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Abstract

We investigate variants of Lloyd’s heuristic for clustering
high dimensional data in an attempt to explain its popular-
ity (a half century after its introduction) among practition-
ers, and in order to suggest improvements in its application.
We propose and justify a clusterability criterion for data
sets. We present variants of Lloyd’s heuristic that quickly
lead to provably near-optimal clustering solutions when ap-
plied to well-clusterable instances. This is the first perfor-
mance guarantee for a variant of Lloyd’s heuristic. The
provision of a guarantee on output quality does not come
at the expense of speed: some of our algorithms are candi-
dates for being faster in practice than currently used vari-
ants of Lloyd’s method. In addition, our other algorithms
are faster on well-clusterable instances than recently pro-
posed approximation algorithms, while maintaining simi-
lar guarantees on clustering quality. Our main algorithmic
contribution is a novel probabilistic seeding process for the
starting configuration of a Lloyd-type iteration.

1. Introduction

Overview. There is presently a wide and unsatisfactory
gap between the practical and theoretical clustering litera-
tures. For decades, practitioners have been using heuris-
tics of great speed but uncertain merit; the latter should not
be surprising since the problem is NP-hard in almost any
formulation. However, in the last few years, algorithms re-
searchers have made considerable innovations, and even ob-
tained polynomial-time approximation schemes (PTAS’s)
for some of the most popular clustering formulations. Yet
these contributions have not had a noticeable impact on
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practice. Practitioners instead continue to use a variety of
heuristics (Lloyd, EM, agglomerative methods, etc.) that
have no known performance guarantees.

There are two ways to approach this disjuncture. The
most obvious is to continue developing new techniques un-
til they are so good—down to the implementations—that
they displace entrenched methods. The other is to look to-
ward popular heuristics and ask whether there are reasons
that justify their extensive use, but elude the standard theo-
retical criteria; and in addition, whether theoretical scrutiny
suggests improvements in their application. This is the ap-
proach we take in this paper.

As in other prominent cases [?] such an analysis typi-
cally involves some abandonment of the worst-case inputs
criterion. (In fact, part of the challenge is to identify simple
conditions on the input, that allow one to prove a perfor-
mance guarantee of wide applicability.) Our starting point
is the notion that (as discussed in [?]) one should be con-
cerned with k-clustering data that possesses a meaningful
k-clustering. What does it mean for the data to have a
meaningful k-clustering? Here are two examples of settings
where one would intuitively not consider the data to pos-
sess a meaningful k-clustering. If nearly optimum cost can
be achieved by two very different k-way partitions of the
data then the identity of the optimal partition carries little
meaning (for example, if the data was generated by random
sampling from a source, then the optimal cluster regions
might shift drastically upon resampling). Alternatively, if a
near-optimal k-clustering can be achieved by a partition into
fewer than k clusters, then that smaller value of k should be
used to cluster the data. If near-optimal k-clusterings are
hard to find only when they provide ambiguous classifica-
tion or marginal benefit (i.e., in the absence of a meaningful
k-clustering), then such hardness should not be viewed as
an acceptable obstacle to algorithm development. Instead,
the performance criteria should be revised.

Specifically, we consider the k-means formulation of
clustering: given a finite set X ⊆ Rd, find k points (“cen-
ters”) to minimize the sum over all points x ∈ X of the
squared distance between x and the center to which it is as-
signed. In an optimal solution, each center is assigned the
data in its Voronoi region and is located at the center of mass
of this data. Perhaps the most popular heuristic used for this
problem is Lloyd’s method, which consists of the following
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two phases: (a) “Seed” the process with some initial centers
(the literature contains many competing suggestions of how
to do this); (b) Iterate the following Lloyd step until the clus-
tering is “good enough”: cluster all the data in the Voronoi
region of a center together, and then move the center to the
centroid of its cluster.

Although Lloyd-style methods are widely used, to our
knowledge, there is no known mathematical analysis that at-
tempts to explain or predict the performance of these heuris-
tics on high-dimensional data. In this paper, we take the
first such step. We show that if the data is well-clusterable
according to a certain “clusterability” or “separation” con-
dition (that we introduce and justify), then various Lloyd-
style methods do indeed perform well and return a provably
near-optimal clustering. Our contributions are threefold:

(1) We introduce a separation condition and justify it as a
reasonable abstraction of well-clusterability for the analysis
of k-means clustering algorithms. Our condition is simple,
and abstracts a notion of well-clusterability alluded to ear-
lier: letting ∆2

k(X) denote the cost of an optimal k-means
solution of input X , we say that X is ε-separated for k-
means if ∆2

k(X)/∆2
k−1(X) ≤ ε2. (A similar condition for

k = 2 was used for `22 edge-cost clustering in [?].)
One motivation for proposing this condition is that a signifi-
cant drop in the k-clustering cost is already used in practice
as a diagnostic for choosing the value of k (see [?] §10.10).
Furthermore, we show (in Section 5) that: (i) The data sat-
isfies our separation condition if and only if it satisfies the
other intuitive notion of well-clusterability suggested ear-
lier, namely that any two low-cost k-clusterings disagree on
only a small fraction of the data; and (ii) The condition is ro-
bust under noisy (even adversarial) perturbation of the data.
(2) We present a novel and efficient sampling process for
seeding Lloyd’s method with initial centers, which allows
us to prove the effectiveness of these methods.
(3) We demonstrate the effectiveness of (our variants of)
the Lloyd heuristic under the separation condition. Specif-
ically: (i) Our simplest variant uses only the new seed-
ing procedure, requires a single Lloyd-type descent step,
and achieves a constant-factor approximation in time lin-
ear in |X|. This algorithm has success probability exponen-
tially small in k, but we show that (ii) a slightly more com-
plicated seeding process based on our sampling procedure
yields a constant-factor approximation guarantee with con-
stant probability, again in linear time. Since only one run
of seeding+descent is required in both algorithms, these are
candidates for being faster in practice than currently used
Lloyd variants, which are used with multiple re-seedings
and many Lloyd steps per re-seeding. (iii) We also give a
PTAS by combining our seeding process with a sampling
procedure of Kumar, Sabharwal and Sen [?], whose whose
running time is linear in |X| and the dimension, and ex-
ponential in k. This PTAS is significantly faster, and also
simpler, than the PTAS of Kumar et al. [?] (applying the

separation condition to both algorithms; the latter does not
run faster under the condition).

Literature and problem formulation. Let X ⊆ Rd be
the given point set and n = |X|. In the k-means problem,
the objective is to partition X into k clusters X̄1, . . . , X̄k

and assign each point in every cluster X̄i to a common
center c̄i ∈ Rd, so as to minimize the “k-means cost”∑k

i=1

∑
x∈X̄i

‖x−c̄i‖2, where ‖.‖ denotes the `2 norm. We
let ∆2

k(X) denote the optimum k-means cost. Observe that
given the centers c̄1, . . . , c̄k, it is easy to determine the best
clustering corresponding to these centers: cluster X̄i sim-
ply consists of all points x ∈ X for which c̄i is the nearest
center (breaking ties arbitrarily). Conversely given a clus-
tering X̄i, . . . , X̄k, the best centers corresponding to this
clustering are obtained by setting c̄i to be the center of mass
(centroid) of cluster Xi, that is, setting c̄i = 1

|X̄i|
·
∑

x∈X̄i
x.

