the schedule, and (2) in the
catchup track the path segments repeatedly fails to be
scheduled.

Lemma 11 Let F be a T®-frame and let ¢ be an edge.
If T is sufficiently large, then the probability that a path
segment p in F' 1s dumped can be bonded by an inverse
exponential function in T.

Proof. To prove the lemma we have to go through the
same analysis as was done in the non-recursive case, and
prove the analogues of Lemmas 2, 4, 5, 6.

Let us consider the analogue of Lemma 2. We need
to show that the probability that a path segment in a
T-frame fails can be bounded by an inverse polynomial
in T. A path segment can fail either by failing in the
refinement step, or by being dumped by the recursive
call. Lemma 2 bounds the probability of the former,
and the induction hypothesis bounds the probability of
the later event.

Now the analogue of Lemma 4 follows from the above
analogue of Lemma 2; Lemma 10 bounding the de-
grees 1n the dependence graph of the FAIL events; and
Lemma 3.

The analogue of Lemma 5 follows along the same
lines as the analogue of Lemma 2. Finally, the analogue
of Lemma 6 follows from the previous ones.

A path segment ¢ that fails the first phase might
be dumped for two reasons, either because it passes
through a bad edge in the catchup track, or it fails to be
scheduled successfully in the catchup track sufficiently

often. The previous arguments show that both events
have probability exponentially small in 7. O

Lemmas 9,11 together with the initial scheduling
based on Lemma 1 imply Theorem 12.

Theorem 12 For any constant v > 1, and any packet
routing problem with congestion C' and dilation D we
can construct a schedule in which all packets reach their
destinations with high probability in (141/~)0Uee™ M4
~OUo8™) D 1 poly(logn) steps.

When ' = D then we get the best schedule by using
a constant 7. The version of the theorem claimed in
the abstract can be obtained by using v = alog™ n for
some constant «. In fact, we can push the constant in
front of the congestion C' arbitrarily close to 1 at the
expense of making the constant multiplying the dilation
D somewhat worse. This version of the result will be
used in the next section.

We remark that a similar variant of the Leighton,
Maggs, Rao [12, 11] schedule can be obtained: for any
constant € > 0 there is a schedule for the periodic packet
routing problem where all packets get delivered to their
destination in (1 4 €)C' + O(D + logn), where the con-
stant hidden in the big-Oh depends on e.

3 The Periodic Packet Routing Problem

In this section we consider the periodic version of the
problem where one has to send an infinite stream of reg-
ularly arriving packets along every path. The problem
can be stated as follows. A stream i of packets is defined
by a paths P; and an integer rate r;. In the schedule a
new packet starting at the source s; of the path P; ap-
pears every r; steps. The packet has to follow the path
P;. The problem is to deliver each of these packets to
their corresponding sinks in a small number of steps.

In this periodic setting there are infinitely many pack-
ets that must traverse each edge, hence, C as defined in
the case of scheduling single packets, is not a reasonable
measure of congestion. Here we measure the congestion
on an edge e by the formula A(e) = > pcp 1/7i, the
sum of the rates of the packet streams that use the
edge. Obviously, if there is an edge for which the rate
is greater than one, no schedule can guarantee delivery
of all packets within bounded delay.

A worst case lower bound on the maximum delay
of a packet is obtained by max{R, D}, where D is the
maximum dilation, and R = max; r; is the maximum
rate. To see why, notice that as many as R packets
from different streams might show up at once, wanting
to traverse an edge, without creating congestion more
than 1. Hence, one of these will have to wait R steps
before traversing the edge.

The main result of this section uses a variant of the
schedule developed in Section 2 to obtain a schedule
with analogous delivery times assuming that the maxi-
mum congestion is at most 1 — € for a constant e.

Before discussing different scheduling algorithms we
need the following lemma. In essence the lemma shows
that it is no loss of generality to assume that all packets
have the same rate R.

Lemma 13 Given positive constants € > €', and a pe-
riodic scheduling problem with congestion at most 1 —

O(C+ Dloglog n+poly(log n)) by expanding every step
of this schedule to loglogn steps.

In order to analyze the recursive version of the al-
gorithm, we will need to analyze the probability that
too many path get dumped by a phase. To do so we
need to bound the dependency among the events that
path segments get dumped. We first give such an anal-
ysis ignoring the effect of the recursive calls. Lemma 10
will later use the following lemma in the full analysis of
dependencies.

Lemma 8 The event that a path segment in F' is dumped
is independent of all but at most TV similar events.

