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Abstract

In the minimum path coloring problem, we are given
a list of pairs of vertices of a graph. We are asked
to connect each pair by a colored path. Paths of the
same color must be edge disjoint. Our objective is to
minimize the number of colors used. This problem was
raised by Aggarwal et al [1] and Raghavan and Up-
fal [22] as a model for routing in all-optical networks.
It is also related to questions in circuit routing.

In this paper, we improve the O(lnN) approxima-
tion result of Kleinberg and Tardos [14] for path color-
ing on the N ×N mesh. We give an O(1) approxima-
tion algorithm to the number of colors needed, and a
poly(ln lnN) approximation algorithm to the choice of
paths and colors. To the best of our knowledge, these
are the first sub-logarithmic bounds for any network
other than trees, rings, or trees of rings. Our results
are based on developing new techniques for random-
ized rounding. These techniques iteratively improve a
fractional solution until it approaches integrality. They
are motivated by the method used by Leighton, Maggs,
and Rao [18] for packet routing.

1 Introduction

The problem. An instance of the minimum path col-
oring problem (MPCP) in a graph G is specified by
listing pairs of vertices of G, (s1, t1), (s2, t2), . . .,
(sn, tn). A solution to this instance specifies n paths,
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path i connecting si and ti, and a color for each path.
The assigned paths and colors must satisfy the condi-
tion that paths of the same color are edge disjoint. The
objective function in the optimization version of the
problem is to minimize the number of colors used. A
trivial reduction from the disjoint paths problem shows
that MPCP is NP-hard, even for the special case of the
mesh (see [19] regarding the complexity of the disjoint
paths problem on the mesh).

This problem has obvious application to circuit rout-
ing and optical routing. Consider a communication net-
work, modeled as the graph G, where the pairs si, ti

denote requests for connection between the source si

and the target ti. The network might interconnect
the processors of a parallel supercomputer, or provide
telecommunication services, such as video on demand.

In an all-optical network, the source transmits a light
signal at a certain frequency, which the target is tuned
to. Optical switches are used to set the path for this sig-
nal. Proposed switches do not modify the wavelength
of the transmission (see [1, 22]). Wavelength division
multiplexing (WDM) is used to enhance the capacity
of the network. By WDM, many signals can be carried
simultaneously along a link, as long as they do not use
the same wavelength. In this case, MPCP is equivalent
to the problem of minimizing the number of different
wavelengths required to transmit a batch of requests.

In a circuit routed network, a circuit (path) has to
be reserved connecting the source to the target. In this
case, MPCP is equivalent to the problem of minimiz-
ing the number of rounds of communication needed to
process all communication requests.

Results and methods. We consider the minimum
path coloring problem on the two dimensional mesh.



(Our results can be extended to handle some mesh-like
networks, such as the hex. Due to lack of space, we
do not present these extensions here.) We formalize
MPCP as a sequence of natural integer linear programs.
We then show that the solutions to their LP relaxations
provides a constant factor approximation to the num-
ber of colors needed. The integrality gap is established
via a complicated randomized rounding procedure. We
round the fractional solution iteratively. Each itera-
tion has a double purpose. It gets us closer to an inte-
gral solution, and in doing so reduces the dependencies
among bad events in the randomized rounding sample
space. These dependencies prevent us from reaching
an integral solution at a single rounding step. Given a
B−1-integral solution, the iteration produces a ln−3 B-
integral solution. After a small number of iterations,
the solution is near-integral, and we can convert it into
an integral solution without much loss in the number
of colors. This gives a polynomial time constant factor
approximation to the number of colors needed.

The basic step in an iteration uses the Lovász Local
Lemma [11]. The choice of paths and colors is there-
fore non-constructive. Unfortunately, algorithmic ver-
sions of the Local Lemma [10, 2, 17] do not seem to
apply to our results, primarily because of our use of
the asymmetric version of the Local Lemma (see [3]).
Nevertheless, we are able to modify our arguments to
get a weaker guarantee, which has an algorithmic im-
plementation. We present a poly(ln lnN) approxima-
tion algorithm to MPCP on the N ×N mesh. This im-
proves over the previously best bound of O(lnN) (see
below). We note that our techniques are equally use-
ful in approximating the maximum disjoint paths prob-
lem (MDPP) on the mesh, though the results obtained
are inferior to those of Kleinberg and Tardos in [15].
We further note that while the hidden constants in our
bounds are huge, previous results suffer from the same
problem. We make no attempt to optimize these con-
stants.