It follows that both of these properties simultaneously hold
in an optimal solution, that is, c̄i is the centroid of cluster
X̄i, and each point in X̄i has c̄i as its nearest center.

The problem of minimizing the k-means cost is one of
the earliest and most intensively studied formulations of the
clustering problem, both because of its mathematical ele-
gance and because it bears closely on statistical estimation
of mixture models of k point sources under spherically sym-
metric Gaussian noise. We briefly survey the most rele-
vant literature here. The k-means problem seems to have
been first considered by Steinhaus in 1956 [?]. A simple
greedy iteration to minimize cost was suggested in 1957
by Lloyd [?] (and less methodically in the same year by
Cox [?]; also apparently by psychologists between 1959-
67 [?]). This and similar iterative descent methods soon
became the dominant approaches to the problem [?, ?, ?, ?]
(see also [?, ?, ?] and the references therein); they remain
so today, and are still being improved [?, ?, ?, ?]. Lloyd’s
method (in any variant) converges only to local optima how-
ever, and is sensitive to the choice of the initial centers [?].
Consequently, a lot of research has been directed toward
seeding methods that try to start off Lloyd’s method with a
good initial configuration [?, ?, ?, ?, ?, ?, ?, ?]. Very few
theoretical guarantees are known about Lloyd’s method or
its variants. The convergence rate of Lloyd’s method has
recently been investigated in [?, ?, ?] and in particular, [?]
shows that Lloyd’s method can require a superpolynomial
number of iterations to converge.

The k-means problem is NP-hard even for k = 2 [?].
Recently there has been substantial progress in developing
approximation algorithms for this problem. Matoušek [?]
gave the first PTAS for this problem, with running time
polynomial in n, for a fixed k and dimension. Subsequently
a succession of algorithms have appeared [?, ?, ?, ?, ?, ?, ?]
with varying runtime dependency on n, k and the dimen-
sion. The most recent of these is the algorithm of Ku-
mar, Sabharwal and Sen [?], which presents a linear time



PTAS for a fixed k. There are also various constant-factor
approximation algorithms for the related k-median prob-
lem [?, ?, ?, ?, ?], which also yield approximation algo-
rithms for k-means, and have running time polynomial in n,
k and the dimension; recently Kanungo et al. [?] adapted the
k-median algorithm of [?] to obtain a (9+ε)-approximation
algorithm for k-means.

However, none of these methods match the simplicity
and speed of the popular Lloyd’s method. Researchers con-
cerned with the runtime of Lloyd’s method bemoan the
need for n nearest-neighbor computations in each descent
step [?] ! Interestingly, the last reference provides a data
structure that provably speeds up the nearest-neighbor cal-
culations of Lloyd descent steps, under the condition that
the optimal clusters are well-separated. (This is unrelated to
providing performance guarantees for the outcome.) Their
data structure may be used in any Lloyd-variant, including
ours, and is well suited to the conditions under which we
prove performance of our method; however, ironically, it
may not be worthwhile to precompute their data structure
since our method requires so few descent steps.

2. Preliminaries

We use the following notation throughout. For a point
set S, we use ctr(S) to denote the center of mass of S. Let
partition X1 ∪ · · · ∪Xk = X be an optimal k-means clus-
tering of the input X , and let ci = ctr(Xi) and c = ctr(X).
So ∆2

k(X) =
∑k

i=1

∑
x∈Xi

‖x − ci‖2 =
∑k

i=1 ∆2
1(Xi).

Let ni = |Xi|, n = |X|, and r2
i = ∆2

1(Xi)
ni

, that is,
r2
i is the “mean squared error” in cluster Xi. Define

Di = minj 6=i ‖cj − ci‖. We assume throughout that X
is ε-separated for k-means, that is, ∆2

k(X) ≤ ε2∆2
k−1(X),

where 0 < ε ≤ ε0 with ε0 being a suitably small constant.
We use the following basic lemmas quite frequently.

Lemma 2.1 For every x,
∑

y∈X ‖x − y‖2 = ∆2
1(X) +

n‖x− c‖2. Hence
∑

{x,y}⊆X ‖x− y‖2 = n∆2
1(X).

Lemma 2.2 Let S ⊆ Rd, and S1 ∪ S2 be a partition of
S with S1 6= ∅. Let s = ctr(S), s1 = ctr(S1), and
s2 = ctr(S2). Then, (i) ∆2

1(S) = ∆2
1(S1) + ∆2

1(S2) +
|S1||S2|
|S| ‖s1 − s2‖2, and (ii) ‖s1 − s‖2 ≤ ∆2

1(S)
|S| ·

|S2|
|S1| .

Proof: Let a = |S1| and b = |S2| = |S| − |S1|. We have

∆2
1(S) =

∑
x∈S1

‖x− c‖2 +
∑
x∈S2

‖x− c‖2

=
(
∆2

1(S1) + a‖s1 − s‖2
)

+
(
∆2

1(S2) + b‖s2 − s‖2
)

= ∆2
1(S1) + ∆2

1(S2) + ab
a+b · ‖s1 − s2‖2.

The last equality follows from Lemma 2.1 by noting that s
is also the center of mass of the point set where a points

are located at s1 and b points are located at s2, and so the
optimal 1-means cost of this point set is given by a‖s1 −
s‖2 + b‖s2 − s‖2. This proves part (i). Part (ii) follows by
substituting ‖s1− s‖ = ‖s1− s2‖ · b/(a+ b) in part (i) and
dropping the ∆2

1(S1) and ∆2
1(S2) terms.

3. The 2-means problem

We first consider the 2-means case. We assume that
the input X is ε-separated for 2-means. We present an
algorithm that returns a solution of cost at most

(
1 +

f(ε)
)
∆2

2(X) in linear time, for a suitably defined function
f that satisfies limε→0 f(ε) = 0. An appealing feature of
our algorithm is its simplicity, both in description and anal-
ysis. In Section 4, where we consider the k-means case, we
will build upon this algorithm to obtain both a linear time
constant-factor (of the form 1 + f(ε)) approximation algo-
rithm and a PTAS with running time exponential in k, but
linear in n, d.