Proof Sketch. Observe that the events that two edges
e and ¢’ are blocked in a T-frame j is correlated iff
there is a path segment through both e and e’. The
events that two path segments ¢ and ¢ fail in a T-frame
are correlated if there are two edges, one for each path,
whose being blocked are dependent. Consider the graph
G/(F) whose nodes are the path segment in a T°-frame.
We see that if the events that two path segments ¢ and 4’
fail in a T-frame are correlated, then the corresponding
two nodes are at most 2 apart in G(F'). Similarly, it is
not hard to show that the events that two path segments
i and 7/ get dumped in a T-frame can only be correlated
if the distance between the corresponding two nodes in
G(F) is at most 4. The lemma follows (as was done
in Lemma 4) by counting the number of path segments
that can satisfy this condition. O

2.2 The Recursive Algorithm

Next we consider the recursive version of the algorithm.
Recall from our initial discussion that the recursive ver-
sion depends on a parameter ¥ > 1. We will give a
schedule of length (1 + (1/7))00o8"™) 4 4OUog™ 7)) 4
poly(log n).

The initial step of the algorithm is to use Lemma 1
to create a schedule (with high probability) divided into
T-frames with T" & log n so that the congestion of each
frame is bounded by C' = 48" 7T We use the recur-
sive procedure on the resulting schedule. The recur-
sive procedure is analogous to our algorithm creating
the O(C' 4 Dloglogn + poly(log n)) long schedule. The

main differences are that:

1. We no longer assume that 7' & logn. As a result
there will be dumped path segments. Each path
segment will be dumped with probability inverse
exponential in 7. Dumped path segments do not
participate in the final schedule.

2. We assume that the input to the procedure is a
schedule divided into T-frames so that the conges-

tion of each frame is bounded by €' = yUos”™)T,
The procedure schedules sets of consecutive 7 T-
frames independently, one T°-frame is schedules
in an interval of length (1 + (1/7))°0es™TC +
~O008™T) D 4 poly(log T), and the probability that
a path segment is dumped from the schedule is
bounded by an inverse exponential in 7.

3. The refine steps using Lemma 2 use the parameter
v = ~ rather than v = loglogn.

4. When applying a step of our algorithm to a 7-
frame, we prepare input for our recursive proce-
dure with frame size 7" = O(logT) using refine-
ment.

5. The catchup track handles packets dumped by the
recursive calls as well as failed packets.

The input to the recursive version of the procedure
consists of a schedule of the path divided into T-frames,

so that the congestion of a T-frame is at most vUos™ 1),
The algorithm uses the refinement of Lemma 2 with pa-
rameter 7 to refine the scheduled in each T-frame. Path
segments that fail in refinement move to the catchup
track. We invoke a recursive call with frame size T’
with the successful path segments as input. The recur-
sive call refines the schedule in each of the (7")%-frames.

(We assume that 7' is big enough so that (77)% < T'.)
Some path segments might get dumped by the recursive
call, for such dumped segments the T%-frame path con-
taining the segment is moved to the catchup track. Now
consider the catchup tracks. An edge is bad if more than
T5 paths through it were moved to the catchup track,
and path segments through bad edges are dumped. In
the catchup tracks for in each T°-frame in turn, we pre-
pare input for the recursive procedure with frame size
T = O(logT) using refinement, and invoke a recursive
call. A path segments fails this step if it either failed the
refinement, or got dumped by the recursive call. In the
next 7° frame we consider the next segment of success-
ful paths, along with the failed segments of the failed
paths. Path segments that do not get at 7" successfully
scheduled path segments get dumped by the call.

We have to consider two issues in analyzing the re-
sulting procedure (1) the length of the schedule created,
and (2) the probability that a path gets scheduled. We
start our analysis with (1).

Lemma 9 One TS-frame is scheduled by the recursive
procedure in an wnterval of length ’yo(lOg* s,

Proof. We prove the lemma by induction. If 7" is small
then the lemma obviously holds, otherwise, we create a
schedule by using refine, the catchup tracks, and recur-
sive calls. The first step is to introduce a delay that is
at most 77" for each segment of a T-frame. This initial
delay increase the length of each T-frame by a factor
of v + 1, then the recursive calls are applied to smaller
frames of size 7" ~ log T'. By the induction hypothesis
we schedule the segments of a T-frame that do not fail

in 7T-frame in an interval of length v©(1°8” 7. Similar
analysis applies in the catchup track that consists of 27
frames of size T each. So the final schedule will be of
length 3(y+1)-y9Ue" TOT . Now the lemma follows by
observing that 1" = logT', so log* 1" = log" T' — ¢ for
some constant 1 > ¢ > 0 assuming that 7" is sufficiently
large. O

Before we can analyze the probabilities of being dumped

we need to bound the amount of dependency among the
events that paths are dumped. Consider a call to the
recursive procedure with frame size T, let ¢ denote a
path segment in a 7°-frame of the input schedule, and
let DuMP (%) denote the event that the path segment is
dumped by the procedure call.

can be bounded by exp(—cT).