Previous work. The minimum path coloring prob-
lem drew attention in the context of recent theoretical
work on optical routing. Aggarwal et al [1] followed
by Raghavan and Upfal [22] examine suggested opti-

cal switches and the routing models they imply. The
latter give, among other results, constant approxima-
tion algorithms to MPCP in trees, rings, and trees of
rings.

MPCP has close connection to MDPP. As observed
in [5], an MDPP approximation algorithm can be used
to obtain an MPCP approximation algorithm, with a
logarithmic factor loss in the performance guarantee.
There are excellent approximations to MDPP in net-
works with edge capacities in Ω(log |E|) (or, in other
words, where there are Ω(log |E|) parallel copies of
each edge), using Raghavan and Thompson’s random-
ized rounding technique [21, 20]. In fact, assuming
the large number of parallel edges, MPCP can be ap-
proximated with similar guarantees on any graph, using
randomized rounding. Good on-line approximations to
MDPP assuming large capacities are also known [6]
(see also [4]). However, in many applications to circuit
routing, the assumption that edge capacities are large is
false (see [8]). Similarly, the assumption of numerous
parallel edges is unrealistic for optical network topolo-
gies.

Despite considerable attention to MDPP (see the col-
lection edited by Korte et al [16]), only recently has
there been some work on approximation algorithms to
it. Earlier work centered mainly on identifying poly-
nomial time solvable cases. Garg, Vazirani, and Yan-
nakakis [12] were apparently the first to consider ap-
proximation algorithms for the problem. They give a
2-approximation to MDPP in trees with arbitrary ca-
pacities. This gives an O(log |V |) approximation to
MPCP in a slightly more general setting than the con-
stant approximation of [22]. On-line approximation al-
gorithms for trees with logarithmic factor guarantees
are also known [7, 8].

On the mesh, Awerbuch et al [8] present an on-line
O(lnN ln lnN) approximation algorithm to MDPP.
Kleinberg and Tardos [14], and independently Aumann
and Rabani [5] give an (off-line) O(lnN) approxima-
tion to MDPP on the mesh. The former extend this
result to a class of mesh-like planar graphs. They also
show that their methods give a similar approximation
guarantee to MPCP, without the loss of the extra log-



arithmic factor. In a sequel paper, Kleinberg and Tar-
dos [15] give a constant approximation, and an on-line
O(lnN) approximation, to MDPP on the mesh and
a (different) class of mesh-like graphs. This implies
another O(lnN) approximation algorithm to MPCP.
Their result, too, involves embedding a simulated net-
work. We note that their embedding is insufficient
for our purposes, because it cannot efficiently cover
more than a constant fraction of the terminals. Very
recently, Bartal and Leonardi [9] have announced an
on-line O(lnN) approximation algorithm to MPCP on
the mesh.

Our iterative rounding procedure is mathematically
similar to, and is motivated by the argument given by
Leighton, Maggs, and Rao [18] for packet routing in
O(congestion + dilation). Viewed as an optimization
problem, their procedure iterates through non-feasible
integral solutions and gradually approaches feasibility.
Our approach, which requires overcoming some addi-
tional technical difficulties, is to maintain feasibility
and gradually reach integrality.

Srinivasan [23, 24] recently used correlation analy-
sis, as well as some extensions to the Local Lemma, to
improve approximation results to sparse packing and
covering integer programs.

2 Preliminaries

Let MN denote the N ×N mesh. We denote its nodes
by integer pairs (i, j), where 0 ≤ i < N , 0 ≤ j < N ,
and (0, 0) denotes the lower left corner. A λ-tile is a
subset of MN {(i, j) | x ≤ i < x + λ and y ≤ j <

y + λ}, for some integer pair (x, y). The pair (x, y) is
the location of the tile. Notice that this definition makes
sense even if (x, y) is outside the range of pairs that are
nodes of MN . A µ-neighborhood of a λ-tile τ located
at (x, y) is the (λ + 2µ)-tile located at (x− µ, y − µ).
The λ-partition of MN is the collection of disjoint λ-
tiles, including the one located at (0, 0), which covers
the nodes of MN .