The chief algorithmic novelty in our 2-means algorithm
is a non-uniform sampling process to pick two seed cen-
ters. Our sampling process is very simple: we pick the pair
x, y ∈ X with probability proportional to ‖x − y‖2. This
biases the distribution towards pairs that contribute a large
amount to ∆2

1(X) (noting that n∆2
1(X) =

∑
{x,y}⊆X ‖x−

y‖2). We emphasize that, as improving the seeding is the
only way to get Lloyd’s method to find a high-quality clus-
tering, the topic of picking the initial seed centers has re-
ceived much attention in the experimental literature (see,
e.g., [?] and references therein). However, to the best of our
knowledge, this simple and intuitive seeding method is new
to the vast literature on the k-means problem. By putting
more weight on pairs that contribute a lot to ∆2

1(X), the
sampling process aims to pick the initial centers from the
cores of the two optimal clusters. We define the core of
a cluster precisely later, but loosely speaking, it consists
of points in the cluster that are significantly closer to this
cluster-center than to any other center. Lemmas 3.1 and 3.2
make the benefits of this approach precise. Thus, in essence,
we are able to leverage the separation condition to nearly
isolate the optimal centers. Once we have the initial cen-
ters within the cores of the two optimal clusters, we show
that a simple Lloyd-like step, which is also simple to ana-
lyze, yields a good performance guarantee: we consider a
suitable ball around each center and move the center to the
centroid of this ball to obtain the final centers. This “ball-
k-means” step is adopted from Effros and Schulman [?],
where it is shown that if the k-means cost of the current so-
lution is small compared to ∆2

k−1(X) (which holds for us
since the initial centers lie in the cluster-cores) then a Lloyd
step followed by a ball-k-means step yields a clustering of
cost close to ∆2

k(X). In our case, we are able to eliminate
the Lloyd step, and show that the ball-k-means step alone
guarantees a good clustering.



1. Sampling. Randomly select a pair of points from the
set X to serve as the initial centers, picking the pair
x, y ∈ X with probability proportional to ‖x − y‖2.
Let ĉ1, ĉ2 denote the two picked centers.

2. “Ball-k-means” step. For each ĉi, consider the ball of
radius ‖ĉ1− ĉ2‖/3 around ĉi and compute the centroid
c̄i of the portion of X in this ball. Return c̄1, c̄2 as the
final centers.

Running time The entire algorithm runs in time O(nd).
Step 2 clearly takes only O(nd) time. We show that the
sampling step can be implemented to run in O(nd) time.
Consider the following two-step sampling procedure: (a)
first pick center ĉ1 by choosing a point x ∈ X with

probability equal to
P

y∈X ‖x−y‖2P
x,y∈X ‖x−y‖2 =

(
∆2

1(X) + n‖x −
c‖2

)
/2n∆2

1(X) (using Lemma 2.1); (b) pick the second
center by choosing point y ∈ X with probability equal to
‖y − ĉ1‖2/

(
∆2

1(X) + n‖c − ĉ1‖2
)
. This two-step sam-

pling procedure is equivalent to the sampling process in
step 1, that is, it picks pair x1, x2 ∈ X with probability

‖x1−x2‖2P
{x,y}⊆X ‖x−y‖2 . Each step takes only O(nd) time since

∆2
1(X) can be precomputed in O(nd) time.

Analysis The analysis hinges on the important fact that
under the separation condition, the radius ri of each op-
timal cluster is substantially smaller than the inter-cluster
separation ‖c1 − c2‖ (Lemma 3.1). This allows us to show
in Lemma 3.2 that with high probability, each initial cen-
ter ĉi lies in the core (suitably defined) of a distinct optimal
cluster, say Xi, and hence ‖c1− c2‖ is much larger than the
distances ‖ĉi − ci‖ for i = 1, 2. Assuming that ĉ1, ĉ2 lie
in the cores of the clusters, we prove in Lemma 3.3 that the
ball around ĉi contains only, and most of the mass of cluster
Xi, and therefore the centroid c̄i of this ball is very “close”
to ci. This in turn implies that the cost of the clustering
around c̄1, c̄2 is small.

Lemma 3.1 max(r2
1, r

2
2) ≤ ε2

1−ε2 ‖c1 − c2‖2.

Proof: By part (i) of Lemma 2.2 we have ∆2
1(X) =

∆2
2(X) + n1n2

n · ‖c1 − c2‖2 which is equivalent to n
n1n2

·
∆2

2(X) = ‖c1 − c2‖2 ∆2
2(X)

∆2
1(X)−∆2

2(X)
. This implies that

r2
1 · n

n2
+ r2

2 · n
n2
≤ ε2

1−ε2 ‖c1 − c2‖2.

Let ρ = 100ε2

1−ε2 . We require that ρ < 1. We define the core

of cluster Xi as the set Xcor
i =

{
x ∈ Xi : ‖x−ci‖2 ≤ r2

i

ρ

}
.

By Markov’s inequality, |Xcor
i | ≥ (1− ρ)ni for i = 1, 2.

Lemma 3.2 Pr [ĉ1, ĉ2 lie in distinct cores] = 1−O(ρ).

Proof: To simplify our expressions, we assume that
the points are scaled by 1

‖c1−c2‖ . We have ∆2
1(X) =

∆2
2(X) + n1n2

n · ‖c1 − c2‖2 by part (i) of Lemma 2.2, so
∆2

1(X) ≤ n1n2
n(1−ε2) . Let c′i = ctr(Xcor

i ). By part (ii) of
Lemma 2.2 (with S = Xi, S1 = Xcor

i ), ‖c′i − ci‖2 ≤
ρ

1−ρ · r
2
i . The probability of the stated event is A/B where

A =
∑

x∈Xcor
1 ,y∈Xcor

2
‖x − y‖2 = |Xcor

1 |∆2
1(X

cor
2 ) +

|Xcor
2 |∆2

1(X
cor
1 ) + |Xcor

1 ||Xcor
2 |‖c′1 − c′2‖2, and B =∑

{x,y}⊆X ‖x − y‖2 = n∆2
1(X) ≤ n1n2

1−ε2 . By the bounds
on ‖c′i − ci‖ and Lemma 3.1, we get ‖c′1 − c′2‖ ≥ 1 −
2ε

√
ρ

(1−ρ)(1−ε2) . So A/B =
(
1−O(ρ)

)
.

So we may assume that each initial center ĉi lies in Xcor
i .

Let d̂ = ‖ĉ1 − ĉ2‖ and Bi = {x ∈ X : ‖x − ĉi‖ ≤ d̂/3}.
Recall that c̄i is the centroid of Bi.

Lemma 3.3 For each i, we have Xcor
i ⊆ Bi ⊆ Xi. Hence,

‖c̄i − ci‖2 ≤ ρ
1−ρ · r

2
i .

Proof: By Lemma 3.1 and the definition of Xcor
i , we have

‖ĉi− ci‖ ≤ θ‖c1− c2‖ for i = 1, 2 where θ = ε√
ρ(1−ε2)

≤
1
10 . So 4

5 ≤
d̂

‖c1−c2‖ ≤
6
5 . For any x ∈ Bi we have ‖x −

ci‖ ≤ d̂
3 + ‖ĉi − ci‖ ≤ ‖c1−c2‖

2 , so x ∈ Xi. For any

x ∈ Xcor
i , ‖x − ĉi‖ ≤ 2θ‖c1 − c2‖ ≤ d̂

3 , so x ∈ Bi. Now
by part (ii) of Lemma 2.2, with S = Xi and S1 = Bi, we
get ‖c̄i − ci‖2 ≤ ρ

1−ρ · r
2
i since |Bi| ≥ |Xcor

i |.

