
tokens results in a counted sequence.
This concludes the proof of the Claim, and hence of The-

orem 9(b).

In addition to its inherent interest, Theorem 9 can be used
in conjunctionwith our results on coarse balancing to obtain
better bounds for counting. The idea is simply to use the
results of Section 3 to bound the time to reach a certain
threshold discrepancy, and then to switch to Theorem 9(b)
to bound the remaining time required for counting. This
gives us the following:

Corollary 10 A periodic balancing circuit with round ma-
trix P and all balancers initially in state counts any in-
put sequence with discrepancy K in O log KN µ N!
rounds, where ! ! PT .

For example, this tells us that counting requires
O N2 log KN rounds on the cycle, and, on the r-dimen-
sional torus, O N2 r log KN rN1 1 r rounds.
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connects two wires i and j is said to be a standard compara-
tor 8 if, for i j, the max-output is wire i and the min-output
is wire j. If j i 1, the comparator is called primitive. The
following fact is due to de Bruijn (and is the reason why we
require all balancers to start in state ).

Fact 1 ([10]) Let C be an arbitrary elementary compara-
tor circuit on N wires consisting of standard comparators
only and includingall possible primitive comparators. Then
C sorts any input into non-increasing order in at most N
rounds.

Since standard comparators and balancers perform iden-
tically on a 0-1-input, we have:

Fact 2 Let B be the replacement circuit of a sorting cir-
cuit C . Then B counts any input with at most one token per
wire.

Proof of Theorem 9(a). Assume there is no balancer i:i
1 in B. Then the initial load vector x j 1 for j i, xi 0,
xi 1 1, xk 0 for k i 1 cannot be changed. If the
balancer 1:N is missing, then the input 2 1 1 1 1 0
cannot be changed.

Proof of Theorem 9(b). Let T K denote the number of
rounds of B needed to count any sequence with initial dis-
crepancy K. In view of the Serialization Lemma [4], which
states that the order in which tokens pass through the circuit
does not affect the number of tokens output on each wire, it
is easy to see that T K T K 1 T 2 , for K 2: We
may assume w. l. o. g. that some wire has 0 tokens and some
wire has K tokens. Imagine holding back the Kth token
on all wires that have K tokens. The remaining sequence
has discrepancy K 1, and so is counted after T K 1
rounds. Thus after T K 1 rounds the entire sequence (in-
cluding the Kth tokens) will have discrepancy at most 2, so

8Knuth [19, p. 234] defines “standard”with max andmin interchanged.
Our choice is due to our convention that the odd tokens go to lower-
numbered wires.

a further T 2 rounds suffice. Theorem 9(b) will therefore
follow from:

Claim T 2 2N.

To prove the Claim, note from the Serialization Lemma that
it is enough to consider input sequences with 0, 1 or 2 to-
kens per wire. Let x x1 xN be an input sequence with
xi 0 1 2 and discrepancy 2. Define y y1 yN by
yi min 1 xi , and z z1 zN by zi xi yi. Note that
yi zi 0 1 . Finally, let c "yi; note that 1 c N 1.
By Facts 1 and 2 and the Serialization Lemma, we know

that N rounds suffice to count y. During this time, z is
merely permuted to a sequence z , still with discrepancy 1.
We proceed to reduce the remaining task to a sorting

problem. Let A be the circuit consisting of wires 1 c
and the corresponding internal balancers, and let B be the
circuit consisting of wires c 1 N and the correspond-
ing internal balancers. Let L i: j i A j B be the set
of balancers that connect A and B; note that 1:N L. For
all balancers i: j L, replace their initial state by , and
consider the input z only. Because z is a 0-1-sequence we
can now interpret the balancers as comparators. Interchang-
ing the order of A and B results in having only standard
comparators. Figure 3 shows that this reduction results in
applying a periodic “sorter” to z , because all “comparators”
are standard and all primitive comparators are included, so
that we may apply Fact 1. Call the tokens from sequence
y “heavy,” and the tokens from sequence z “light.” Now
we show that the above reduction does not alter the paths
of either the light or heavy tokens through the circuit. As is
easy to see, we have in the original situation: (i) No light
token will leave B. (ii) No heavy token will leave A; more
specifically, no heavy token will change its position. (iii) A
light token can leave A only via a balancer from L.
Because of (ii), considering light tokens on A only does

not change their route on the wires of A. Because of (i)
and (iii), reversing the direction of the balancers in L does
not change the route of light tokens. By Facts 1 and 2,
N rounds suffice to balance the light tokens on the wires
c 1 N 1 c. Finally, recombining heavy and light



Ptml Ptm l 1 1, for all m l t. Therefore it is sufficient to
consider only l 1 in the definition of !. Hence,
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The following lemma on the entries of the first column of Pt
follows directly from the fact that P describes random walk
on the cycle with uniform transition probabilities.
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(see [7, p. 216]) has been used.
If N is odd, a slightly more complex calculation shows

that! PT 3
4 N

1
N .

This completes the proof for the diffusive model.