Proof. There are at most C'T path segments that want
to cross e during F'. Let FAIL(4, j) denote the event that
path segment ¢ failed in 7T-frame j. The total number
of such events is CT1°. FaIL(i, j) is totally independent
of any Fatn(¢, j'), if j/ # j.

Now consider a T-frame j. First observe that the
blocking of two edges are correlated iff they share a
path. There are at most C' paths though an edge and
each path goes through at most T edges, so this im-
plies that the blocking of an edge is correlated with at
most C'T other edges. Now two events FAIL(%,j) and
Fa1L(¢', j) in a T-frame j are correlated iff there are two
edges, one for each path, whose being blocked are de-
pendent. A path goes through T edges, each of these
edge is correlated with CT" other edges, and each of
these other edges carries at most C' other paths. This
gives a total of C?T? paths whose failure correlates with
the failure of a particular path. So, the dependency
graph over the events FAIL(¢, j) events has maximum
degree C?T2.

We apply Lemma 3 to our setting. In our case,
N = CT*0 the failure probability p can be made 1/7T~¢
for any constant ¢, and k = C?T?. We argue that the
probability that more than b = T° events FAIL(i, j)
occur is exponentially small in 7' (assuming 7T is large
enough). The number of such events is clearly an upper
bound on the number of failed path segments that cross
an edge (we are over counting, since b bounds the num-
ber of times paths fail, counting multiplicities). O

So now we are ready to continue the schedule in each
TS-frame F'. Successful path segments wait till the end
of the frame. The rest of the scheduling process within
F handles failed segments. An edge is bad iff more than
b = T° failed path segments cross it. In the case we
are considering now, when 7" & logn there are no bad
edges with high probability. In the general case failed
segments that cross a bad edge will be dumped, they
will not participate in the refined schedule.

We schedule the failed segments as follows. Parti-
tion F into T consecutive T°-frames. This partitions
the failed path segments into 7' parts. We schedule
these parts frame by frame by inserting random de-
lays €y [0,7°]. 1In this schedule blocked edges, and
failed segments are defined similar to the above using
v = O(1) (only for the longer T°-frames). If a path
segment in a T°-frame succeeds, the packet moves on
to the next T°-frame, trying to schedule the next path
segment. If a path segment fails; it is moved to the next
T®-frame, where it tries again.

Notice that the successes of the packets at different
iterations are dependent. To simplify the analysis con-
sider the experiment when at all iterations we try all of
the T different T°-segments of all paths under consid-
eration whether we need that segment or not. This way
the success of the segments at different iterations are
independent, and hence this analysis provides a bound
on the success probability that is independent of other
events.

Notice that since the total number of failed path
segments that cross any particular edge is at most 7°,

in any attempt to schedule 7°-frame path segments less
than 7° paths cross any particular edge. We bound the
failure probability of a path segment:

Lemma 5 Letp be a path segment attempted to be sched-
uled in an tteration of the above scheduling process. For

any constant ¢ the probability of its failing can be made

to be at most T~° independent of all other events.

Proof. The proof is similar to the proof of Lemma 2.
0

Once a packet succeeds T' times (i.e., T' consecutive

T5-frame path segments of this packet have been sched-
uled), it stops and waits till the end of the schedule for
F'. Tts schedule in this frame has been completed. The
total number of times we try to schedule these path
segments is 27

Lemma 6 IfT is sufficiently large, then the probability
that a packet will succeed less than T times after 2T
tries is exponentially small in T

Proof. Consider a failed path of length T°. Each itera-
tion a new T segment of this path gets scheduled with
probability at least 1—1/poly(T'), independent of events
in previous iterations due to Lemma 5. So the expected
number of successes in 27 tries is close to 27. There-
fore, using Chernoff bounds, we see that the probability
that there will be less than 7' successes 1s exponentially
low in T'. O

In the primary case we consider now, when T =
logn, then path segments in 7' do not fail with high
probability. In the general case (discussed below), the
paths that fail this step are also dumped, together with
those that cross bad edges. We now study the distribu-
tion of dumped path segments.