Theorem 3.4 The above algorithm returns a clustering of
cost at most ∆2

2(X)
1−ρ with probability at least 1−O(ρ) in time

O(nd), where ρ = Θ(ε2).

Proof: The cost of the solution is at most
∑

i

∑
x∈Xi

‖x−
c̄i‖2 =

∑
i

(
∆2

1(Xi) + ni‖c̄i − ci‖2
)
≤ ∆2

2(X)
1−ρ .

4. The k-means problem

We now consider the k-means setting. We assume that
∆2

k(X) ≤ ε2∆2
k−1(X). We describe a linear time constant-

factor approximation algorithm, and a PTAS that returns a
(1 + ω)-optimal solution in time O

(
2O(k/w)nd

)
. The al-

gorithms consist of various ingredients, which we describe
separately first for ease of understanding, before gluing
them together to obtain the final algorithm.

Conceptually both algorithms proceed in two stages. The
first stage is a seeding stage, which performs the bulk of the
work and guarantees that at the end of this stage there are k
seed centers positioned at nearly the right locations. By this
we mean that if we consider distances at the scale of the
inter-cluster separation, then at the end of this stage, each



optimal center has a (distinct) initial center located in close
proximity — this is precisely the leverage that we obtain
from the k-means separation condition (as in the 2-means
case). We employ three simple seeding procedures, with
varying time vs. quality guarantees, that exploit this sepa-
ration condition to seed the k centers at locations very close
to the optimal centers. In Section 4.1.1, we consider a nat-
ural generalization of the sampling procedure used for the
2-means case, and show that this picks the k initial centers
from the cores of the optimal clusters. This sampling proce-
dure runs in linear time but it succeeds with probability that
is exponentially small in k. In Section 4.1.2, we present a
very simple deterministic greedy deletion procedure, where
we start off with all points in X as the centers and then
greedily delete points (and move centers) until there are k
centers left. The running time here is O(n3d). Our deletion
procedure is similar to the reverse greedy algorithm pro-
posed by Chrobak, Kenyon and Young [?] for the k-median
problem. Chrobak et al. show that their reverse greedy al-
gorithm attains an approximation ratio of O(log n), which
is tight up to a factor of log log n. In contrast, for the k-
means problem, if ∆2

k(X) ≤ ε2∆2
k−1(X), we show that

our greedy deletion procedure followed by a clean-up step
(in the second stage) yields a

(
1 + f(ε)

)
-approximation al-

gorithm.Finally, in Section 4.1.3 we combine the sampling
and deletion procedures to obtain an O(nkd + k3d)-time
initialization procedure. We sample O(k) centers, which
ensures that every cluster has an initial center in a slightly
expanded version of the core, and then run the deletion pro-
cedure on an instance of size O(k) derived from the sam-
pled points to obtain the k seed centers.

Once the initial centers have been positioned sufficiently
close to the optimal centers, we can proceed in two ways
in the second-stage (Section 4.2). One option is to use a
ball-k-means step, as in 2-means, which yields a clustering
of cost

(
1 + f(ε)

)
∆2

k(X) due to exactly the same reasons
as in the 2-means case. Thus, combined with the initializa-
tion procedure of Section 4.1.3, this yields a constant-factor
approximation algorithm with running time O(nkd + k3d).
The entire algorithm is summarized in Section 4.3.

The other option, which yields a PTAS, is to use a sam-
pling idea of Kumar et al. [?]. For each initial center, we
compute a list of candidate centers for the corresponding
optimal cluster as follows: we sample a small set of points
uniformly at random from a slightly expanded Voronoi re-
gion of the initial center, and consider the centroid of every
subset of the sampled set of a certain size as a candidate.
We exhaustively search for the k candidates (picking one
candidate per initial center) that yield the least cost solu-
tion, and output these as our final centers. The fact that
each optimal center ci has an initial center in close prox-
imity allows us to argue that the entire optimal cluster Xi

is contained in the expanded Voronoi region of this initial
center, and moreover that |Xi| is a significant fraction of the
total mass in this region. Given this property, as argued by

Kumar et al. (Lemma 2.3 in [?]), a random sample from the
expanded Voronoi region also (essentially) yields a random
sample from Xi, which allows us to compute a good esti-
mate of the centroid of Xi, and hence of ∆2

1(Xi). We obtain
a (1+ω)-optimal solution in time O

(
2O(k/ω)nd

)
with con-

stant probability. Since we incur an exponential dependence
on k anyway, we just use the simple sampling procedure of
Section 4.1.1 in the first-stage to pick the k initial centers.
Although the running time is exponential in k, it is signifi-
cantly better than the running time of O

(
2(k/ω)O(1)

nd
)

in-
curred by the algorithm of Kumar et al.; we also obtain a
simpler PTAS. Both of these features can be traced to the
separation condition, which enables us to nearly isolate the
positions of the optimal centers in the first stage. Kumar
et al. do not have any such facility, and therefore need
to sequentially “guess” (i.e., exhaustively search) the vari-
ous centroids, incurring a corresponding increase in the run
time. This PTAS is described in Section 4.4.

4.1. Seeding procedures used in stage I

4.1.1 Sampling.

We pick k initial centers as follows: first pick two centers
ĉ1, ĉ2 as in the 2-means case, that is, choose x, y ∈ X
with probability proportional to ‖x − y‖2. Suppose we
have already picked i ≥ 2 centers ĉ1, . . . , ĉi. Now pick
a random point x ∈ X with probability proportional to
minj∈{1,...,i} ‖x− ĉj‖2 and set that as center ĉi+1.

Running time The sampling procedure consists of k it-
erations, each of which takes O(nd) time. This is because
after sampling a new point ĉi+1, we can update the quantity
minj∈{1,...,i+1} ‖x− ĉj‖ for each point x in O(d) time. So
the overall running time is O(nkd).

Analysis Let ε2 � ρ < 1 be a parameter that we will set
later. As in the 2-means case, we define the core of cluster
Xi as Xcor

i =
{
x ∈ Xi : ‖x− ci‖2 ≤ r2

i

ρ

}
. We show that

under our separation assumption, the above sampling pro-
cedure will pick the k initial centers to lie in the cores of the
clusters X1, . . . , Xk with probability

(
1−O(ρ)

)k
. We also

show that if we sample more than k, but still O(k), points,
then with constant probability, every cluster will contain a
sampled point that lies in a somewhat larger core, that we
call the outer core of the cluster. This analysis will be useful
in Section 4.1.3.

Lemma 4.1 With probability 1 − O(ρ), the first two cen-
ters ĉ1, ĉ2 lie in the cores of different clusters, that is,
Pr[

⋃
i 6=j(x ∈ Xcor

i and y ∈ Xcor
j )] = 1−O(ρ).