Considering the diffusion process with initial load vector
xi min i N i , for i 1 N , shows that the devia-
tion between the idealized process and the token process is
indeed & N in the worst case.

With a bit more work, we can extend the above analysis
to bound ! for uniform diffusion and the balancing circuit
model on the r-dimensional torus (i.e., the r-dimensional
square mesh with wrap-around edges and side-lengthN1 r).
For the balancing circuit model, the decomposition into
matchings is inherited from that for the cycle by treating
each dimension separately as a collection of cycles. Fig-
ure 1 in the Introduction illustrates this for r 2.

Theorem 8 For both uniform diffusion and the balancing
circuit model on the r-dimensional torus with side-length
N1 r, the local divergence is! & rN1 r .

The proof of this theorem for the diffusivemodel follows
the lines of the analysis for the cycle. Once again, Pt can
be computed explicitly. For the balancing circuit model, we
can use the fact that multi-dimensional tori are the product
– in the graph-theoretic sense – of cycles, and that ! is (at
most) additive under products. The proofs will be presented
in the full version of the paper.

5. Counting in periodic balancing circuits

Our analysis in Section 3 tells us how many rounds are
required to achieve -smoothing, where depends on the
network. Our analysis therefore really applies to coarse
load-balancing. In this final section we address the ques-
tion of perfect balancing, or counting, in the balancing cir-
cuit model. We shall first present a direct argument which
bounds the number of rounds required to count an initial
load vector for periodic circuits satisfying a certain natural
condition. At the end of the section, we shall see how to
combine this direct approach and the results from Section 3
to obtain a better bound for counting.
Our approach will be based on a reduction to sorting. If

we replace the comparators of a sorting circuit C by bal-
ancers, we get a balancing circuit which we call the re-
placement circuit of C . Note that replacing a comparator
by a balancer also determines the initial state of the bal-
ancer. Aspnes et al. [4] show that the replacement circuits
of Bitonic Sort and Periodic Balanced Sort are universal
counting circuits; however, we cannot hope for this prop-
erty if N is not a power of two [1]. However, we shall show
that if we replace the comparators of a periodic sorting cir-
cuit by balancers, we can guarantee that O KN rounds of
the replacement circuit count any input with discrepancy K.
A balancing circuit is said to have an almostHamiltonian

cycle iff it contains the balancers 1:N and i:i 1 for i
1 N 1. If all balancers have initial state , then having
an almost Hamiltonian cycle is necessary and sufficient for
periodic counting.

Theorem 9 Let B be a balancing circuit on N wires in
which the initial state of all balancers is .

(a) If B does not contain an almost Hamiltonian cycle, it
cannot be used to perform periodic counting.

(b) If B contains an almost Hamiltonian cycle, then B
counts any input sequence with discrepancy K in
O KN rounds.

The proof of Theorem 9 requires a fundamental obser-
vation from the area of periodic sorting. A comparator that
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where Q PT. Taking t # and maximizing over l the
right-hand side becomes precisely! Q , so we have proved
Theorem 2 for the diffusive model.
The proof of Theorem 2 for balancing circuits is similar

but involves an extra level of complexity because we have
to handle the balancing steps (matchings) within each round
separately. The details can be found in the full version of the
paper.

!

We conclude this section by giving a general upper
bound on the local divergence ! in terms of the eigenvalue
gap of the (symmetrized) round matrix. Specifically, we
show the following:

Theorem 4 Let P be a round matrix and µ the eigenvalue
gap of (the symmetrization of) P. Then

! PT O
d logN
µ

This result allows us to compute an upper bound on !
for most standard networks, from our knowledge of the sec-
ond eigenvalue. For example, we get ! O N2 logN
for the cycle, ! O rN2 r logN for the r-dimensional
torus, ! O logN 3 for the de Bruijn network, and
! O d logN for a degree-d expander, for both the uni-
form diffusive model and balancing circuits. Moreover,
combining Theorem 4 with Corollary 3 allows us to deduce
a smoothing result that depends only on the eigenvalue gap
of the round matrix:

Corollary 5 In both the diffusive model and the balancing
circuit model, O d logN µ -smoothing of any initial vec-
tor with discrepancy K is achieved within O log KN µ
rounds, where µ is the eigenvalue gap of (the symmetriza-
tion of) the round matrix P.

Proof of Theorem 4. We give only the proof for the diffu-
sive model; the proof for balancing circuits is very similar
and we omit it. Let Q PT. Note that (the symmetrizations
of) P andQ share the same spectrum; let ( be their common
second eigenvalue. From the geometric convergence of the
L1 norm, "i Qtli

1
N N1 2 ( t 2 [21, 14], we easily get

that "i j Qtli Qtl j N3 2 ( t 2. Note also that, for all t,
the fact that "i Qtli 1 implies that " i j E Qtli Qtl j d.