We begin by observing that MPCP on MN can be ap-
proximated by considering the same problem on a sim-

pler network. Let GN be the following network: Take
a λ-partition of MN . We shall fix λ = λ(N) later on.
(For simplicity, we ignore the issue of N ’s divisibility
by λ.) For each tile in the partition, GN contains a rep-
resentative node adjacent to the representatives of ad-
jacent tiles. Each edge between two adjacent represen-
tatives has capacity λ. In addition to these nodes, GN

contains all the nodes of the original mesh. (We refer
to these as leaves.) The edges of the original mesh are
maintained within each λ-tile. Additional edges con-
nect the boundary nodes of each tile to the representa-
tive of that tile. Notice that we are interested in MPCP
instances on GN where the terminals are restricted to
leaves only. Thus, when we speak of MPCP on GN ,
we implicitly assume this restriction to the problem.

Lemma 1. Let α, c be constants. Let A be a poly-
nomial time MPCP algorithm, which is an f(N)-
approximation algorithm to instances where each pair
of terminals is at least α lnc N apart (for all N ).
Then, there is an O(f(N))-approximation algorithm to
MPCP.

Proof Sketch. Call connections whose terminals are
at least α lnc N apart long, and the other connections
short. We use separate sets of colors for the long and
short connections. We route the long connections us-
ing A. For the short connections, we use the fact that
there is a fixed number of collections of β lnc N -tiles
(β > α a constant), such that (i) for every short con-
nection, both terminals are contained in a single tile in
at least one of the collections; and (ii) the 3β lnc N -
neighborhoods of the tiles in a collection are all dis-
joint. These collections induce a partition of the short
connections into classes. Each class contains the con-
nections whose terminals are contained in a single tile
of the corresponding collection. (If a connection fits
into more than one collection, pick one arbitrarily.) We
use a separate set of colors for each class of short con-
nections. In each class, every β lnc N -tile is routed
separately within its 3β lnc N -neighborhood. (Colors
are reused for each tile.) A simple argument shows
that we do not increase the number of colors needed to
route the connections in a tile by restricting the routes
to its neighborhood. Routing the connections in each
tile is done by calling A recursively. Notice that one



level of recursion is enough. The next level has to deal
with poly(ln lnN)-tiles, and there the problem can be
solved by exhaustive search.

Lemma 2. Consider a ρ-partition of MN . Given an
MPCP instance on MN , consider solutions satisfying
the following additional constraint: For each color c,
for each tile τ in the partition, at most one path colored
c leaves τ . Then the optimal solution with this addi-
tional constraint is within a factor of O(ρ) of the op-
timal solution without this constraint. The same holds
for GN , where we take the ρ-partitions of each of the
λ-tiles.

Proof. Given a feasible solution to MPCP on MN ,
we convert it to a feasible solution satisfying the addi-
tional constraint as follows: For each color c, consider
the graph whose nodes are the paths colored c with two
paths adjacent iff they leave the same ρ-tile. The max-
imum degree of a node in this graph is bounded by
8ρ− 2, so its chromatic number is at most 8ρ− 1. So,
by replacing each color in the original solution by at
most 8ρ − 1 distinct colors (according to the coloring
of the nodes of the constructed graph), we impose the
additional constraint.

For any α, we relate the leaves of GN to the tiles of
the α-partition of MαN in the obvious way.

Lemma 3. Consider any set of edge-disjoint paths in
GN connecting leaves. Assume that any leaf is a ter-
minal of at most one path. Further assume that for any
path, its two terminals are located in two λ-tiles whose
representatives are at distance at least two apart. Con-
sider the tiles in the α-partition of MαN which cor-
respond to terminals. Suppose that α is a sufficiently
large constant. Then, we can choose any single node in
each such tile, so that the collection of pairs of nodes
in pairs of tiles that correspond to pairs of terminals
connected in GN can all be connected by edge-disjoint
paths in MαN .

Proof Sketch. Choose the nodes in the α-tiles that
correspond to terminals. GN is simulated as follows.
Its leaves are simulated by the tiles in the α-partition of
MαN , and its representatives are simulated by the tiles
in the αλ-partition of MαN .

Firstly, Consider the representatives. The capacity
of the connection between an αλ-tile and a neighbor-
ing tile is more than sufficient. We pick one connect-
ing edge for each boundary α-tile. In order to simulate
the passing of paths through the representative, we em-
bed in each αλ-tile

(
4
2

)
λ× λ crossbars connecting the

boundary α-tiles of one side of the larger tile to the
boundary tiles of another side, for each pair of sides.
We refer to the network composed of all these cross-
bars plus the edges chosen to connect between αλ-tiles
as the high-capacity network.