Proof: The key observation is that for any pair of
distinct clusters Xi, Xj , the 2-means separation condi-
tion holds for Xi ∪ Xj , that is, ∆2

2(Xi ∪ Xj) =



∆2
1(Xi) + ∆2

1(Xj) ≤ ε2∆2
1(Xi ∪ Xj). So using

Lemma 3.2 we obtain that
∑

x∈Xcor
i ,y∈Xcor

j
‖x − y‖2 =(

1 − O(ρ)
) ∑

{x,y}⊆Xi∪Xj
‖x − y‖2. Summing over all

pairs i, j yields the lemma.

Now inductively suppose that the first i centers picked
ĉ1, . . . , ĉi lie in the cores of clusters Xj1 , . . . , Xji

. We show
that conditioned on this event, ĉi+1 ∈

⋃
`/∈{j1,...,ji} Xcor

`

with probability 1 − O(ρ). Given a set S of points, we use
d(x, S) to denote miny∈S ‖x− y‖.

Lemma 4.2 Pr
[
ĉi+1 lies in

⋃
`/∈{j1,...,ji} Xcor

` | ĉ1, . . . , ĉi

lie in the cores of Xj1 , . . . , Xji

]
= 1−O(ρ).

Proof: For convenience, we re-index the clusters so that
{j1, . . . , ji} = {1, . . . ,m}. Let Ĉ = {ĉ1, . . . , ĉi}. For any
cluster Xj , let pj ∈ {1, . . . , i} be such that d(cj , Ĉ) =
‖cj − ĉpj

‖. Let A =
∑k

j=m+1

∑
x∈Xcor

j
d(x, Ĉ)2, and

B =
∑k

j=1

∑
x∈Xj

d(x, Ĉ)2. Observe that the probabil-
ity of the event stated in the lemma is exactly A/B. Let
α denote the maximum over all j ≥ m + 1 of the quantity
maxx∈Xcor

j
‖x−cj‖/d(cj , Ĉ). For any point x ∈ Xcor

j , j ≥
m+1, we have d(x, Ĉ) ≥ (1−α)d(cj , Ĉ). By Lemma 3.1,

α ≤ ε/
√

ρ(1−ε2)

1−ε/
√

ρ(1−ε2)
≤ 2ε√

ρ(1−ε2)
< 1 for a small

enough ρ. Therefore, A =
∑k

j=m+1

∑
x∈Xcor

j
d(x, Ĉ)2 ≥∑k

j=m+1(1− ρ)(1− α)2njd(cj , Ĉ)2.
On the other hand, for any point x ∈ Xj , we have

d(x, Ĉ) ≤ ‖x− ĉpj
‖. For j = 1, . . . ,m, ĉpj

lies in Xcor
j , so

‖cj−ĉpj
‖ ≤ rj√

ρ . Therefore, B ≤
∑k

j=1,x∈Xj
‖x−ĉpj

‖2 ≤∑k
j=1

(
∆2

1(Xj) + nj‖cj − ĉpj
‖2

)
≤

(
1 + 1

ρ

)
∆2

k(X) +∑k
j=m+1 njd(cj , Ĉ)2. Finally, for any j = m + 1, . . . k,

if we assign all the points in cluster Xj to the point ĉpj ,
then the increase in cost is exactly nj‖cj − ĉpj

‖2 and at
least ∆2

k−1(X) − ∆2
k(X). Therefore

(
1
ε2 − 1

)
∆2

k(X) ≤
njd(cj , Ĉ)2 for any j = m + 1, . . . , k, and B ≤
1+ε2/ρ
1−ε2

∑k
j=m+1 njd(cj , Ĉ)2. Comparing with A and plug-

ging in the value of α, we get that A =
(
1−O(ρ+ ε√

ρ )
)
B.

If we set ρ = Ω(ε2/3), we obtain A/B = 1−O(ρ).

Next, we analyze the case when more than k points are
sampled. Let ρ1 = ρ3. Define the outer core of Xi to
be Xout

i = {x ∈ Xi : ‖x − ci‖2 ≤ r2
i

ρ1
}. Note that

Xcor
i ⊆ Xout

i . Let N = 2k
1−5ρ + 2 ln(2/δ)

(1−5ρ)2 where 0 < δ < 1
is a desired error tolerance. By mimicking the proof of
Lemma 4.2, one can show (Lemma 4.3) that at every sam-
pling step, there is a constant probability that the sampled
point lies in the core of some cluster whose outer core does
not contain a previously sampled point. Observe that while

Lemma 4.2 only shows that the “good” event happens con-
ditioned on the fact that previous samples were also “good”,
Lemma 4.3 gives an unconditional bound. This crucial dif-
ference allows us to argue, via a straightforward martingale
analysis, that if we sample N points from X , then with
some constant probability, each outer core Xout

i will con-
tain a sampled point. Corollary 4.4 summarizes the results.

Lemma 4.3 Suppose that we have sampled i points
{x̂1, . . . , x̂i} from X . Let X1, . . . , Xm be all the clusters
whose outer cores contain some sampled point x̂j . Then
Pr[x̂i+1 ∈

⋃k
j=m+1 Xcor

j ] ≥ 1− 5ρ.

Corollary 4.4 (i) If we sample k points ĉ1, . . . , ĉk, then
with probability

(
1 − O(ρ)

)k
, ρ = Ω(ε2/3), each point

ĉi lies in a distinct core Xcor
i , so ‖ĉi − ci‖ ≤ ri/

√
ρ.

(ii) If we sample N = 2k
1−5ρ + 2 ln(2/ρ)

(1−5ρ)2 points
ĉ1, . . . , ĉN , ρ =

√
ε, then with probability 1 − O(ρ), each

outer core Xout
i contains some ĉi, so ‖ĉi − ci‖ ≤ ri/

√
ρ3.

4.1.2 Greedy deletion procedure.

We maintain a set of centers Ĉ that are used to cluster X .
We initialize Ĉ ← X and delete centers till k centers re-
main. For any point x ∈ Rd, let R(x) ⊆ X denote the
points of X in the Voronoi region of x (given the set of cen-
ters Ĉ). We call R(x) the Voronoi set of x. Repeat the
following steps until |Ĉ| = k.

B1. Compute T =
∑

x∈Ĉ

∑
y∈R(x) ‖y − x‖2, the cost of

clustering X around Ĉ. For every x ∈ Ĉ, compute
Tx =

∑
z∈Ĉ\{x}

∑
y∈R−x(z) ‖y− z‖2, where R−x(z)

is the Voronoi set of z given the center set Ĉ \ {x}.

B2. Pick the center y ∈ Ĉ for which Tx − T is minimum
and set Ĉ ← Ĉ \ {y}.