Thus, for any ), and l achieving the maximum in the defini-
tion of !, we have

! Q
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i j

Qtli Qtl j

d) N3 2
#

"
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( t 2 d)
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1 (

Choosing ) & logN
1 ( to minimize the bound completes

the proof.

Remark: In the above proof, we have summed the differ-
ences Ptli Ptl j over all pairs of nodes i j, rather than only
over neighboring pairs as in the definition of !. We might
expect that this is quite crude in many cases. We shall see
in the next section that, for several important networks,! is
in fact considerably smaller than this general upper bound
suggests. The question of a sharper upper bound on ! is
interesting. For example, a bound of the form! O logN

*
is conceivable, where * is the edge expansion of P.

4. Local divergence on special networks

In the previous section, we saw that the local di-
vergence of the r-dimensional N1 r-sided torus is !
O rN2 r logN , and in particular that ! O N 2 logN for
the N-cycle. In this section, we improve this bound consid-
erably with an exact analysis of the round matrix for these
networks. In the diffusive model, we investigate uniform
diffusion only, i.e., we take all non-zero pi j 1 2r 1 .

Theorem 6 For both uniform diffusion and the balancing
circuit model on the N-cycle, the local divergence is !
& N .

Proof. We give the proof only for the diffusive model by
computing ! exactly; the balancing circuit model can be
handled in similar fashion.
In the uniform diffusive model on the cycle, P is the ma-

trix of a general cyclical random walk [13, p. 377]. The
entries of Pt can be computed explicitly [13, p. 434]: if
+N e2$i N denotes an Nth primitive root of unity, then
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In the following we identify index i for i 1 or i N
with index i 1 mod N 1. By symmetry of the cycle,



Definition 2 In the diffusivemodel with roundmatrix P, the
local divergence ! P is defined as

! P max
l

#

"
t 0

"
i j E

Ptli Ptl j

where E is the set of edges in the network.

Remarks: (i) Note that ! P is in fact always finite due to
the geometric convergence of the Pti j.
(ii) The quantity! seems to be quite natural in the Markov
chain context, and measures the extent to which the prob-
ability distribution induced by the chain deviates over time
between adjacent states. We believe that this quantity may
be of independent interest in studying local transient prop-
erties of Markov chains.
The definition for balancing circuits is slightly more

complicated because we have to take account of all balanc-
ing steps within a given round. Accordingly, we introduce
the matrix P t k Pt 1P 1 P k , corresponding to t 1
complete rounds plus the first k matchings of round t. The
matrix P t k 1 is defined as P t k 1 if k 1, and as P t 1 d

if k 1. P 1 1 1 is the identity matrix.

Definition 3 In the balancing circuit model with round ma-
trix P ,d

k 1P k , the local divergence ! P is defined as

! P max
l

#

"
t 1

d

"
k 1

"
i: j Mk

P t k 1
li P t k 1

l j

Note that here! P actually depends on the decomposition
P P 1 P d . For simplicity, we suppress this depen-
dence.
Our main result of this section bounds the deviation be-

tween the idealized process and the true load-balancing pro-
cess in terms of ! for both load-balancing models:

Theorem 2 In both the diffusive model and the balancing
circuit model, the maximum deviation between the idealized
process and the token process satisfies

max
i

' t
i x ti ! PT for all t

where P is the round matrix and PT its transpose.

Note that the deviation depends on ! PT rather than
on! P . However, PT bears a very simple relationship to P
itself: in particular, in the uniform diffusive model PT P
since P is symmetric; in the balancing circuit model, PT is
just the round matrix for the same elementary circuit with
the order of matchings reversed. Thus for simple networks
with a regular structure,! P and! PT are essentially the
same. Moreover, we shall give in Section 3.3 a general up-
per bound on ! PT in terms of P alone.
Combining this theorem with Theorem 1, which bounds

the rate of convergence of the idealized process, immedi-
ately yields:

Corollary 3 In both the diffusive model and the balancing
circuit model, O ! -smoothing of any initial vector with
discrepancy K is achieved within O log KN µ rounds,
where µ is the eigenvalue gap of (the symmetrization of) the
round matrix P, and ! ! PT .