Secondly, we embed in each αλ-tile an Mλ mesh.
We refer to these meshes as the escape networks.
Thirdly, we embed in each αλ-tile 42 λ × λ crossbars
connecting the boundary α-tiles for pairs of sides (in-
cluding connections from a side to itself). We refer to
these crossbars as the redirection networks. If α is suf-
ficiently large, then the edges of these networks can all
be embedded as mutually edge-disjoint paths, and fur-
thermore, none of the networks block the chosen termi-
nal nodes.

The connections are routed as follows. Each termi-
nal is connected to the escape network node in its α-
tile. Then, the path connecting the corresponding ter-
minals in GN is simulated in MαN using the embed-
ded networks as follows. Consider the path in GN . We
partition it into two parts. The first part is the two por-
tions of the path connecting the terminals to the bound-
aries of their respective λ-tiles. The second part is the
portion of the path connecting the representatives of
these λ-tiles. The first part is simulated by following
the same paths on the escape networks. The second
part is simulated by following the same path on the
high-capacity network. Passing through representative
nodes is simulated by using the crossbar structures of
this network. The redirection networks are used to con-
nect the portions of the paths in the escape networks to
the portion of the path in the high-capacity network.

Theorem 4. For some constant α, given an f(N)-
approximation algorithm for MPCP on GN , one can
construct an O(f(N))-approximation algorithm for
MPCP on MαN .

Proof Sketch. Let c be a constant. Fix λ = lnc N .



Thus, GN is now completely defined. We map an
instance of MPCP on MαN to an instance of MPCP
on GN as follows. A terminal in MαN is mapped to
the leaf corresponding to the tile containing the ter-
minal in the α-partition of MαN . By Lemma 1, it
is sufficient to consider instances where the requested
pairs of terminals are at distance more than 2αλ apart.
We use the f(N)-approximation algorithm on GN .
By Lemma 2, we can convert the solution into an
O(f(N))-approximation to the same problem with the
additional constraint that a leaf is a terminal of at most
one path in each color. In the resulting solution, each
color class satisfies the conditions of Lemma 3, so
the paths can be simulated on MαN . Thus we get an
O(f(N))-approximation to the original problem, with
the added constraint that each tile in the α-partition of
MαN contains at most one terminal in each color. Us-
ing Lemma 2 again, we conclude that this is also an
O(f(N))-approximation to the original problem with-
out the added constraint, albeit with a larger hidden
constant.

3 Approximating the Number of
Colors

For any integer c, consider the directed graph G(c) de-
rived from G as follows. The nodes of G(c) are c + 2
copies of the nodes of G. The copies are numbered 0
through c + 1. If v is a node of G, we denote by vj

its jth copy in G(c). Each of the copies 1 through c

induces a graph isomorphic to G (where an undirected
edge is interpreted as being usable in either direction).
Each vertex in copy 0 has an edge directed to each of
the corresponding vertices in copies 1 through c. Also,
each vertex in copy c + 1 has an edge directed from
each of the corresponding vertices in copies 1 through
c.

We map an instance of MPCP in G into an instance
of integral multicommodity flow in G(c) in the obvious
way. A pair (si, ti) in the original input is replaced by
a pair (s0

i , t
c+1
i ).

Now, suppose that there is a feasible solution to

MPCP with c colors. Then, the corresponding inte-
gral multiflow instance in G(c) is feasible. Since the
optimal c ranges between 1 and n, we can use a deci-
sion procedure for integral multiflow in an exhaustive
search (or even binary search) algorithm to find the op-
timal solution to MPCP. Unfortunately, feasibility of
integral multiflow is NP-complete.

Formally, the integral multiflow feasibility problem
can be expressed as the following (exponential size)
integer linear program, denoted (IP [c]):

minimize γ subject to∑
j,k f i

j,k ≥ 1 ∀i ∈ {1, 2, . . . , n};∑
i,j f i

j,kqi
j(e) ≤ γc(e) ∀k,∀e ∈ E(G);

f i
j,k ∈ {0, 1} ∀i, j, k;

where j enumerates the possible paths in G for com-
modity i, and qi

j denotes the characteristic function of
the jth path of commodity i. The integral multiflow
problem is feasible iff there is a solution to (IP [c]) with
γ ≤ 1.