Lemma 7 IfT is sufficiently large, then the probability
that a path segment p in F' is dumped can be bounded
by an inverse exponential function in T.

Proof. By Lemma 4, the probability that an edge is
bad is exponentially small, and a path segment in F
crosses at most 7% edges. By Lemma 6, a path segment
that does not cross any bad edge has also a probability
exponentially small in 7" to be dumped. So the total
probability of an edge being dumped is also exponen-
tially small in 7. O

Putting together what we have so far: we use the
Lemma 1 to get an initial schedule with frame sizes
T = logn, and congestion for each frame is bounded
by T'loglogn. Then we refine this schedule, again by
introducing local delays at random. The probability of
failing at this stage is polynomial in 7" & logn, hence
over an n-node graph many edges fail. Next we sched-
ule the failed segments using the catchup track. The
catchup track small total congestion, so there we can
afford to repeatedly schedule failed segments till they
succeed. This boosts up the probability of failure from
inverse polynomial in 7' to inverse exponential in 7.
With T" & logn this implies that with high probability
no segments fail, and we have a schedule for each T°-
frame of length O(T°) with congestion of any loglogn
frame at most ~ loglogn. We get the schedule of length

distributed Leighton-Maggs-Rao [12] algorithm.

Lemma 1 For any constant v > 1 and any constant
¢ > 0 there is a constant o so that with probability at
least 1 — n=°, we obtain a schedule that can be divided
wmto T-frames with T = alogn, so that the congestion

of any T-frame is at most v7T.

We call the recursive procedure with the resulting
schedule. The procedure will schedule each packet with
high probability as exp(T) > poly(n) due to the choice
of T. Notice that we need to start off with a frame
size of T' = logn even if both €' and D are small, as
otherwise the packets would not be routed with high
enough probability. In the next section we will discuss
a version of the algorithm where we do not insist that
each packet 1s routed with high probability. In that
version we can start with frame size below logn when
C and D are both small.

2.1 An O(C + Dloglog n + poly(logn)) Algorithm

To make the description cleaner we first describe the
version of the algorithm that routes packets in O(C' +
Dloglogn + poly(logn)) steps. This procedure gives
the essence of our algorithm. The improved schedule
is obtained by using the ideas in this simpler schedule
recursively.

We start with using Lemma 1 with v = loglogn
to create the initial schedule. Consider the schedule
given by the lemma divided into T-frames for some 7' =
alogn. Consider the schedule as a set of TS-frames,
by grouping T° consecutive T-frames into a T°-frame.
The algorithm will handle each T°-frame independently.
It will schedule each T%frame in O(loglogn)T® steps.

This results in a schedule of total length O(C+ D loglog n+

T¢loglogn) as desired, as the number of T-frames is
bounded by O(D/T+C/(Tv)) by having paths of length
D and initial delays of at most O(C/v).

We now describe more precisely how the procedure
handles a T%frame F. Consider a T-frame f of F. We
attempt to schedule the path segments defined by f in
an interval of length O(T log T'). First, we insert an ini-
tial random delay €¢ [0, T] in front of every segment.
The expected congestion of an edge at a time step is
bounded by logT, we would like to argue that with
high probability the congestion of the edges 1s at most
O(logT), and then we could expand the schedule by
a factor of O(logT) = O(loglogn) to obtain a feasible
schedule as desired. However, the probability of an edge
having congestion more than log 7" is not small enough.
We use an analogue of Lemma 1 to bound this proba-
bility. We state the lemma here in a bit more general
form so we can refer to it later.

Consider a T-frame of a schedule for some 7', assume
that the congestion of the frame is bounded by some
C > T and let " < C and € > 0 constants so that
C'(1 + €) < C. Refine the the T-frame by introducing
random 1nitial delays €y [0, T (1+4¢)] for every segment
in the frame, where v = C'/C’. We will say that an edge
e is blocked in f' iff the congestion on e during f’ is more
than CT"/T.