The remainder of this subsection is devoted to a proof of
Theorem 2. We will give only the proof for the diffusive
model, which is notationally simpler. Recall that the source
of the deviation is the rounding that occurs on each edge
of the network in each round. The idea of the proof is to
introduce an explicit error term for every edge and every
round, and to track the overall contribution of these errors
over time. This edge-oriented view of errors is essential,
and ensures that individual errors do not interact with one
another.
Let us fix the initial load vector x 0 ' 0 , and let

x t ' t denote the load vectors after t rounds in the true
process and the idealized process respectively (so that ' t
' 0 Pt ). In the idealized process, the net load transmitted
from i to j in round t is just p i j' t 1

i p ji' t 1
j . In the

true diffusive process, however, the number of tokens trans-
mitted is rounded down to the nearest integer. Thus we can
write

x ti piix t 1
i "

j: i j E
p jix t 1

j e ti j (2)

where e ti j is the excess load allocated to i as a result
of rounding on edge i j in round t, i.e., if pi jx

t 1
i

p jix t 1
j then e ti j is the fractional part of pi jx t 1

i

p jix t 1
j , and e tji e ti j . Note that e

t
i j actually depends

on x 0 , but certainly e ti j 1 for all i j t.
Defining the vector e t by e ti " j: i j E e

t
i j , we obtain

from (2) the following iteration for x t : x t x t 1 P e t ;
thus, upon unwinding,

x t x 0 Pt
t 1

"
s 0

e t s Ps ' t
t 1

"
s 0

e t s Ps

This gives us an exact expression for the deviation x tl
' t
l at every node l and every round t. We now rewrite this
in a more convenient form:

x tl ' t
l

t 1

"
s 0
"
i
e t s
i Psil

t 1

"
s 0
"
i
"

j: i j E
e t s
i j Psil

t 1

"
s 0

"
i j E

e t s
i j Psil Psjl

where we have used the fact that e t s
i j e t s

ji to group
together pairs of terms associated with the two endpoints of
an edge.



3. Smoothing in general networks

We begin our investigation with the problem of coarse
balancing and show that, until a certain threshold discrep-
ancy is reached, the balancing process can be accurately
modeled using a Markov chain. This threshold depends
only on the network itself, not on the number of steps or
the number of tokens.

As explained in the Introduction, the idealized process
corresponding to a given load-balancing algorithm is a sim-
plified version of the algorithm in which tokens are not re-
quired to be discrete but can be arbitrarily subdivided. Thus
in the diffusive model, the net load transferred from i to
j is exactly pi jxi p jix j , and in a balancing circuit, when
processors i j balance locally their new loads will both be
exactly xi x j

2 .
Consider first the diffusive balancing process governed

by a matrix P. If ' t denotes the vector of processor loads
after t rounds of the idealized process, then ' t ' t 1 P
' 0 Pt . Now the matrix P, being stochastic, can be viewed
as the transition matrix of a Markov chain on the space
of processors 1 N . Since P is also assumed to be
ergodic,6 the vector ' t converges to a fixed limit $ regard-
less of the initial load distribution ' 0 . And since P is dou-
bly stochastic $ must be uniform, i.e., $i 1

N " j '
0
j .

Next consider the periodic balancing circuit model
whose elementary circuit consists of perfect matchings
M1 Md. The idealized process here is a similar iteration
' t ' t 1 P, with P defined as follows. For 1 k d,
define the matrix P k by P k

i j
1
2 if i j or i: j is an edge

of Mk, and P
k
i j 0 otherwise. Thus P k consists of N 2

disjoint 2 2 blocks, reflecting the effect of the balancers
in Mk. The matrix corresponding to a complete round of
the balancing process is therefore P ,r

k 1P k . Clearly
each P k is a doubly stochastic matrix, so P is also doubly
stochastic. Moreover, since the network is connected P is
also ergodic, and therefore converges to the uniform distri-
bution $.
Thus in bothmodels the idealized process corresponds to

an ergodic Markov chain with doubly stochastic transition
matrix P. In both cases, we refer to P as the round matrix.
Now by the standard theory of Markov chains, the rate

of convergence of P depends on its second largest (in mod-
ulus) eigenvalue (. If P is symmetric then the eigenvalues
are real, and the distance from the uniform vector $ decays
geometrically at rate 1 µ, where µ 1 ( is the eigen-
value gap. Specifically, ' t $ KN2 1 µ t , where

6This is equivalent to demanding that P is irreducible (i.e., every state
is reachable from every other) and aperiodic (for which it is enough to
have pii 0 for some i).

' t $ 1
2 "i '

t
i $i is the variation distance from $

and K D ' 0 is the initial discrepancy.
When P is not symmetric we can appeal to the theory de-

veloped more recently by Mihail [21] and Fill [14]: namely,
we can relate the rate of convergence of P to that of an asso-
ciated symmetric matrix P, called the symmetrization of P.
For ease of exposition we will take P PPT, where PT is
the transpose of P; other choices are possible (and may be
easier to work with in practice). Then one has [21, 14] that
' t $ KN2 1 µ t 2, where now µ is the eigenvalue
gap of P.
These results lead via some simple manipulations to the

following theorem:

Theorem 1 In the idealized process corresponding to the
diffusion model or the balancing circuit model with round
matrix P, the number of rounds t required for -smoothing
is bounded above by

t
2
µ
ln

KN2

where K is the initial discrepancy and µ is the eigenvalue
gap of (the symmetrization of) P.