B3. Recompute the Voronoi sets R(x) = R−y(x) ⊆ X

for each (remaining) center x ∈ Ĉ. Now we “move”
the centers to the centroids of their respective (new)
Voronoi sets, that is, for every set R(x), we update
Ĉ ← Ĉ \ {x} ∪ {ctr(R(x))}.

Running time There are n−k iterations of the B1-B3 loop.
Each iteration takes O(n2d) time: computing T and the sets
R(x) for each x takes O(n2d) time and we can then com-
pute each Tx in O(|R(x)|d) time (since while computing
T , we can also compute for each point its second-nearest
center in Ĉ). Therefore the overall running time is O(n3d).

Analysis Let ρ be a parameter such that ρ ≤
1
10 , ε/

√
ρ(1− ε2) ≤ 1

14 . Recall that Di = minj 6=i ‖cj −
ci‖. Define d2

i = ∆2
k(X)/ni. We use a different notion of

a cluster-core here, but one that still captures the fact that



the core consists of points that are quite close to the cluster-
center compared to the inter-cluster distance, and contains
most of the mass of the cluster. Let B(x, r) = {y ∈ Rd :
‖x − y‖ ≤ r}. Define Zi = B(ci, di/

√
ρ) and the core

of Xi as Xcor
i = Xi ∩ Zi. Observe that ri ≤ di, so

by Markov’s inequality |Xcor
i | ≥ (1 − ρ)ni. Also, since

∆2
k−1(X)−∆2

k(X) ≤ niD
2
i we have that d2

i ≤ D2
i · ε2

1−ε2 .
Therefore, Xcor

i = X ∩ Zi. We prove that, at the start of
every iteration, for every i, there is a (distinct) center x ∈ Ĉ
that lies in Zi. Call this invariant (*). Clearly (*) holds at
the beginning, since Ĉ = X and Xcor

i 6= ∅ for every clus-
ter Xi. First, we argue (Lemma 4.5) that if x ∈ Ĉ is the
only center that lies in a slightly enlarged version of the ball
Zi for some i, then x is not deleted. The intuition is that
there must be some other center cj whose Voronoi region
(wrt. optimal center-set) contains at least two centers from
Ĉ, and deleting one of these centers, the one further away
from cj , should be less expensive. Lemma 4.6 then shows
that even after a center y is deleted, if the new Voronoi re-
gion R−y(x) of a center x ∈ Ĉ captures points from some
Xcor

j , then R−y(x) cannot “extend” too far into some other
cluster X`, that is, for any x′ ∈ R−y(x) ∩X` where ` 6= j,
‖x′ − cj‖ is not much larger than ‖x′ − c`‖. This is due to
the fact that for both clusters Xj and X`, there are undeleted
centers (due to the invariant and Lemma 4.5) zj ∈ Zj and
z` ∈ Z`. Thus, since R−y(x) ∩Xcor

j 6= ∅, it must be that x
is relatively close to cj , Also, since x′ is captured by x and
not z`, one can lower bound ‖x′−z`‖, and hence ‖x′−c`‖,
in terms of ‖x′ − x‖ (and d`√

ρ ), which in turn can be lower

bounded in terms of ‖x′ − cj‖ (and dj√
ρ ). Lemma 4.7 puts

everything together to show that invariant (*) is maintained.

Lemma 4.5 Suppose (*) holds at the start of an iteration,
and x ∈ Ĉ is the only center in B(ci, 4di/

√
ρ) for some

cluster Xi, then x ∈ Ĉ after step B2.

Lemma 4.6 Suppose center y ∈ Ĉ is deleted in step B2.
Let x ∈ Ĉ \ {y} be such that R−y(x) ∩ Xcor

j 6= ∅ for
some j. Then for any x′ ∈ R−y(x) ∩ X`, ` 6= j we have
‖x′ − cj‖ ≤ ‖x′ − c`‖+ max(d`+6dj ,4d`+3dj)√

ρ .

Lemma 4.7 Suppose that property (*) holds at the begin-
ning of some iteration in the deletion phase. Then (*) also
holds at the end of the iteration, i.e., after step B3.

Proof: Suppose that we delete center y ∈ Ĉ that lies
in the Voronoi region of center ci (wrt. optimal centers)
in step B2. Let Ĉ ′ = Ĉ \ {y} and R′(x) = R−y(x)
for any x ∈ Ĉ ′. Fix a cluster Xj . Let S = {x ∈
Ĉ ′ : R′(x) ∩ Xcor

j 6= ∅} and Y =
⋃

x∈S R′(x). We
show that there is some set R′(x), x ∈ Ĉ ′ whose centroid
ctr(R′(x)) lies in the ball Zj , which will prove the lemma.
By Lemma 4.6 and noting that d2

` ≤ ε2

1−ε2 ·D
2
` for every `,

for any x′ ∈ Y ∩ X` where ` 6= j, we have ‖x′ − cj‖ ≤
‖x′ − c`‖+ ε√

ρ(1−ε2)
·max(D` + 6Dj , 4D` + 3Dj). Also

Dj , D` ≤ ‖cj − c`‖ ≤ ‖x′ − cj‖ + ‖x′ − c`‖. Sub-
stituting for Dj , D` we get that ‖y − cj‖ ≤ β‖y − c`‖

where β = 1+7ε/
√

ρ(1−ε2)

1−7ε/
√

ρ(1−ε2)
. Using this we obtain that A =∑

x′∈Y ‖x′ − cj‖2 ≤ β2
∑k

`=1

∑
x′∈Y ∩X`

‖x′ − c`‖2 ≤
β2∆2

k(X). We also have A =
∑

x∈S

∑
x′∈R′(x) ‖y −

cj‖2 =
∑

x∈S

(
∆2

1(R
′(x))+|R′(x)|‖ctr(R′(x))−cj‖2

)
≥

|Y |minx∈S ‖ctr(R′(x)) − cj‖2. Since Xcor
j ⊆ Y we

have |Y | ≥ (1 − ρ)nj , so minx∈S ‖ctr(R′(x)) − cj‖ ≤
β√
1−ρ
· di. The bounds on ρ ensure that ρβ2

1−ρ ≤ 1, so that

minx∈S ‖ctr(R′(x))− cj‖ ≤ dj√
ρ .

Corollary 4.8 After the deletion phase, for every i, there is
a center ĉi ∈ Ĉ with ‖ĉi − ci‖ ≤ ε√

ρ(1−ε2)
·Di.

4.1.3 A linear time seeding procedure.

We now combine the sampling idea with the deletion pro-
cedure to obtain a seeding procedure that runs in time
O(nkd + k3d) and succeeds with high probability. We
first sample O(k) points from X using the sampling proce-
dure. Then we run the deletion procedure on an O(k)-size
instance consisting of the centroids of the Voronoi regions
of the sampled, points, with each centroid having a weight
equal to the mass of X in its corresponding Voronoi region.
The sampling process ensures that with high probability, ev-
ery cluster Xi contains a point ĉi that is close to its center ci.
This will allow us to argue that the ∆2

k(.) cost of the sam-
pled instance is much smaller than its ∆2

k−1(.) cost, and that
the optimal centers for the sampled instance lie near the op-
timal centers for X . By the analysis of the previous section,
one can then show that after the deletion procedure the k
centers are still close to the optimal centers for the sampled
instance, and hence also close to the optimal centers for X .
Fix ρ1 =

√
ε.