We show using Chernoff bounds that the probability
of an edge being blocked is small, bounded by inverse
polynomial in 7". This probability 1s not small enough

to guarantee that none of the m edges gets blocked.
Instead of arguing about the congestion of the whole T-
frame, we want to argue about the success of individual
path segments, as there are at most 7" edges involved in
a path segment, and hence with good probability none
of those T edges fail. A path segment p is successful
during f iff it does not cross a blocked edge in any 7”-
frame. Otherwise, the path segment fails. Analogously
to Lemma 1 we can prove the following:

Lemma 2 For any constant € > 0 and any constant
¢ > 0 there is a constant « so that if we consider T'-
frames with T' = «alogT, then the probability that a
path segment defined by a T-frame fails is bounded by
T-c.

Now consider the T° frame F. We do this for all
T-frames f within F'. We say that a path segment suc-
ceeds in F iff it succeeds if each of the T° T-frames.
From Lemma 2 we get that the probability of a path
segment succeeding can be bounded by an inverse poly-
nomial in 7T'.

However, we would like each path segment to succeed
with probability of inverse exponential in 7. This is
where we will have to introduce the idea of “catchup”
to help packets catch up with the schedule after they
fail. The key feature of the “catchup” track i1s that the
congestion there is much lower with sufficiently high
probability, as the following analysis shows.

First we bound the number of failed path segments
that cross any particular edge e. Notice that this num-
ber includes all segments that were supposed to cross e,
and failed, including segments that failed due to some
other edge ¢’. A complication in proving a bound is
that the failure of different path segments through edge
e 1s highly correlated.

The following simple lemma extends the Chernoff
bounds to correlated events, correlated like the situa-
tion handled by the Lovasz Local Lemma. Let X, X,
..., XN be 0-1 random variables, consider the depen-
dency graph with the events as nodes, so that an event
is independent of all events not adjacent to the node.

Lemma 3 Assume that the mazimum degree in the de-
pendency graph of the random 0-1 variables X1, Xo, ..,
Xn is at most k, and suppose that for all i, E[X;] < p.

Let § > 1. Then, Pr[>. X; > 4e6pN] < 4ek2~ 5PNk,

Proof. By Brooks’ theorem [7] the dependency graph
can be partitioned into at most k + 1 independent sets,
and therefore into m < 4ek independent sets, each of
size at most N/2ek. Let the set sizes be Ny, No, ...,
N,,. Let S; denote the number of variables in set ¢ that
are 1. Set B; = éN/kN; > 2e. Using Chernoff bounds
(see [2, Appendix A]), we get

e BipNi
PI'[SZ' > ﬁZpNZ] < (ﬁ_) .

Summing over the sets, and using 8; N; = §N/k, gives
the lemma. O

Lemma 4 Assume we are given a schedule divided into
T-frames, so that the congestion of each T-frame is
bounded by C, and C < O(TlogT). For any constant
¢ >0 if T 1s sufficiently large, then the probability that

more than T° path segments that cross e during I fail

Tradeoffs Summarizing our results for scheduling in-
finite packet streams, we consider four parameters that
define the packet traffic: the network throughput 1 — ¢,
the burstiness as characterized by the longest overload
period L, the packet loss probability p, and the maxi-
mum delay of a packet. We give algorithms that pro-
vide tradeoffs between the first three parameters and
the delay. Such tradeoffs seem intuitively necessary in
a distributed setting.

Our techniques The main idea of the algorithm fol-
lows the lines of the papers of Leighton, Maggs, Ranade,
and Rao [12, 13, 11]. In the simple randomized al-
gorithm of [12] each path selects a delay of at most
O(C/logn) uniformly and independently at random.
The main idea of the distributed algorithm is to show
(using Chernoff bounds) that with high probability in
the resulting schedule no more than O(logn) packets
traverse any edge at a given time. Now a valid schedule
is obtained by slowing down this schedule by a factor
of O(logn). The resulting schedule takes D - O(logn)
time to traverse a path of length D, so with the ini-
tial O(C') delay, the length of the resulting schedule is
O(C + Dlogn).

The centralized algorithm of [12, 11] uses the idea of
inserting an initial random delay iteratively. After the
initial random delay they show that not only are there
no more than O(logn) packets traversing any edge at
any given time, but also the number of packets travers-
ing an edge in any logn time period is at most O(logn)
with high probability. Now they divide each path into
O(log n) long subpaths, and add delays in front of each
of the subpaths. In order to argue that these extra de-
lays decrease the congestion to O(loglogn), they need
to use the Lovdsz Local Lemma [12, 11]. Chernoff bounds
used in the analysis of the initial larger delays would not
yield a strong enough guarantee. Rather than showing
the desired high probability bound, Chernoff bounds
would imply that the probability of an edge getting con-
gested is at most 1/poly(logn). However, this would
imply that among the m edges of the network many do
get congested.