We shall adopt the view that the quantity µ, which gov-
erns the rate of convergence of the idealized process, is easy
to compute (or at least estimate) analytically. This is cer-
tainly the case for networks with a uniform structure: it is
easy to see that µ & 1 N2 for the cycle, µ & 1 N2 r

for the r-dimensional torus, and µ & 1 logN 2 for
the de Bruijn network [11], for both the uniform diffu-
sive model and balancing circuits.7 We shall estimate the
rate of convergence of the actual load-balancing process by
bounding the difference between it and the idealized pro-
cess. Specifically, let ' t and x t be the vectors of token
loads after t rounds of the idealized process and the true
balancing process respectively, starting with common ini-
tial load ' 0 x 0 . Our aim is to bound the maximum
deviation at any processor, maxi ' t

i x ti , at all times t.
We shall bound the deviation in terms of a natural pa-

rameter of the round matrix, which we call the local di-
vergence ! P . Informally, this measures the sum of load
differences across all edges of the network, aggregated over
time (and suitably normalized).

7In the uniform diffusive model these values come from the spectra
of simple random walk on the respective graphs, which are well known.
The results can easily be carried over to balancing circuits (where P is
not symmetric) by comparing the corresponding symmetrized chains with
these random walks, using the techniques of [12]. We omit the details.



idealized process for both the diffusivemodel and balancing
circuits; this leads to our general upper bounds for smooth-
ing in both models. Section 4 presents tighter bounds for
smoothing on the cycle and the r-dimensional torus. Fi-
nally, in Section 5 we present our results on counting with
periodic circuits. Due to lack of space, several of our proofs
are abbreviated or deferred to the full version of the paper.

2. More on the models

In the load-balancing literature, the term “diffusion”
refers to any discretization of the iteration ' t 1 ' t P
where ' t is the load vector at time t and P is an ergodic,
doubly stochastic matrix (i.e., P is non-negative, irreducible
and aperiodic, and all its row and column sums are 1).
These conditions on P are necessary and sufficient to ensure
that ' t converges to the uniform load vector for any initial
vector ' 0 . Under this scheme, each processor i transmits
to its neighbor j a fraction pi j of its current load xi, so that
the net load transfer from i to j is pi jxi p jix j.
There are at least two natural ways to discretize this

scheme: one can round either the individual load transfers
pi jxi and p jix j , or the net load transfer pi jxi p jix j . We
follow [22] in choosing the second approach, leading to the
scheme defined in the Introduction. However, it should be
clear from Section 3 that our analysis is quite robust and
applies (with minor modifications) to any reasonable dis-
cretization.

A balancing circuit4 [4] is a collection of N wires, each
with an input terminal and an output terminal, connected in
pairs by a sequence of balancers. We refer to a balancer
connecting wires i and j with i j as an i: j -balancer. At
any given time, a balancer is in one of two states, or . A
token injected at the input terminal of some wire proceeds
through the circuit as follows. When the token arrives at an
i: j -balancer (on either wire i or wire j), it emerges from
the balancer along wire i if the state of the balancer is ,
and along wire j otherwise. At the same time, the state of
the balancer is toggled. Thus successive tokens arriving at
an i: j -balancer emerge alternately along the two wires i
and j. The parity of this switching process is controlled
by the initial state of the balancer; we assume that this is
given as part of the description of the circuit. It is a stan-
dard fact [4] that the order in which tokens pass through
the circuit does not affect the number of tokens output on
each wire. This means that we can view a balancing circuit
as transforming any input sequence x x1 xN into an

4In [4] the term balancing network is used. We use the term circuit to
avoid confusion with networks of processors.

output sequence y y1 yN , where xi yi count the num-
ber of tokens input and output respectively on wire i.
A periodic balancing circuit consists of multiple repeti-

tions of a fixed elementary circuit; each repetition is called
a round. The initial state of the balancers in every round
is assumed to be the same (i.e., we think of the state of
each balancer as being reset to its initial value at the be-
ginning of each round).5 We shall assume that the elemen-
tary circuits have a simple, natural structure. We formalize
this by requiring the balancers in the elementary circuit to
form a sequence of d disjoint perfect matchings of the wires
1 N , i.e., the elementary circuit consists of d levels,
each of which is a collection of N 2 independent balancers.
(It is not hard to generalize our results to allow non-perfect
or non-disjointmatchings. In fact, our results on coarse bal-
ancing can be adapted readily to handle general (uneven) di-
mension exchange schemes, and any reasonable discretiza-
tion of the idealized process.)
It should be clear that this model is equivalent to the di-

mension exchange model on a d-regular network of N pro-
cessors defined in the Introduction. The processors of the
network correspond to wires, and the edges to balancers;
edge i j is oriented towards i if the initial state of the
i: j -balancer is and towards j otherwise. The operation of
each level of balancers in the elementary circuit corresponds
precisely to the balancing scheme for each matching as de-
scribed in the Introduction: each pair of matched processors
balance their loads as far as possible, with the excess token
(if any) following the direction of the edge between them.