We relax the last set of conditions to f i
j,k ∈ [0, 1],

obtaining a linear program, which we denote (LP [c]).
Clearly, if the optimal solution to (IP [c]) is ≤ 1, then
so is the optimal solution to (LP [c]). Moreover, finding
the optimal solution to (LP [c]) can be done in polyno-
mial time. (See section 4 below.) Let γ∗IP [c] denote the
optimal solution to (IP [c]), and let γ∗LP [c] denote the
optimal solution to (LP [c]). We show the following
theorem:

Theorem 5. Let G = GN . If γ∗LP [c] ≤ 1, then there
exists a constant α such that γ∗IP [αc] ≤ 1.

Before turning to the proof of Theorem 5, we in-
troduce some notation. Define G = GN by taking
λ = ln2 N . Fix c, and let {γ, f} be a solution to
(LP [c]) with γ ≤ 1. Let γ(f) denote an upper bound
on the capacity utilization for edges connecting repre-
sentatives, and let γ̂`(f) denote an upper bound on the
maximum over all rectangles with boundary capacity
at least ` contained in any single ln2 N × ln2 N tile,
over all colors, of the amount of flow of that color leav-
ing the rectangle divided by the total capacity of edges
leaving the rectangle.



We shall need the following lemmas:

Lemma 6. Let a, b, B0 be sufficiently large con-
stants1. Let ` ≥ 1 be an integer. Let B ≥ B0,
let γ ≥ a ln−1 N ln−1 B, and let γ̂ ≥ b`−1 ln−1 B.
Given a B−1-integral solution {γ, f} to (LP [c]) with
γ(f) = γ and γ̂`(f) = γ̂, there exists a ln−3 B-integral
solution {γ′, f ′} to (LP [c]) with γ(f ′) ≤ (1+ε)2γ and
γ̂`(f ′) ≤ (1 + ε)2γ̂, where ε = 1/

√
lnB.

Proof Sketch. Consider the following randomized
rounding procedure: select path qi

j and color k with
probability f i

j,k(1 + ε) ln3 B, and assign to it a new

flow f
i

j,k = ln−3 B, independently for all i, j, k. This
defines a probability space over ln−3 B-integral (not
necessarily feasible) flows. We shall show that there
is a point in this probability space that is both feasible
and within the claimed capacity utilization bounds. In
proving this we use the following version of the Local
Lemma:

Lemma 7 (Lovász Local Lemma). Let A1, A2, . . .,
An be events in some probability space. Let G =
(V,E) be the dependency graph among these events.
Let x1, x2, . . ., xn be reals such that for all i =
1, 2, . . . , n, 0 ≤ xi < 1, and

Pr[Ai] ≤ xi

∏
(i,j)∈E

(1− xj).

Then,

Pr

[
n∧

i=1

Ai

]
≥

n∏
i=1

(1− xi).

Let Fi denote the event that less than ln3 B flow
paths were picked for commodity i (and therefore the
resulting solution is non-feasible). For a ln2 N edge e,
let Ae,k denote the event that the total flow of color k

over e is more than (1+ ε)2γ ln2 N after rounding. For
a rectangle Q with boundary capacity ≥ ` contained
in a ln2 N × ln2 N square, let EQ,k denote the event
that the total flow of color k out of Q is more than
(1 + ε)2γ̂∇Q, where ∇Q denotes the total capacity of
the edges leaving Q.

1Their value is implicit in the proof.

Using Chernoff bounds, we have:

Pr[Fi] < e−
ε2

2(1+ε) ln3 B = e− ln2 B/2(1+ε); (1)

Pr[Ae,k] <

(
eε

(1 + ε)(1+ε)

)γ ln2 N ln3 B

; (2)

Pr[EQ,k] <

(
eε

(1 + ε)(1+ε)

)γ̂∇Q ln3 B

. (3)

The dependencies among the various types of events
are summarized as follows. An event Fi depends on
≤ B · 4N2

ln4 N
events Ae,k, and, for every value of ∇Q,

on ≤ 2(∇Q)3 · B events EQ,k. It is independent of
all other events Fj . An event Ae,k depends on ≤ B ·
γ ln2 N events Fi, on ≤ 4N2

ln4 N
events Ae′,k, and, for

every value of ∇Q, on ≤ 2(∇Q)3 · B · γ ln2 N events
EQ,k. An event EQ,k depends on≤ B ·γ̂∇Q events Fi,
on ≤ 4N2

ln4 N
events Ae,k, and, for every value of ∇Q′,

on ≤ 2(∇Q′)3 ·B · γ̂∇Q events EQ′,k.