C1. Sampling. Sample N = 2k
1−5ρ1

+ 2 ln(2/ρ1)
(1−5ρ1)2

points
from X using the sampling procedure of Section 4.1.1.
Let S denote the set of sampled points.

C2. Deletion phase. For each x ∈ S, let R(x) = {y ∈
X : ‖y − x‖ = minz∈S ‖y − z‖} be its Voronoi
set (wrt. the set S). We now ignore X , and con-
sider a weighted instance with point-set Ŝ = {x̂ =
ctr(R(x)) : x ∈ S}, where each x̂ has a weight
w(x̂) = |R(x)|. Run the deletion procedure of Sec-
tion 4.1.2, on Ŝ to obtain k centers ĉ1, . . . , ĉk.

Running time Step C1 takes O(nNd) = O(nkd) time.
The run-time analysis of the deletion phase in Section 4.1.2,



shows that step C2 takes O(N3d) = O(k3d) time. So the
overall running time is O(nkd + k3d).

Analysis Recall that ρ1 =
√

ε. Let ρ2 = ρ3
1. Let Xcor

i =
{x ∈ Xi : ‖x − ci‖2 ≤ r2

i

ρ1
}. Let Xout

i = {x ∈ Xi :

‖x − ci‖2 ≤ r2
i

ρ2
} denote the outer core of cluster Xi. By

part (ii) of Corollary 4.4 we know that with probability 1−
O(ρ1), every cluster Xi contains a sampled point in its outer
core after step C1. So assume that this event happens. Let
ŝ1, . . . , ŝk denote the optimal k centers for Ŝ and ĉ1, . . . , ĉk

be the centers returned by the deletion phase. Lemma 4.9
shows that the k-means separation condition also holds for
Ŝ, and the optimal centers for Ŝ are close to the optimal
centers for X . This implies that the centers returned by the
deletion phase are close to the optimal centers for X .

Lemma 4.9 ∆2
k(Ŝ) = O(ε2)∆2

k−1(Ŝ). For each optimal
center ci, there is some ŝi such that ‖ŝi − ci‖ ≤ Di

25 + ri√
ρ1

.

Lemma 4.10 For each center ci, there is a center ĉi such
that ‖ĉi − ci‖ ≤ Di

10 .

Proof: Let D̂i = minj 6=i ‖ŝj− ŝi‖. Then (1−2θ) ≤ D̂i

Di
≤(

1+2θ) where θ ≤
(

1
25 + ε√

ρ1(1−ε2)

)
. Since ρ1 =

√
ε, we

can ensure that θ < 1
22 . Choosing ρ for the deletion phase

suitably, by Corollary 4.8, we can ensure that we obtain ĉi

such that ‖ĉi − ŝi‖ ≤ D̂i

20 . Thus, ‖ĉi − ci‖ ≤ Di

10 .

4.2. Procedures used in stage II

Given k seed centers ĉ1, . . . , ĉk located sufficiently close
to the optimal centers after stage I, we use two procedures
in stage II to obtain a near-optimal clustering: the ball-k-
means step, which yields a

(
1 + f(ε)

)
-approximation algo-

rithm, or the centroid estimation step, based on a sampling
idea of Kumar et al. [?], which yields a PTAS with running
time exponential in k. Define d̂i = minj 6=i ‖ĉj − ĉi‖.

Ball-k-means step. Let Bi be the points of X in a ball of
radius d̂i/3 around ĉi, and c̄i be the centroid of Bi. Return
c̄1, . . . , c̄k as the final centers.

Centroid estimation. For each i, we will obtain a set of
candidate centers for cluster Xi. Fix β = 25

25+256ε2 . Let
R′

i ⊆ X = {x ∈ X : ‖x − ĉi‖ ≤ minj ‖x − ĉj‖ + d̂i/4}
be the expanded Voronoi region of ĉi. Sample 4

βω points
independently and uniformly at random from R′

i, where ω is
a given input parameter, to obtain a random subset Si ⊆ R′

i.
Compute the centroid of every subset of Si of size 2

ω ; let
Ti be the set consisting of all these centroids. Select the
candidates c̄1 ∈ T1, . . . , c̄k ∈ Tk that yield the least-cost
solution, and return these as the final centers.

Analysis Recall that Di = minj 6=i ‖cj − ci‖. Let ρ =
36ε2

1−ε2 . The proof of Lemma 4.11, which analyzes the ball-
k-means step, is essentially identical to that of Lemma 3.3.

Lemma 4.11 Let Yi =
{
x ∈ Xi : ‖x − ci‖2 ≤ r2

i

ρ

}
. If

‖ĉi − ci‖ ≤ Di/10 for each i, then Yi ⊆ Bi ⊆ Xi, and
‖c̄i − ci‖ ≤ ρ

1−ρ · r
2
i .

Lemma 4.12 Suppose ‖ĉi − ci‖ ≤ Di/10 for each i. Then
Xi ⊆ R′

i, where R′
i is as defined above, and |Xi| ≥ β|R′

i|.

Proof: We have 4Di

5 ≤ d̂i ≤ 6Di

5 . Consider any x ∈ Xi

that lies in the Voronoi region of ĉj . We have ‖x − ci‖ ≤
‖x−cj‖, therefore ‖x−ĉi‖ ≤ ‖x−ĉj‖+Di/5 ≤ ‖x−ĉj‖+
d̂i/4; so x ∈ R′

i. Suppose |Xi| ≤ β|R′
i|. Let aj = |R′

i∩Xj |
|R′

i|
.

So ai

1−ai
≤ β

1−β . Consider the clustering where we arbi-
trarily assign some aj

1−ai
points of Xi to center cj for each

j 6= i. For any x ∈ Xi and j 6= i, we have ‖x − cj‖2 ≤
2(‖x− ci‖2 +‖ci− cj‖2). So the cost of reassigning points
in Xi is at most 2∆2

1(Xi) + 2ni

1−ai
·
∑

j 6=i aj‖ci − cj‖2 ≤
2∆2

1(Xi) + 2β
1−β ·

∑
j 6=i aj |R′

i|‖ci − cj‖2. We also know

that for any y ∈ R′
i ∩Xj , ‖y − ci‖ ≤ ‖y − cj‖ + Di+Dj

10 ,
which implies that ‖ci − cj‖ ≤ 8

5 · ‖y− cj‖. Therefore, we
can bound aj |R′

i|‖ci − cj‖2 by 64
25

∑
y∈R′

i∩Xj
‖y − cj‖2.