Example. Let N be even, N 4, and consider the two
matchings M1 2i 1 2i i 1 N 2 and M2
2i 2i 1 i 1 N 2 (where we interpret N 1

as 1). The initial state of all balancers is . The corre-
sponding network here is the cycle on 1 N (as shown
in Figure 2 for N 4), with the following balancing pro-
tocol: in each round, all odd-numbered processors first
balance with their clockwise neighbor (corresponding to
matchingM1) and then with their counter-clockwise neigh-
bor (matching M2). In every balancing step, excess tokens
go to the lower-numbered processor. The reader may find it
instructive to reverse-engineer the 2-dimensional torus net-
work of Figure 1 into an elementary balancing circuit.

5An interesting variant allows the initial states of all balancers to be set
randomly and independently after each round. We will discuss this variant
in the full version of the paper.



Our contributions. Our first contribution is to identify a
natural parameter of the idealized process P that precisely
characterizes the worst-case deviation for both the diffusive
model and the general dimension exchange model. (For
simplicity, we restrict our attention regarding the latter to
periodic balancing circuits.) This quantity, which we call
the local divergence !, measures the sum of load differ-
ences across all edges in the network, aggregated over time
(and suitably normalized). It appears moreover to be of in-
dependent interest, e.g., in the study of the transient behav-
ior of random walks on infinite graphs [3]. The key ingre-
dient in our analysis is an appropriate edge-oriented view
of the rounding errors in each balancing step, which allows
them to be handled independently.

Next we present a simple general upper bound on ! in
terms of µ 1 ( , where ( is the second largest eigen-
value (in modulus) of P (or, more correctly, of a natural
symmetrization of P). This immediately implies that both
algorithms O d logN µ -smooth any initial vector with
discrepancy K in O log KN µ rounds, where N is the
number of processors. This is a substantial tightening of
the earlier bound of [22] for diffusion, and appears to be the
first bound of its kind for periodic balancing circuits.

We go on to analyze ! in more detail for specific net-
works of interest, namely the cycle and the r-dimensional
square mesh. For the cycle we give a tight bound of !
& N for both uniform diffusion and balancing circuits; for
the mesh we give a tight bound of ! & rN1 r for uni-
form diffusion and for balancing circuits (this latter result
being derived using a general product construction applied
to the cycle). These results are much sharper than the gen-
eral eigenvalue bound above, which gives! O N2 logN
and ! O N2 r logN respectively. They immediately im-
ply O N -smoothing in O N 2 log KN rounds for the cy-
cle, and O rN1 r -smoothing in O N 2 r log KN rounds
for the r-dimensional mesh.

Our final contribution is a complementary result that ap-
plies only to balancing circuits. Any periodic balancing cir-
cuit satisfying a certain natural condition will, after suffi-
ciently many rounds, count its initial load vector (i.e., 1-
smooth and sort it). Using a novel reduction to sorting,
we show that any periodic balancing circuit satisfying the
condition counts any initial vector with discrepancy K in
O KN rounds. This is incomparable with the above re-
sults: although the number of rounds depends linearly onK,
the final vector is perfectly balanced. If we apply this result
to vectors that have already undergone the smoothing de-
scribed above, we obtain a much better bound on the num-
ber of rounds required for such a periodic circuit to count its
input. We find that the additional number of rounds needed
for counting is O dN logN µ in general, O N2 for the
cycle, and O rN1 1 r for the r-dimensional mesh.

Related work. The diffusive model has been widely stud-
ied both in theory and in practice (see, e.g., [9, 5, 22] and
the references given there). Cybenko [9], Bertsekas and
Tsitsiklis [5], and Boillat [6] pioneered the use of Markov
chains for analyzing diffusive load-balancing algorithms,
but did not require the tokens to be integral. This work
was extended by Subramanian and Scherson [23], who also
addressed the question of the integrality of the tokens but
did not quantify this effect. By analyzing the deviation be-
tween the idealized process and the token process, Muthukr-
ishnan, Ghosh and Schultz [22, Theorem 4] showed that
the diffusive model in general networks achieves O dN µ -
smoothing3 in O log KN µ rounds. Our general result
therefore gives an N

logN factor improvement in the smooth-
ing obtained. For specific networks, of course, our results
are even better.
Balancing circuits were introduced in the seminal pa-

per of Aspnes, Herlihy and Shavit [4], whose main focus
was universal counting circuits (i.e., fixed, non-periodic
balancing circuits that count an arbitrary input sequence).
Klugerman and Plaxton [18] proved the existence of univer-
sal counting circuits of depth O logN . All such construc-
tions inherently require N to be a power of two: Aharonson
and Attiya [1] showed that universal -smoothing circuits
do not exist for any N that is not a power of two and any