We define for all i, xFi = xF = B−2; for all e, k,
xAe,k

= xA = B−1N−2; for all Q, k, xEQ,k
= xQ =

B−2e−∇Q.

Using elementary estimates, it is a simple matter
to verify that the conditions for applying the Local
Lemma hold. We demonstrate this for the events Fi:

xF (1− xA)
4BN2

ln4 N

4 ln2 N∏
∇Q=`

(1− xQ)2(∇Q)3B

≥ B−2 · e−5/ ln4 N
4 ln2 N∏

i=1

e−(3i3/Bei) (4)

= B−2 · e−5/ ln4 N · e−3/B
4 ln2 N∑

i=1

i3/ei (5)

≥ B−2 ·
(

1− 5
ln4 N

)
·
(

1− 18
B

)
(6)

≥ B− ln B
2(1+ε) (7)

≥ Pr[Fi], (8)

where Inequality 4 follows from (1− x−1)x−1 ≥ e−1,
and Inequality 6 follows from e−x ≥ 1 − x and 6 ≥∑∞

i=1 i3/ei.

Similar calculations hold for the events Ae,k and
EQ,k. Thus, we can apply the Lovász Local Lemma
and conclude that there is a point in the sample space



of the above randomized rounding procedure at which
none of the Fi’s, Ae,k’s, EQ,k’s occur.

Lemma 8. Given a B−1-integral solution {γ, f} to
(LP [c]), one can find in polynomial time a B−1-
integral solution {γ′, f ′} to (LP [c]) with γ′ ≤
max{γ(f), γ̂1(f)}.

Proof Sketch. We can convert {γ, f} into {γ′, f ′} by
solving the escape problem for the terminals in each
ln2 N × ln2 N colored tile. This is an s–t flow prob-
lem, and the cut conditions are satisfied, taking the edge
capacities to be γ̂1(f). Routing among the representa-
tives is done as in {γ, f}.

Proof of Theorem 5. Let c be such that γ∗LP [c] ≤ 1.
Let B0 be a constant. We convert the optimal solu-
tion {γ∗, f∗} to (LP [c]) into a feasible solution {γ, f}
to (LP [4B0c]) satisfying the following conditions: (i)
γ∗LP [c] ≤ 1

2B0
; (ii) All flow paths carry the same

amount of flow f0 ≥ 2−NO(1)
. The bound on f0 fol-

lows from the fact that {γ, f} is computed in poly-
nomial time. To meet the other conditions, execute
the following procedure: Duplicate each color and the
paths that use it 4B0 times, giving each flow path a
fraction of (4B0)−1 of its original flow. Now, divide
each flow path into as many identical paths as needed,
so that all paths have flow within a factor of 2 of each
other. Finally, assign to all paths the largest flow of a
path (which is at most twice what they had before).

Now, we repeatedly apply Lemma 6 with ` = 1.
We begin with B = f−1

0 and get a ln−3 B-integral
flow. Applying the lemma to this flow, we get a
(3 ln lnB)−3-integral flow. We can repeat applying the
lemma as long as the value B satisfies: B ≥ ea/γ̂ =
e2aB0 . This takes O(log∗N) iterations.

At this point, for each rectangle Q with boundary
capacity B0, for each color k, there are at most e2aB0

fractional paths of color k that leave Q (see below the
analysis that bounds the increase in γ̂). By duplicating
each color a (large) constant number of times, we can
partition the paths among the duplicates so that at most
a single path leaves each such rectangle Q.

We now proceed applying Lemma 6 with ` = B0.
After O(1) iterations we end up with a (B0)−1-integral

solution. (B0 is chosen large enough so that this is pos-
sible). Our initial flow {γ, f} has γ(f) and γ̂B0(f) at
most (2B0)−1. Through all the O(log∗N) iterations
these values increase by a factor of at most

t∏
i=1

(
1 +

1√
lnBi

)2

,

where the Bis are given by the recurrence Bi =
e

3
√

Bi−1 , and t = O(log∗N). For a sufficiently large
choice of B0, this product is at most 2. Therefore, in the
resulting (B0)−1-integral solution {γ′, f ′}, both γ(f ′),
γ̂B0(f

′) are at most (B0)−1 (and the conditions regard-
ing γ, γ̂ in Lemma 6 are satisfied for all iterations). We
now pick for each commodity a single path among the
B0 possible paths and give it weight 1. Let’s denote the
resulting solution by {γ′′, f ′′}. Obviously, γ(f ′′) ≤ 1
and γ̂B0(f

′′) ≤ 1. Since we are assuming that there
is at most one terminal in each rectangle with bound-
ary capacity B0 or less, it is also true that γ̂1(f ′′) ≤ 1.
By Corollary 8 there is an integral solution {γint, fint}
such that γint ≤ 1.