In this paper we develop techniques to guarantee the
high probability of delivering packets without resorting
to the Lovasz Local Lemma. Instead of the Lovész Lo-
cal Lemma we use a simple version of Chernoff bounds
for events with limited correlation. We introduce the
idea of a special “catchup” time. In our schedule we
reserve some special time for packets that are “far” be-
hind where they are “supposed to be” in the schedule.
This extra reserved time allows the delayed packets to
catch up and continue on their paths, where they were
“supposed to be.”

2 Routing of single packets

First we review a centralized version of our algorithm.
We develop an algorithm that schedules all packets with
high probability (w.h.p.), i.e., the probability of the
schedule failing can be bounded by any inverse polyno-
mial in n.

Following the general outline of Leighton, Maggs,
and Rao [12] we consider schedules of packets that might

not be feasible, z.e., there might be more than a single
packet traversing an edge at a time step. The conges-
tion of the schedule is the maximum number of packets
that traverse an edge at the same time. Notice that if
the congestion of the schedule is bounded by A then we
can obtain a feasible schedule by expanding every time
step into A steps.

A T-frameis a sequence of T consecutive time steps.
The congestion of an edge in a T'-frame is the number of
packets that traverse the edge during the T-frame. The
congestion of a T-frame 1s the maximum congestion of
an edge in this frame. Leighton, Maggs and Rao [12]
obtain the O(C' + D) long schedule by repeated refine-
ments. Given a schedule where the congestion of any
T-frame 1s at most AT, for a small constant A, they re-
fine it to a schedule partitioned into 7”-frames, where
T’ =~ log T, so that the congestion of any 7’-frame is at
most AT, for a constant A’ not much bigger than A.
When T, the size of the frames, 1s a constant the con-
gestion of the frame implies that the congestion of any
edge in any time step is at most AT, so a good schedule
can be obtained by expanding every time step into AT
steps.

Rather than refining the schedule iteratively, we have
to refine it recursively. If C' > logn then we start sim-
ilarly to the first step of the distributed algorithm of
Leighton, Maggs and Rao [12] to find a schedule with
T = logn. The main part of the algorithm is a recursive
procedure. The procedure assumes we have a parame-
ter T' < O(logn), and a non-feasible schedule divided
into T-frames. We assume that the congestion of each

T-frame is at most 7/°8" 7T The frames define path
segments: a path segment defined by frame f is the
portion of a packet’s path that is traversed during f in
the input schedule. We schedule the path segments of
each set of some consecutive T' = poly(T) T-frames in

a somewhat expanded interval of length vOUes™ T . T
so that each path segment is scheduled with probabil-
ity at least 1 — 1/exp(T). To get the best bounds we
will maintain a schedule with a relatively high conges-
tion: we use v = log" n to get the results claimed in the
abstract.

The general overview of the recursive procedure is
as follows. The procedure schedules consecutive T°-
frames independently. Each T°-frame is scheduled in
two phases. In the first phase, the schedule is refined
and a recursive call is invoked with frame size 77 =
O(logT). Some packets may fail either in the refine-
ment or in the recursive call. These get scheduled in the
second phase (the catchup track), which also involves re-
cursive calls. Some packets may fail both phases. These
are reported to the calling procedure as dumped pack-
ets.

We will use the first step of the distributed algorithm
of Leighton, Maggs and Rao [12] to create a schedule
divided into T & logn size frames, so that all frames
have congestion at most v for a parameter v that will
be defined later. We introduce random initial delays
€v [0, C/v(1+¢€)] for every packet for some € > 0, where
€y denotes the fact that the random delays should be
selected uniformly and independently. The next lemma
states that this results in a schedule with the desired
property with high probability. The proof uses Chernoff
bounds and is exactly analogous to the proof of the

the Lovédsz Local Lemma [8, 14], and hence is not algo-
rithmic. In a followup paper Leighton and Maggs [11]
use an algorithmic version of the Local Lemma due to
Beck [5] to give centralized algorithms for the problem.