1. A matrix formulation of universal counting circuits
was given by Busch and Mavronicolas [8]. Periodic balanc-
ing circuits were analyzed in terms of a linear system by
Hosseini, Litow, Malkawi, McPherson and Vairavan [17].
These authors explicitly addressed the deviation between
the idealized process and the token process, but obtained
results that are much weaker than ours; in particular, the
amount of smoothing they achieved depends on the total
number of tokens (whereas ours depends only on the net-
work).
Finally, we note that the load-balancing algorithms stud-

ied in this paper allow an arbitrary number of tokens to tra-
verse an edge in one time step. There has been much work
on an alternative class of models in which only a single to-
ken may use an edge at any time. Notably, Ghosh, Leighton,
Maggs, Muthukrishnan, Plaxton, Rajaraman, Richa, Tarjan
and Zuckerman [15], improving upon previous results of
Aiello, Awerbuch, Maggs and Rao [2], present asymptoti-
cally tight bounds for load balancing in this alternative set-
ting using very different methods.

Organization of paper. In Section 2 we give a more for-
mal description of the two load-balancing models. In Sec-
tion 3 we introduce the local divergence ! and use it to
bound the error between the true balancing process and the

3Actually these authors measure discrepancy in terms of the L 2 norm,
rather than the L# norm as we do. The bound stated here is an adaptation
of their argument to the measure we use. Translating our result to their
measure gives an analogous improvement.



posed into a sequenceM1 Md of perfect matchings, and
also that the edges are oriented. Each balancing round con-
sists of d steps, one for each matching. In step k, each
pair i j of processors that are paired in matching Mk bal-
ance their loads as closely as possible: i.e., their loads be-
come xi x j

2 and xi x j
2 , with the excess token (if it ex-

ists) following the direction of the edge i j . (This is the
most commonly discussed version. In its full generality, di-
mension exchange allows an uneven balancing of the loads
on paired processors, analogous to non-uniform diffusion.)
Like the diffusive paradigm, this model is simple, fully dy-
namic and asynchronous. In contrast to the diffusive model,
which favors a multi-port architecture, the dimension ex-
change model is particularly suited to single-port architec-
tures. Moreover, both theoretical analysis and experimen-
tal evidence suggest that the resulting token distribution is
more finely balanced in the dimension exchange model. On
the other hand, in a multi-port setting, the diffusive model
seems to produce coarse balancing more rapidly. (See [24]
for a discussion of both models and for numerical evalua-
tions.)

Example. Figure 1 illustrates a two-dimensional torus
with N 16 nodes (i.e., the square mesh of side length 4
with wrap-around edges), and a decomposition of the torus
into four perfect matchings. In the uniform diffusive model,
in each round every processor transmits about one fifth of
its tokens to each of its neighbors. In the dimension ex-
change model, each round consists of four steps, one for
each matching. In such a step, each pair of matched pro-
cessors balance their tokens as evenly as possible. We
assume all edges are directed from higher-numbered to
lower-numbered processors, so that excess tokens follow
the snake-like ordering of nodes. (This choice of directions
is inessential for most of our analysis, but will play a role
when we discuss perfect balancing in Section 5.)

N
The problem. Define the discrepancy of a load vector x
xi as D x maxi j xi x j . For a given load-balancing
algorithm, our goal will be to determine the number of
rounds required to reduce the discrepancy to some speci-
fied value : we refer to this as -smoothing. Aside from
supplying analytic bounds on the performance of various al-
gorithms, fulfilling this goal may help in tuning a paradigm

to its best possible performance on a particular network (for
instance, by guiding the choice of the matrix P). Formally,

Definition 1 A load-balancingalgorithm -smooths an ini-
tial vector x (in T rounds) if the final vector y (after applying
T iterations of the algorithm) satisfies D y . It counts x
(in T rounds) if it 1-smooths x (in T rounds), and in addition
the final vector y is a sorted (non-increasing) sequence.