Hence, the cost of this clustering is at most max
(
2, 1 +

128β
25(1−β)

)
∆2

k(X) ≤
(
1+ 1

2ε2

)
∆2

k(X). The cost of this clus-
tering is also at least ∆2

k−1(X). This is a contradiction to
the assumption that ∆2

k(X) ≤ ε2∆2
k−1(X).

4.3. A linear time constant-factor approximation
algorithm

D1. Execute the seeding procedure of Section 4.1.3 to ob-
tain k initial centers ĉ1, . . . , ĉk.

D2. Run the ball-k-means step of Section 4.2 to obtain the
final centers.

The running time is O(nkd+k3d). By Lemma 4.10, we
know that with probability 1− O(

√
ε), for each ci, there is

a distinct center ĉi such that ‖ĉi− ci‖ ≤ Di/10. Combined
with Lemma 4.11, this yields the following theorem.

Theorem 4.13 If ∆2
k(X)

∆2
k−1(X)

≤ ε2 for a small enough ε, the

above algorithm returns a solution of cost at most 1−ε2

1−37ε2 ·
∆2

k(X) with probability 1−O(
√

ε) in time O(nkd + k3d).



4.4. A PTAS for any fixed k

The PTAS combines the sampling procedure of Sec-
tion 4.1.1 with the centroid estimation step.

E1. Use the procedure in Section 4.1.1 to pick k initial cen-
ters ĉ1, . . . , ĉk.

E2. Run the centroid estimation procedure of Section 4.2
to obtain the final centers.

The running time is dominated by the exhaustive search
in step E2 which takes time O

(
2(4k/βω)nd

)
. We show that

the cost of the final solution is at most (1 + ω)∆2
k(X), with

probability γk for some constant γ. By repeating the proce-
dure O(γ−k) times, we can boost this to a constant.

Theorem 4.14 Assuming that ∆2
k(X) ≤ ε2∆2

k−1(X) for a
small enough ε, there is a PTAS for the k-means problem
that returns a (1 + ω)-optimal solution with constant prob-
ability in time O(2O(k(1+ε2)/ω)nd).

Proof: By appropriately setting ρ in the sampling proce-
dure, we can ensure that with probability Θ(1)k, it returns
centers ĉ1, . . . , ĉk such that for each i, ‖ĉi − ci‖ ≤ Di/10
(part (i) of Corollary 4.4). So by Lemma 4.12 we know
that |Xi| ≥ β|R′

i| for every i. Now Lemma 2.3 in [?]
shows that for every i, with constant probability, there is
some candidate point c′i ∈ Ti such that

∑
x∈Xi

‖x− c′i‖2 ≤
(1 + ω)∆2

1(Xi). The cost of the best-candidate solution
is at most the cost of the solution due to the points c′1 ∈
T1, . . . , c

′
k ∈ Tk. The overall success probability for one

call of the procedure is γk for some constant γ < 1, so by
repeating the procedure O(γ−k) times we can obtain con-
stant success probability.

5. The separation condition

We show that our separation condition implies, and is
implied by, the condition that any two near-optimal k-
clusterings disagree on only a small fraction of the data.
Let cost(x1, . . . , xk) denote the cost of clustering X around
the centers x1, . . . , xk ∈ Rd. We use R(x) to denote the
Voronoi region of point x (the centers will be clear from the
context). Let S1 	 S2 = (S1 \ S2) ∪ (S2 \ S1) denote the
symmetric difference of S1 and S2.

Theorem 5.1 Let α2 = 1−401ε2

400 . Suppose that X ⊆ Rd

is ε-separated for k-means for a small enough ε. The
following hold:

(i) If there are centers ĉ1, . . . , ĉk such that
cost(ĉ1, . . . , ĉk) ≤ α2∆2

k−1(X), then for each
ĉi there is a distinct optimal center cσ(i) such that
|R(ĉi)	Xσ(i)| ≤ 28ε2|Xσ(i)|;

(ii) If X̂ is obtained by perturbing each x ∈ Xi by a dis-
tance of ε∆k−1(X)√

n
then ∆2

k(X̂) = O(ε2)∆2
k−1(X̂).

Notice that part (i) also yields that if X is ε-separated for
k-means, then any k-clustering of cost at most α2

ε2 ∆2
k(X)

has small Hamming distance to the optimal k-clustering
(more strongly, each cluster has small Hamming distance
to a distinct optimal cluster). We now show the converse.

Theorem 5.2 Let ε ≤ 1
3 . Suppose that for every k-

clustering X̂1, . . . , X̂k of X of cost at most α2∆2
k(X),

(i) there exists a bijection σ such that |X̂i 	 Xσ(i)| ≤
ε|Xσ(i)|. Then, X is α-separated for k-means;

(ii) there is a bijection σ such that
∑k

i=1 |X̂i 	 Xσ(i)| ≤
2ε

k−1 |X|. Then, X is α-separated for k-means.

Proof: Let R1, . . . , Rk−1 be an optimal (k− 1)-means so-
lution. We will construct a refinement of R1, . . . , Rk−1 and
argue that this has large Hamming distance to X1, . . . , Xk,
and hence high cost, implying that ∆2

k−1(X)/∆2
k(X) is

large. Let Rk−1 be the largest cluster. We start with an ar-
bitrary refinement R1, . . . , Rk−2, X̂k−1, X̂k where X̂k−1∪
X̂k = Rk−1, X̂k−1, X̂k 6= ∅. If this has high cost,
then we are done, otherwise let σ be the claimed bijection.
For part (i), we introduce a large disagreement by split-
ting X̂k−1 ∩Xσ(k−1) and X̂k ∩Xσ(k) into two equal-sized
halves, Ak−1 ∪ Bk−1 and Ak ∪ Bk respectively, and “mis-
matching” them. More precisely, we claim that the cluster-
ing R1, . . . , Rk−2, X

′
k−1 = (X̂k−1 \ Ak−1) ∪ Ak, X ′

k =
(X̂k \ Ak) ∪ Ak−1 has large Hamming distance. For
any bijection σ′, if σ′(i) 6= σ(i) for i ≤ k − 2, then
|Ri 	 Xσ′(i)| ≥ |Ri ∩ Xσ(i)| ≥ (1 − ε)|Ri|; otherwise,
σ′(k) ∈ {σ(k − 1), σ(k)}, so |X ′

k 	 Xσ′(k)| ≥ 1−ε
2 |X

′
k|

since X ′
k \Xσ(k−1) ⊇ Bk, X ′

k \Xσ(k) ⊇ Ak−1.
For part (ii), since |Rk−1| ≥ |X|

k−1 , we have |X̂k−1 ∩
Xσ(k−1)|+ |X̂k ∩Xσ(k)| ≥ 1−ε

k−1 |X|. After the above mis-
match operation, for any bijection σ′, the total disagree-
ment is at least |X ′

k−1 	 Xσ′(k−1)| + |X ′
k 	 Xσ′(k)| ≥

1
2

(
|X̂k−1 ∩Xσ(k−1)|+ |X̂k ∩Xσ(k)|

)
≥ 1−ε

2(k−1) |X|.