Leighton, Maggs, and Rao also give a distributed
randomized algorithm where all packets reach their des-
tinations with high probability in O(C' 4 D logn) steps,
using O(logn) size queues. (They call the algorithm
on-line, rather than distributed.) For the special case
of levelled networks, Leighton, Maggs, Ranade, and
Rao [13] give an O(C'+ D+logn) steps distributed algo-
rithm. In a distributed algorithm nodes (switches) must
make their decisions independently, based on the pack-
ets they see, without the use of a centralized scheduler.
Leighton et al. [12] state as a challenging open prob-
lem to improve their universal distributed algorithm to
O(C 4+ D). In this paper we make a step towards re-
solving this open problem by improving the length of
the schedule for the case of large dilation . We give a
distributed algorithm that routes all packets with high
probability in O(C) + (log* n)°U°8") D + poly(logn)
steps.

The periodic version We also consider the periodic
version of the problem where one has to send an infi-
nite stream of packets along every path. The problem
can be stated as follows. There are paths P; in the net-
work with rates r;. For a path P; there is a new packet
starting at the source s; every r; steps. The packet has
to follow the path P;.

This periodic packet scheduling problem is motivated
by the ATM and similar standards. At a high level,
communication in an ATM network 1s established by
allocating a virtual circuit that reserves resources along
a path connecting the communicating nodes. Recently,
there has been significant progress in the design of algo-
rithms for virtual circuit routing [3, 4], as well as their
implementation in practice [9]. However, at a lower
level, a virtual circuit is simply a stream of packets
carrying encoded video or other transmissions. These
packets have to be scheduled in a way that will facil-
itate timely and reliable communication to all concur-
rent users of the network.

This paper makes a first attempt of suggesting ef-
fective ways of dealing with packet scheduling in ATM
networks. We consider the problem of scheduling reg-
ular streams of packets along paths in the network.
This model of packet traffic is extremely simple, and
by no means accurately reflects the situation in ATM
networks.

In this periodic setting there are infinitely many pack-
ets that must traverse each edge, hence C as defined in
the case of scheduling single packets, 1s not a reasonable
measure of congestion. Here we measure the congestion
on an edge e by the formula A(e) = > p 5, 1/ri, the

sum of the rates of the packet streams that use the
edge. Obviously, if there is an edge for which the rate
is greater than one, no schedule can guarantee delivery
of all packets within bounded delay.

We require that for some small constant ¢ > 0, for
every edge e, Ale) < 1 —e. We give a distributed
algorithm that routes every packet to its destination

* =1

with probability 1 —p in O(R)+ (log" p~1)CUee"r™) D4

poly(log p~!) steps, where R = max; r; is the maximum
distance between packets of the same stream, and we
assume that the dilation D is bounded by p~'. The
constant hidden by the big-Oh notation depends on
the parameter e. Thus, achieving better throughput
requires slowing down some packets more. Notice that
max{R, D} is a worst case lower bound on the max-
imum delay of a packet, since as many as R packets
from different streams might show up at once, wanting
to traverse an edge, without creating congestion more
than 1 —e. Hence, one of these will have to wait R steps
before traversing the edge. In this abstract we ignore
the issue of limiting queue sizes for simplicity.

Our schedule routes each individual packet to its des-
tination with high probability, but may drop some of
the packets. Dropping packets appears to be essential
to maintaining simultaneously good response time and
near maximum throughput for the network. There are
many techniques known to limit the degradation of the
quality of the transmission due to limited loss of packets
(see, e.g., Albanese et al [1]).

Bursty traffic patterns The advantage of the ATM
network over the IP networks using Synchronous Trans-
fer Mode (STM) comes out most when packets do not
arrive in regular intervals on each communication path,
at times there are lots of packets (a burst of packets)
and at other times there are very few. In an STM net-
work time units are divided into subsets of size N for a
large N, and each path through an edge must reserve
some of the N “time-slots” on the edge. The STM net-
work must allocate enough time slots for each path to
support the maximum possible burst of traffic, and this
leads to many empty time slots, and under utilized net-
works. In an ATM network allocation of packets to time
slots is not done by such reservation, this allows greater
utilization of the network, assuming that not too many
of the paths would have their traffic burst at the same
time (referred to as statistical multiplexing).

We consider a model of packet traffic for handling
bursty communication. The model is motivated by the
new adversarial model suggested by Borodin et al [6]
in the context of studying stability of greedy queueing
strategies in various networks. The model we study
generalizes their model to allow short periods of over-
load. A parameter L upper bounds the length of pe-
riod during which an edge may be overloaded. As in
the periodic version, one has to send an infinite stream
of packets along every path. Packets may be injected
into the stream arbitrarily, subject to the following con-
straint: There is a (small) constant ¢ such that for any
time period of length ¢ which is at least L, for any edge
e, the number of packets injected on streams that use e
is at most (1 — €)t.