4 Constructing the Paths

There are two non-algorithmic arguments in the above
proof. Firstly, we may begin with a collection of
paths of exponential size (since the path with least
flow may carry an exponentially small amount of flow).
This is easily amended by using, instead of a linear
programming algorithm, an approximation scheme for
multicommodity flow based on Lagrangian relaxations
(e.g. [13], which can be used since we have small inte-
gral capacities). We are guaranteed to get a near opti-
mal solution (sufficient for our purposes) with a poly-
nomial number of flow paths carrying the same amount
of flow each.

Secondly, the use of the Local Lemma in the proof
of Lemma 6 is non-algorithmic. Beck [10] proposed an
algorithmic version of the Local Lemma that works in
certain cases. His ideas do not seem to work here due
to the complicated structure of the dependency graph,
which has events of varying degrees and probabilities.
Nevertheless, we are able to apply Beck’s results to-



gether with some additional ideas to obtain a weaker
algorithmic result (for simplicity, we deal with the case
where the number of connections n is bounded by a
polynomial in N ):

Theorem 9. There is a poly(log log N) approxima-
tion algorithm for MPCP on the mesh.

Proof Sketch. The algorithm is similar to the proce-
dure described in the proof of Theorem 5. We show
here how to implement a single iteration of the round-
ing procedure, and point out the places where this pro-
cedure has to be modified significantly.

In what follows, c1, c2, c3, c4, c6, c8, c9, c10, c11, and
c12 are constants.

Notice that there is nothing magical about the choice
of ln2 N as the λ that defines GN . In fact, even a
smaller λ can be used in the previous argument. For
the algorithm we need to use larger lnc1 N -tiles, for c1

sufficiently large. Further notice that we may assume
that initially B ≤ c2 lnN , for c2 sufficiently large. If B

is larger, then randomized rounding to a (c2 lnN)−1-
integral solution succeeds with high probability, so we
do not need to use the Local Lemma.

The algorithm we suggest for a single rounding itera-
tion proceeds in several phases. The purpose of the first
phase is to eliminate large degree nodes from the de-
pendency graph. Then come phases which partition the
dependency graph into smaller connected components.
Finally, the last phase solves the remaining problem in
each (small) connected component.

A path is either undecided, or chosen, or removed,
or passed. Initially, all paths are undecided. During a
phase we examine the undecided paths one at a time.
We change the status of each undecided path to one of
the other three categories. At the end of a phase, we
examine each commodity. If we chose too few paths
of commodity i, then we change the status of all the
paths of commodity i to passed. To start a new phase,
all passed paths become undecided.

We first discuss the case that an undecided path is
passed during phase I. Let m be the number of paths
of color k using the edge e that have been consid-
ered so far. The pair (e, k) is critical iff at least

m
B (1 + ε) ln3 B + εγ lnc1 N ln3 B of these paths have
been chosen. Notice that the first term is simply the
expectation. Let Ae,k denote the event that (e, k) be-
comes critical at some point.

Let m be the number of paths of color k that have
a terminal in rectangle Q that have been considered
so far. The pair (Q, k) is critical iff at least m

B (1 +
ε) ln3 B + εγ̂∇Q ln3 B of these paths have been cho-
sen. Again, the first term is the expectation. Let EQ,k

denote the event that (Q, k) becomes critical at some
point.

A path is passed if when we consider it, the path par-
ticipates in a critical event. If a path is not passed,
it is chosen with probability B−1(1 + ε) ln3 B, and
otherwise it is removed. Using Chernoff bounds
and some elementary estimates, we get Pr[Ae,k] ≤
e−

1
4 γ lnc1 N ln3 B , and Pr[EQ,k] ≤ e−

1
4 γ̂∇Q ln2 B .

To complete phase I, we check all commodities. If
less than ln3 B paths have been chosen of commodity i,
then all paths of that commodity become passed. Oth-
erwise, all the paths of commodity i that have not been
chosen become removed. Let Fi denote the event that
none of the paths of commodity i were passed initially,
but that fewer than ln3 B of them were chosen (and
therefore they were all eventually passed). Clearly,
Pr[Fi] < e− ln2 B/2(1+ε).