In general, the number of rounds required to -smooth an
initial vector x will depend on both and the discrepancy of
x, as well as on various parameters of the network itself.
It is easy to see that, if tokens were not integral but could

be arbitrarily subdivided, then both of the above paradigms
(and indeed several others) could be represented by a linear
iteration of the form

' t 1 ' t P (1)

where ' t is the vector of processor loads after t rounds and
P is a doubly stochastic matrix. In the diffusive model, P is
just the matrix that governs the balancing process. (Thus, in
the uniform case, P is simply the transition matrix of stan-
dard random walk on the network, with holding probabil-
ity 1

d 1 at each node.) For a periodic balancing circuit, P
is a product ,d

k 1P k , where the i j entry of P k is 1
2

if i j Mk or i j, and 0 otherwise. (Thus P k corre-
sponds to the balancing performed by the kth matching.) In
both cases, the iteration (1) is just a Markov chain which
converges to the uniform load vector;2 we shall refer to this
Markov chain as the idealized process. The idealized pro-
cess is relatively straightforward to analyze: we can appeal
to a battery of established analysis techniques for Markov
chains to determine the number of rounds required for -
smoothing.
The problem with this approach is that the vector ' t is

only an approximation to the true vector x t of processor
loads: the deviation is caused by rounding to whole tokens
at each local balancing step. As is well known, this nonlin-
earity makes load-balancing schemes hard to analyze in de-
tail.Most analyses ignore this difficulty and simply consider
the idealized process; unfortunately, however, the deviation
can be quite significant (see, e.g., [23]). In this paper we aim
to quantify the deviation between ' t and x t . This will al-
low us to effectively transfer the analysis of the idealized
process to the load-balancing algorithm. The question of
a precise quantitative relationship between Markov chains
and load-balancing algorithms has been posed by several
authors, notablyGhosh et al. [15], Lovász andWinkler [20],
Muthukrishnan et al. [22, 16], and Subramanian and Scher-
son [23], and seems to be of interest in its own right.

2Conventionally, a Markovchain operates on a probability distribution,
i.e., a non-negative vector of L1 norm 1. Throughout we will neglect to
normalize the vector of loads, so its L1 norm will be equal to the total
number of tokens in the network. This should not cause any confusion.
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Abstract

We develop a general technique for the quantitative anal-
ysis of iterative distributed load balancing schemes. We
illustrate the technique by studying two simple, intuitively
appealing models that are prevalent in the literature: the
diffusive paradigm, and periodic balancing circuits (or the
dimension exchange paradigm). It is well known that such
load balancing schemes can be roughly modeled by Markov
chains, but also that this approximation can be quite inac-
curate. Our main contribution is an effective way of char-
acterizing the deviation between the actual loads and the
distribution generated by a related Markov chain, in terms
of a natural quantity which we call the local divergence.
We apply this technique to obtain bounds on the number of
rounds required to achieve coarse balancing in general net-
works, cycles and meshes in these models. For balancing
circuits, we also present bounds for the stronger require-
ment of perfect balancing, or counting.

1. Introduction

Background. In the standard abstract formulation of load
balancing in a distributed network, processors are modeled
as the vertices of a graph and links between them as edges.
Each processor initially has a collection of unit-size jobs
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(which we call tokens). The object is to balance the num-
ber of tokens at each processor by transmitting tokens along
edges according to some local scheme. This problem has
obvious applications to job scheduling and other coordina-
tion tasks in parallel and distributed systems. It also arises
in the context of finite element computations, and in simu-
lations of physical phenomena.
In this paper we present a generic method for ana-

lyzing the performance of typical iterative load-balancing
schemes. We demonstrate the power of this method in the
analysis of two simple, popular schemes that have been
widely studied: the diffusive paradigm [9, 5, 6] and peri-
odic balancing circuits [4] (as well as the closely related
dimension exchange paradigm [9, 17]). For simplicity we
will assume that the network is regular of degree d, though
our results can be generalized easily to arbitrary networks.
In the diffusive paradigm, the balancing process is gov-

erned by an ergodic, doubly stochastic matrix P pi j ,
with pi j 0 if i and j are not adjacent. In one round each
pair i j of adjacent processors with current loads xi x j shifts
tokens between i and j. Assuming, without loss of general-
ity, that pi jxi p jix j, the pair shifts pi jxi p jix j tokens
from i to j. (This is just a discretization of the familiar
diffusion in which i sends a fraction pi j of its current load
to j. See Section 2 for further discussion of the model and
some of its variants.) A standard choice for P is uniform
diffusion, in which pi j 1

d 1 for each adjacent pair i j, and
pii 1

d 1 .
1 Under this scheme each processor simply aver-

ages the loads of its neighbors at each step. The diffusive
model is popular due both to its simplicity and to its ap-
pealing performance in practice, even in dynamic and asyn-
chronous settings.
A (periodic) balancing circuit is composed of a sequence

of wires connected in pairs by simple toggling devices
called balancers. Its purpose is to balance the flow of to-
kens along the wires (see Section 2 for details). This model
is equivalent to the following load-balancing paradigm, of-
ten called dimension exchange (reflecting its seminal appli-
cation to hypercubes). Assume that the network is decom-

1Making pii non-zero is a simple device to avoid periodicity problems.