Our results for this model parallel those for the peri-
odic model. We give a distributed algorithm that routes
every packet to 1ts destination with probability 1 — p in
O(L) + (log” p_l)o(bg*p D+ poly(log p~1) steps, as-
suming D < p~!. Notice that Q(L) is a worst case
lower bound on the maximum delay, because as many
as (1—e¢) L packets may be injected simultaneously along
a single edge without violating our assumptions.

Distributed Packet Switching in Arbitrary Networks

Yuval Rabani*
The Technion
Haifa 32000, Israel

rabani@cs.technion.ac.il

Abstract

In a seminal paper Leighton, Maggs, and Rao consider
the packet scheduling problem when a single packet has
to traverse each path. They show that there exists a
schedule where each packet reaches its destination in
O(C + D) steps, where C is the congestion and D
is the dilation. The proof relies on the Lovasz Local
Lemma, and hence is not algorithmic. In a followup
paper Leighton and Maggs use an algorithmic version
of the Local Lemma due to Beck to give centralized al-
gorithms for the problem. Leighton, Maggs, and Rao
also give a distributed randomized algorithm where all
packets reach their destinations with high probability
in O(C + Dlogn) steps. In this paper we develop tech-
niques to guarantee the high probability of delivering
packets without resorting to the Lovasz Local Lemma.
We improve the distributed algorithm for problems with
relatively high dilation to O(C) + (log* n)?U°8" ") D 4
poly(logn).

We extend the techniques to handle the case of infi-
nite streams of regularly scheduled packets along every
path. Here we measure the congestion on an edge e by
the sum of the rates of the packet streams that use the
edge, denoted by A(e). We require that for some small
constant € > 0, for every edge e, A(e) < 1 —e. In this
case we use the parameter R = max; r;, the maximum
distance between packets of the same stream, instead
of the congestion C' above. We notice that max{R, D}
1s a worst case lower bound on the maximum delay of
a packet.

We also extend the results to a model of packet traf-

*Supportedin part by the NSF PYI award of Eva Tardos. Part
of this work was performed while visiting the School of OR&IE
at Cornell, and while a postdoctoral fellow at the University of
Toronto Computer Science Department. Work at the Technion
supported in part by the Ruth and David Moskowitz Academic
Lecturship award.

tResearch supported in part by a Packard Fellowship and an
NSF PYT award, by NSF through grant DMS 9505155, and ONR
through grant N00014-96-1-0050.

Eva Tardos'
Cornell University
Ithaca, NY, 14853

eva@cs.cornell.edu

fic for handling bursty communication. The model is
motivated by the new adversarial model suggested by
Borodin et al.

1 Introduction

Packet routing is one of the central issues in large scale
parallel computing. Designing efficient packet switching
protocols is also one of the main problems in implement-
ing Broadband Integrated Services Digital Network (B-
ISDN) standards, such as ATM (Asynchronous Transfer
Mode). The packet routing problem is simply that of
moving packets in a communication network from their
sources to their desired destinations as quickly, as re-
liably, and using as few resources (such as queues), as
possible. A solution to this problem consists of two
distinct (though by no means independent) parts: a se-
lection of paths for the packets, and a schedule of the
motion of packets along their selected paths. These
problems have been extensively studied, mostly in the
context of specific network topologies (see [10]).

In this paper we study the issue of scheduling the mo-
tion of packets for a given selection of paths in an arbi-
trary network. We assume a store and forward method
of routing: The network 1s modeled as a directed graph,
where nodes represent processors or switches, and edges
represent communication links. The motion of packets
consists of a sequence of synchronized steps. Packets are
stored in queues on edges along their respective paths.
In each step switches move packets queued at incoming
edges to queues on outgoing edges, subject to the con-
straint that at most one packet may traverse any single
edge each step.

Routing individual packets In aseminal paper Leighton,
Maggs, and Rao [12] consider the packet scheduling
problem when a single packet has to traverse each path.
They show that there exists a schedule where each packet
reaches its destination in O(C' 4 D) steps, where C'is
the congestion (the maximum number of paths that use
a given edge) and D is the dilation (the length of the
longest paths). The schedule uses only constant size
queues. Notice that if all packets enter the network at
the same time, then max{C, D} is a lower bound on the
time 1t takes to deliver all packets. Therefore, this re-
sult is tight up to constant factors. The proof relies on