The purpose of phase I is to eliminate the pairs (e, k)
from further consideration. We show that w.h.p. no
lnc1 N capacity edge carries more than γ lnc1 N passed
paths. Even if all these paths are turned into ln−3 B-
integral paths, the added congestion will be negligible.
Therefore, in the following phases we may ignore the
edges (e, k).

We say that a path failed if one of the paths of its
commodity i participated in a critical pair, or if Fi oc-
cured. Let fe,k denote the number of failed paths that
use (e, k). Clearly, the number of passed paths that
use (e, k) is bounded by fe,k. We estimate Pr[fe,k >

γ lnc1 N ] as follows. Summing over all events that
may cause a path to fail, we get that its failure prob-
ability is at most B−c3 , where c3 can be made arbi-
trarily large by taking B0 arbitrarily large. The events



that paths fail are not independent. However, w.h.p.
only the pairs (Q, k), ∇Q ≤ c4 lnN have a chance
of becoming critical. The probability that other pairs
become critical can be made smaller than any poly-
nomial in N by taking a large enough c4. Therefore,
each path is independent of all but at most � lnc6 N

other paths (recall that B ≤ c2 lnN .) We use Chernoff-
like bounds for events with limited dependency to get
Pr[fe,k > γ lnc1 N ] � N−c8 . (c1 must be larger than
c6.)

Phase I succeeds if none of the edges (e, k) carries
more than γ lnc1 N passed paths. The above analysis
shows that phase I succeeds w.h.p. (If it fails, we redo
it.) In phase II, we handle paths that were passed from
phase I. The phase is identical to phase I, except that
we do not check the pairs (e, k). The probability that
a pair becomes critical is estimated as above. Let fQ,k

denote the number of failed paths with an endpoint in
(Q, k). We want to estimate Pr[fQ,k > γ̂∇Q]. We
consider two cases:
Case 1: ∇Q ≤ Bc9 , for a constant c9 < c3 − 1.
By summing up the failure probabilities of each of the
paths leaving Q, we get that the desired probability is
bounded by B−c10 , where c10 depends on c3 − c9.
Case 2: ∇Q > Bc9 . We analyze the contribution
of each rectangle size separately, as well as that of
the events Fi. Summing up these estimates gives
Pr[fQ,k > γ̂∇Q] < exp(−(∇Q)δ), where δ = 1/c9.

For B = c2 lnN , the above analysis shows that the
probability that a pair (Q, k) needs to be considered
after phase II is at most ln−c10 N , where c10 is deter-
mined by c3. The maximum degree of a pair in the
dependency graph is lnc11 N , where c11 is determined
by c1. (Notice that the survivals of two pairs are in-
dependent if their distance in the original dependency
graph of Lemma 6 is greater than two.) Therefore, by
taking c3 sufficiently large compared with c1, Beck’s
analysis can be applied to show that phase II leaves a
dependency graph with connected components of size
at most lnc12 N each, where c12 > c11. Now, random-
ized rounding to a ln−3 B-integral solution succeeds in
each connected component w.h.p.

The above algorithm cannot be iterated for smaller

values of B. Therefore, after getting the poly(ln lnN)-
integral flow, we adjust the fractional solution. Arguing
as in the proof of Lemma 2, we can partition each color
class into poly(ln lnN) color classes, leaving at most a
single path flowing out of each pair (Q, k) with ∇Q ≤
(c10 ln lnN)c9 . As a result, we can ignore these pairs
in future iterations.

The next iterations proceed as follows. Phase I and
phase II are done as above. Notice that since we are
dealing with pairs (Q, k) with ∇Q > (c10 ln lnN)c9 ,
the probability that such a pair survives phase II is at
most ln−c10 N . Therefore, phase II leaves connected
components of size at most lnc12 N . In each connected
component, we execute phase III, similar to the previ-
ous ones. By the above analysis, any pair with bound-
ary capacity greater than (c10 ln lnN)c9 has a chance
of at most ln−c10 N of surviving. By taking c10 > c12,
we get that w.h.p. no such pair survives. Finally, the
paths passed from phase III can be chosen arbitrarily.
The congestion is increased through all phases by a fac-
tor of 1 + O(ε) at worst.
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